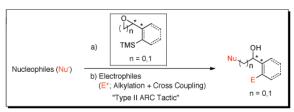


Org Lett. Author manuscript; available in PMC 2011 February 5.


Published in final edited form as:

Org Lett. 2010 February 5; 12(3): 588. doi:10.1021/ol902784q.

Uniting Anion Relay Chemistry with Pd-Mediated Cross Coupling: Design, Synthesis and Evaluation of Bifunctional Aryl and Vinyl Silane Linchpins

Amos B. Smith III*, Won-Suk Kim, and Rongbiao Tong Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104

Abstract

Union of Type II Anion Relay Chemistry (ARC) with Pd-induced Cross Coupling Reactions (CCR) has been achieved, in conjunction with the design, synthesis, and evaluation of a new class of bifunctional linchpins, comprising a series of vinyl silanes bearing β - or γ -electrophilic sites. The synthetic tactic permits both alkylation and Pd-mediated CCR of the anions derived via 1,4-silyl C (sp²) \rightarrow O Brook Rearrangements.

Type I and II <u>Anion Relay Chemistry</u> (ARC), exploiting Brook Rearrangements (Scheme **1A** and **1B**), comprises a powerful linchpin tactic for the rapid assembly of high levels of molecular complexity, as demanded by natural product total synthesis. Extension of the Type II ARC process (Scheme **1B**) to include transition metal promoted <u>Cross-Coupling Reactions</u> (CCR), as the culminating event in the Type II ARC process (cf. **8** \rightarrow **9**) would, in general, greatly extend the scope of this evolving synthetic tactic. Recently, we recorded a single example employing *ortho*-TMS benzaldehyde **10** as linchpin that demonstrated the feasibility of uniting Anion Relay Chemistry with Pd-mediated cross coupling (Scheme 2). The reaction sequence involved treatment of **10** with *n*-BuLi followed in turn by addition of CuI and HMPA to induce 1,4-silyl C(sp²) \rightarrow O migration, vinyl bromide with a catalytic amount of Pd(PPh₃)₄ for the CCR, and TBAF to remove the TMS group; tricomponent adduct **10a** was produced in 56% yield.

Convinced that this "one-flask" multicomponent protocol would hold considerable potential, in general, we initiated a program to unite Anion Relay Chemistry with the cross coupling tactic. We quickly recognized, as reported by Takeda *et al.*⁴ for *ortho-*TMS benzyl alcohol, that the use of CuI, and in our case a mixture of HMPA and THF (1:1), is required to trigger the 1,4-Brook rearrangement. Towards this end, addition of *n*-BuLi to **10**, followed by CuI/HMPA:THF induced silyl migration. Subsequent addition of diverse vinyl and aryl halides in

the presence of 3 mol % Pd(PPh₃)₄ in THF at room temperature then, led to a series of cross coupled adducts (**10a-10h**) with yields ranging from 50-67% (Table 1).

Having established the initial scope of the combined ARC-II/Pd-mediated CCR protocol, we turned to the design, synthesis and evaluation of a new class of bifunctional vinyl silanes, with electrophilic sites β or γ to the silane (Figure 1), first to explore their utility as linchpins for the Type II ARC tactic and then as linchpins in the combined ARC-II/Pd-mediated CCR process.

Linchpin 11 was readily available via oxidation of known alcohol 17,⁵ while 12 was prepared from epoxide 18⁶ and commercial vinyl bromide 19 (Scheme 3).

To explore the ARC tactic with **11**, we selected conditions that proved effective with **10**.³ As illustrated in Table 2, addition of *n*-BuLi in Et₂O, followed by CuI (1.2 equiv) in a mixture of HMPA/THF (1:1), and then a variety of carbon- and heteroatom-based electrophiles furnished adducts **21a-21d** in 63-68% yield. Under these conditions, the 1,4 silyl migration proceeded rapidly (ca. 30 min). Equally important, palladium-mediated cross coupling reactions, initiated via the ARC Type II process, proved feasible. For example, addition of 3 mol % Pd(PPh₃)₄ and a series of vinyl and aryl halides after the HMPA/THF induced Brook rearrangement furnished cross coupled adducts **21e-22h** in 52-61% yield. Other common nucleophiles proved effective as initiators of both the Type II ARC and the combined ARC-II/Pd-mediated CCR tactics (Table 3). Use of TBAF to remove the TMS group proved critical to avoid partial allylic rearrangements of **22a-22f**; use of 1 N HCl led to facile allylic rearrangement (cf. **22h-22j**). Neither allylic rearrangement nor cross-coupling was observed upon use of anion derived from dithiane, the latter due to catalyst poisoning by the dithiane.⁷

Encouraged by the viability of the Type II ARC process employing **11**, we turned next to **12** as the bifunctional linchpin (Table 4). Initially, silyl migration proved problematic, furnishing only trace amounts of the desired product when employing the conditions which proved effective at triggering silyl migration with **11**. However, when two equivalents of both n-BuLi as the nucleophile and CuI were employed in a mixture of HMPA and THF (1:1), complete 1,4-silyl $C(sp^2) \rightarrow O$ migration occurred albeit more slowly over the course of 2 h. Addition of a series of electrophiles (2.0 equiv) furnished alkylation adducts **23a-23d** (Table 4, Entries 1-4) in ca. 50% yield, while modest yields of cross-coupling products **23e-23f** were obtained upon addition of 3 mol % Pd(PPh₃)₄ followed by aryl iodides (Entries 5-6).

The variable time course between **11** and **12** for 1,4-silyl group migration is understandable in terms of the mechanism of the Brook rearrangement.⁸ In the case of linchpin **12**, the 1,4-silyl $C(sp^2) \rightarrow O$ migration is slow, due to a combination of the distance between the silicon and oxygen atoms and the multiple bond rotations required to arrive at the cyclic transition state.⁹

From the perspective of complex molecule synthesis, a drawback of employing α -unsubstituted linchpin aldehydes **11** and **12** entails the lack of stereochemical control upon initial nucleophilic addition and the lack of the ubiquitous methyl substituents found in polyketides. We therefore turned to α -substituted linchpins (+)-**13** and (-)-**14**. We reasoned that addition of alkyllithiums to (+)-**13** and (-)-**14** would produce, with good diastereoselectivity, the corresponding *syn* alkoxides. Confirmation of this scenario would further increase the utility of both the Type II ARC and ARC-II/Pd-induced CCR tactics, not only for natural product total synthesis, but also polyketide diversity synthesis. 11

Pleasingly, addition of n-BuLi to either (+)-13 or (-)-14 (Table 5), followed in turn by silyl migration induced by CuI in a mixture of HMPA and THF (1:1) and reaction with a series of electrophiles furnished multicomponent adducts 24a-25h in yields ranging from 56 to 75% (Table 5). Leffective cross coupling unions also occurred after 1,4-Brook rearrangement, upon

addition of 3 mol % Pd(PPh₃)₄, followed by vinyl or aryl halides. Importantly, no epimerization of the α -methyl substituent was observed during this process.

As with linchpin **11**, other nucleophiles derived from furan, phenyl bromide and 2-methyl-1,3-dithiane prove to be effective at initiating the Type II ARC tactic to furnish, in a single flask, both three-component alkylation and cross-coupled adducts **26a-27e** (Table 6).

We next explored the possibility of extending the Type II ARC and ARC-II/Pd-induced CCR tactics to epoxide-based linchpins possessing an electrophilic site γ to the vinyl silane. This design led to linchpins (–)-15 and (+)-16, constructed as illustrated in Scheme 4.^{13,14}

With the four-carbon bifunctional linchpins in hand, we employed lithium dibutylcuprate $\bf 31$, known both to add to epoxides 15 and to initiate 1,4-silyl $C(sp^3) \rightarrow O$ migration in Anion Relay Chemistry. Capture of allyl bromide after Brook rearrangement led respectively to adducts (+)- $\bf 32$ and (+)- $\bf 34$ (Scheme 5). Cross coupling reactions also proceeded upon addition of 3 mol % Pd(PPh₃)₄, followed by reaction with phenyl iodide to furnish (+)- $\bf 33$ and (+)- $\bf 35$, respectively.

In summary, the union of Type II Anion Relay Chemistry with Pd-mediated Cross Coupling has been achieved, thereby greatly expanding the scope of this multicomponent "one-flask" linchpin protocol. Equally important, a new class of three and four carbon, bifunctional linchpins comprising aryl and vinyl silanes bearing β - or γ -electrophilic sites, have been designed, synthesized and demonstrated to be competent in both Type II ARC and combined ARC-II/Pd-induced CCR processes. Studies to improve the efficiency of this tactic continue in our laboratory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Support was provide by the National Institutes of Health (GM-29028 and GM-081253). We gratefully acknowledge Cephalon, Inc. for a Dr. Horst Witzel Fellowship awarded to Won-Suk Kim.

References

- For reviews see: (a) Smith AB III, Adams CM. Acc. Chem. Res 37:365. [PubMed: 15196046] (b)
 Smith AB III, Wuest WM. Chem. Commun 2008:5883. (c) Moser WH. Tetrahedron 2001;57:2065.
- 2. Brook AG. Acc. Chem. Res 1974;7:77.
- 3. Smith AB III, Kim W-S, Wuest WM. Angew. Chem., Int. Ed 2008;47:7082.
- 4. Taguchi H, Takami K, Tsubouchi A, Takeda T. Tetrahedron Lett 2004;45:429.
- 5. Han S, Kass RS. Tetrahderon Lett 1997;38:7503.
- 6. Kamal A, Ramesh GBK, Krishnaji T, Ramu R. Tetrahderon: Asymmetry 2006;17:1281.
- 7. Main CA, Petersson HM, Rahman SS, Hartley RC. Tetrahderon 2008;64:901.
- 8. (a) Jiang X, Bailey WF. Organometallics 1995;14:5704. (b) Kawashima T, Naganuma K, Okazaki R. Organometallics 1998;17:367. (c) Naganuma K, Kawashima T, Okazaki R. Chem. Lett 1999:1139.
- 9. The results on silyl migration are in accord with Takeda and coworkers. Tsubouchi A, Itoh M, Onishi K, Takeda T. Synthesis 2004;9:1504.
- 10. Sato and coworkers demonstrated (+)-13 and (-)-14 underwent Grignard reactions with high syn diastereoselectivity, the result of a Cram product-like transition state. ^{10b,10e} (a) Sato F, Kusakabe M, Kobayashi Y. J. Chem. Soc., Chem. Commun 1984:1130. (b) Sato F, Takeda Y, Uchiyama H, Kobayashi Y. J. Chem. Soc., Chem. Commun 1984:1132. (c) Kobayashi Y, Kitano Y, Sato F. J. Chem. Soc., Chem. Commun 1984:1329. (d) Sato F, Kusakabe M, Kato Y. J. Chem. Soc., Chem.

Commun 1984:1331. (e) Samaddar AK, Chiba T, Kobayashi Y, Sato F. J. Chem. Soc., Chem. Commun 1985:329.

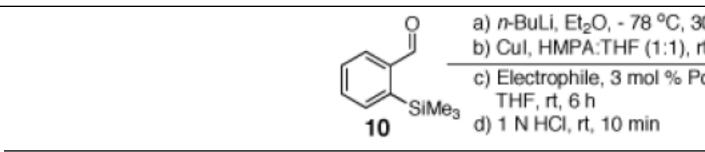
- 11. Schreiber SL. Science 2000;287:1964. [PubMed: 10720315]
- 12. Absolute configuration was confirmed by Mosher ester analysis.
- 13. (a) Hicks DR, Fraser-Reid B. Synthesis 1974:203. (b) Cink RD, Forsyth CJ. J. Org. Chem 1995;60:8122.
- 14. Kobayashi Y, Kitano Y, Takeda Y, Sato F. Tetrahedron 1986;42:2937.
- 15. Herr RW, Wieland DM, Johnson CR. J. Am. Chem. Soc 1970;92:3813.

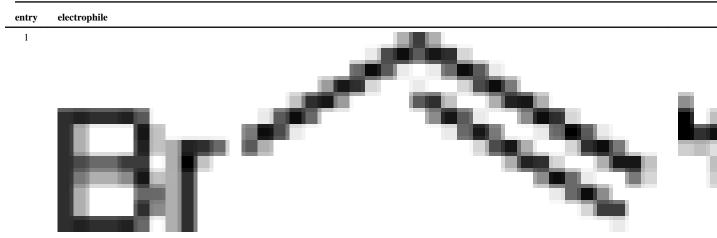
Scheme 1.

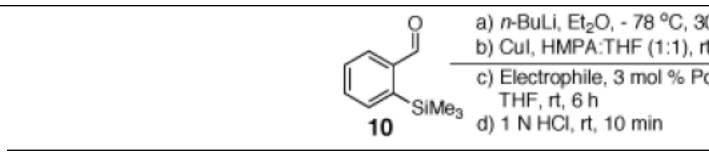
Type I and II Anion Relay Chemistry (ARC)

Scheme 2. Type II <u>Anion Relay Chemistry (ARC) and Cross-Coupling Reactions (CCR).</u>

Figure 1. Vinyl Silane Bifunctional Linchpins


OH SiMe₃
$$MnO_2$$
 O SiMe₃ Et_2O , rt, 18 h NnO_2 O SiMe₃ NnO_2 O SiMe₃ NnO_2 N


Scheme 3. Preparation of Linchpins 11 and 12


Scheme 4. Preparation of Linchpins (-)-15 and (+)-16

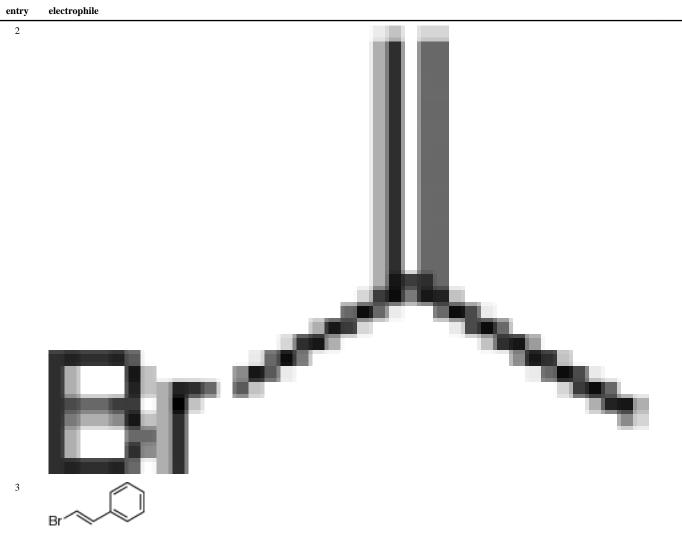
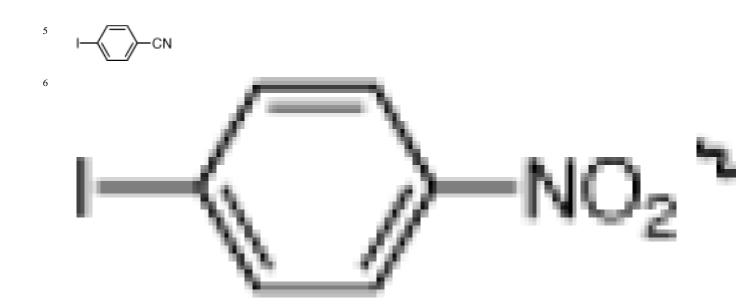
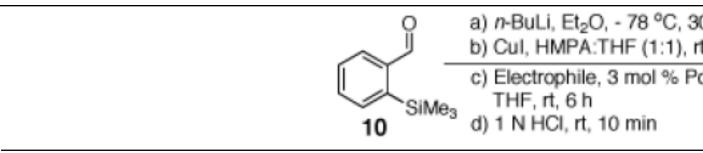

Scheme 5. Three-Component Coupling of Linchpins (–)-**15** or (+)-**16** with Various Electrophiles

Table 1Pd-Mediated Cross-Coupling Reactions via Type II ARC





o a) n-BuLi, Et₂O, - 78 °C, 30 b) Cul, HMPA:THF (1:1), rt
c) Electrophile, 3 mol % Po

entry electrophile
4
Br

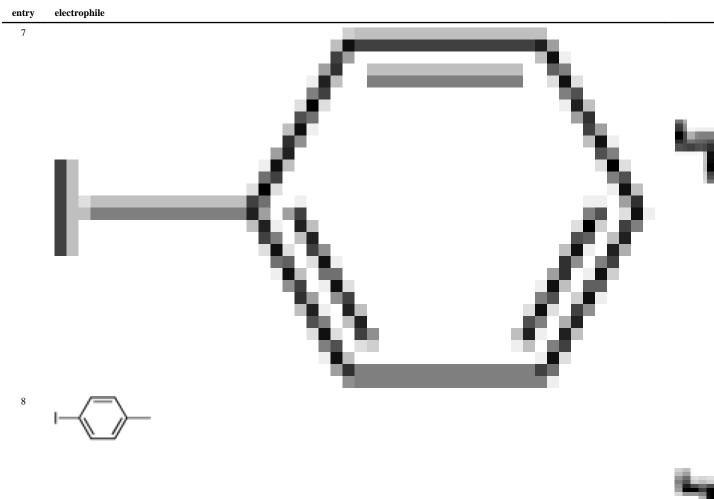


 Table 2

 Three-Component Coupling of Linchpin 11 with Various Electrophiles

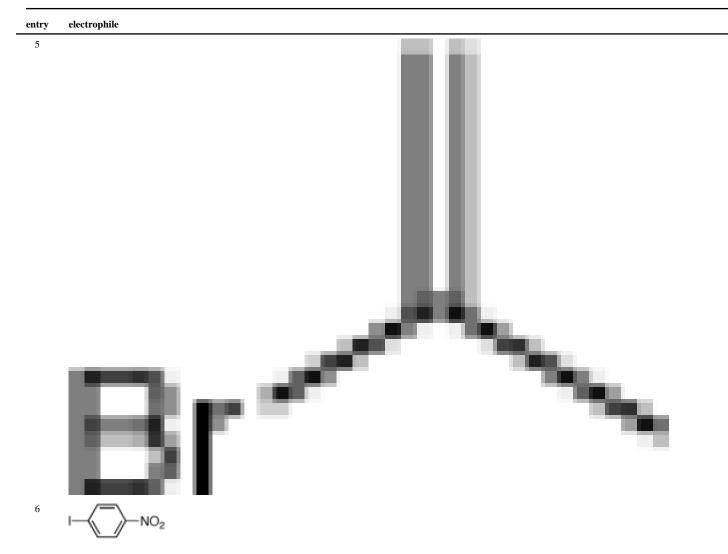
a) n-BuLi, Et₂O, -78 °C, 30 min b) Cul, HMPA:THF (1:1), rt, 30 min c) Electrophile, rt, 2 h d) 1 N HCl, rt, 10 min

entry	electrophile
1	Br/\/

a) n-BuLi, Et₂O, -78 $^{\circ}$ C, 30 min b) Cul, HMPA:THF (1:1), rt, 30 min

c) Electrophile, rt, 2 h d) 1 N HCl, rt, 10 min

electrophile entry

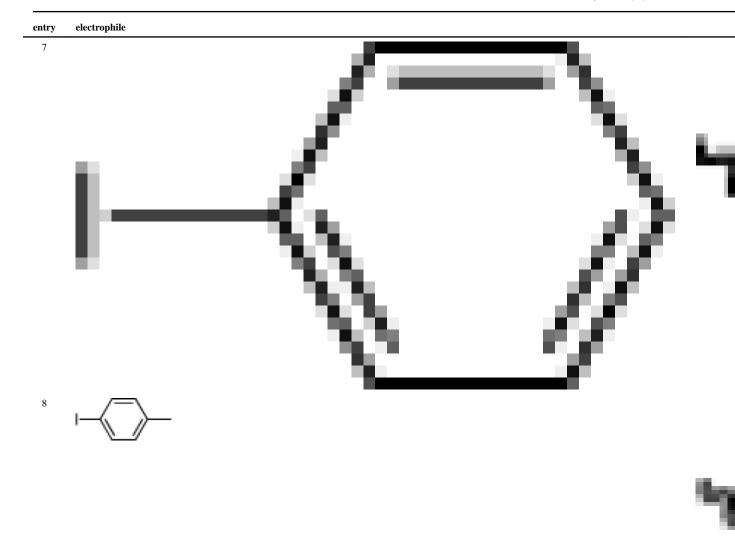

> 3 PhS-SPh

Bu₃SnCl

SiMe

c) Electrophile, rt, 2 h d) 1 N HCl, rt, 10 min

a) n-BuLi, Et₂O, -78 $^{\circ}$ C, 30 min b) Cul, HMPA:THF (1:1), rt, 30 min

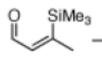


O SiMe

11

a) n-BuLi, Et₂O, -78 °C, 30 min
 b) Cul, HMPA:THF (1:1), rt, 30 min

c) Electrophile, rt, 2 h d) 1 N HCl, rt, 10 min



Conditions: 1.2 equiv n-BuLi, 1.2 equiv CuI.

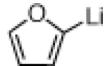
 $[^]a$ 3 mol % Pd(PPh3)4, THF, rt, 6 h.

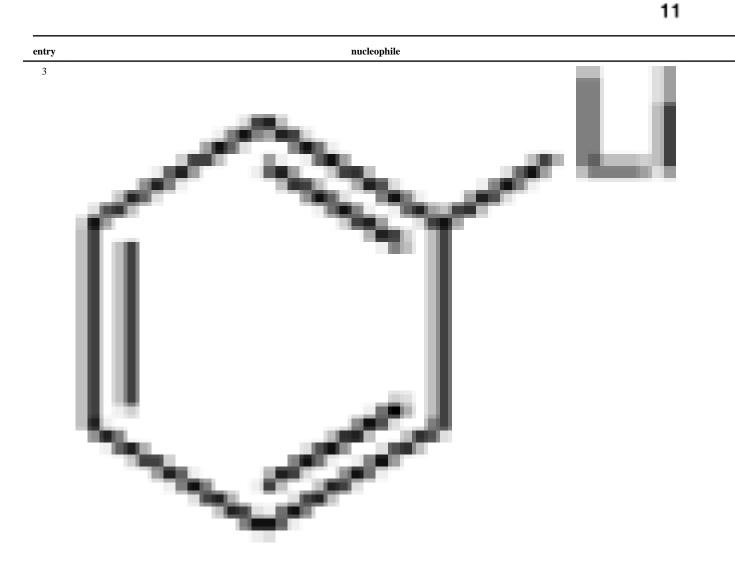
Table 3

Three-Component Coupling of Linchpin 11 with Various Nucleophiles and CCR with Phenyl Iodide

11

entry nucleophile





O SiMe₃

entry nucleophile

2

O SiMe₃

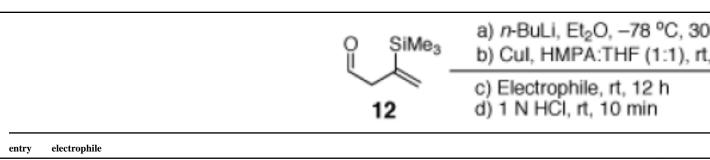
4 SSS

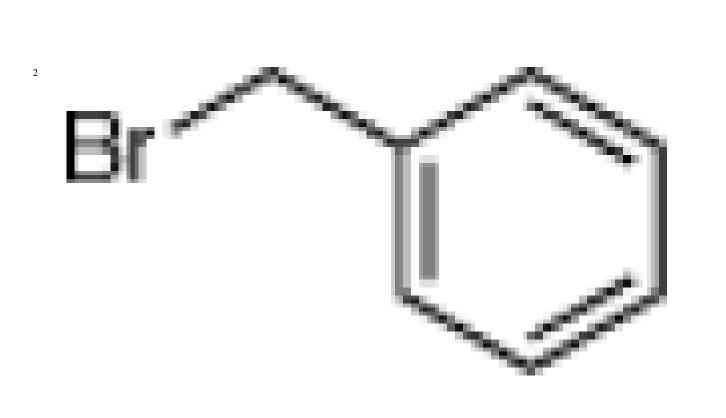
Conditions:

^a1 N HCl, rt, 10 min.

b_{TBAF, rt, 1 h.}

 c R = Allyl, Allyl bromide, rt, 2 h.


 $^{d}\mathrm{R}=\mathrm{Ph,\,3}$ mol % Pd(PPh3)4, Phenyl iodide THF, rt, 6 h.


 $[\]ensuremath{^{e}}\xspace\ensuremath{\text{No}}$ cross-coupling product was obtained due to catalyst poisoning by dithiane.

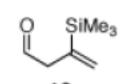
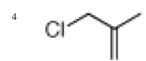
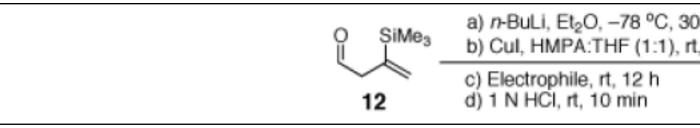
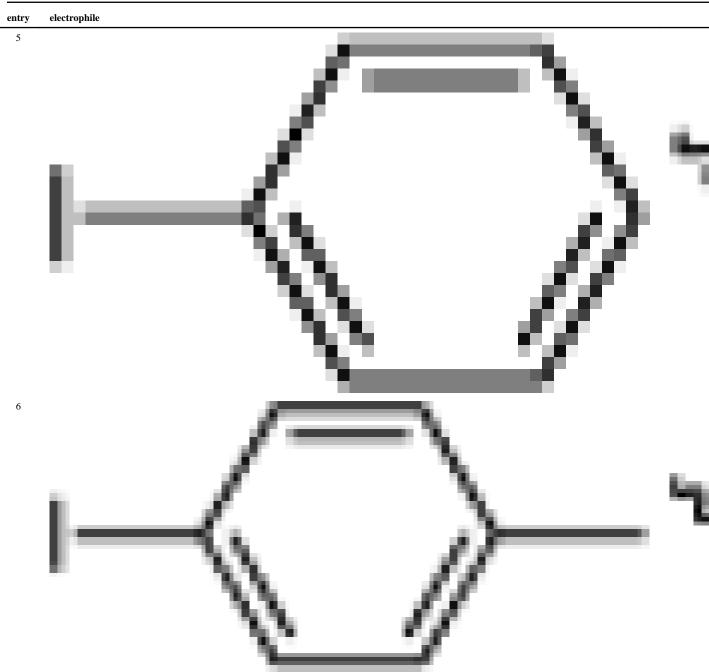

Br

 Table 4

 Three-Component Coupling of Linchpin 12 with Various Electrophiles

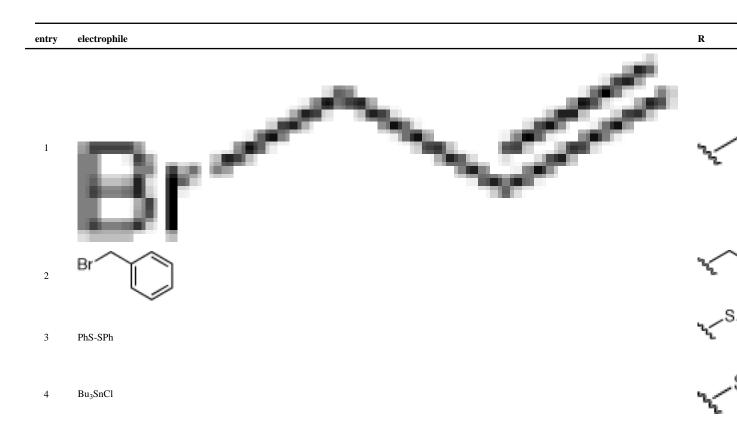






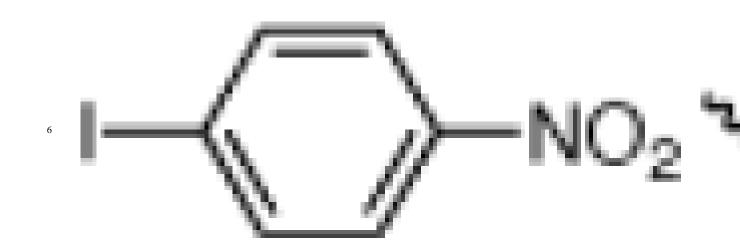
- a) n-BuLi, Et₂O, -78 °C, 30
 b) Cul, HMPA:THF (1:1), rt,
- c) Electrophile, rt, 12 h d) 1 N HCl, rt, 10 min

_	entry	electrophile
	3	PhS-SPh

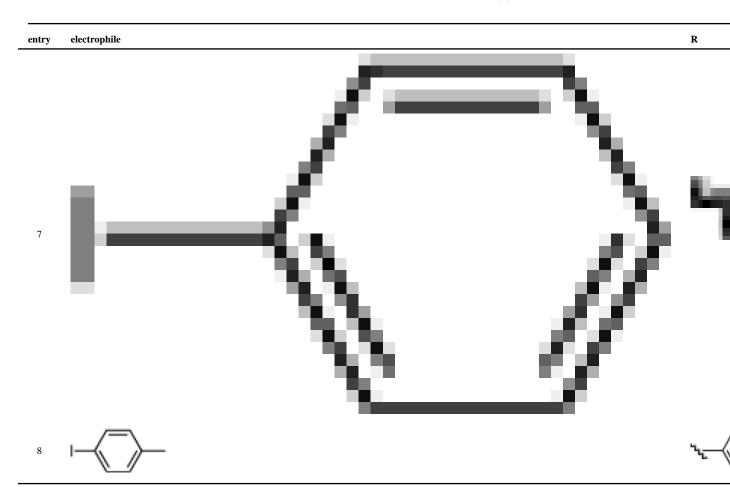


Conditions: 2.0 equiv n-BuLi, 2.0 equiv CuI.

Table 5
Three-Component Coupling of Linchpin (+)-13 or (-)-14 with Various Electrophiles

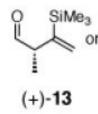


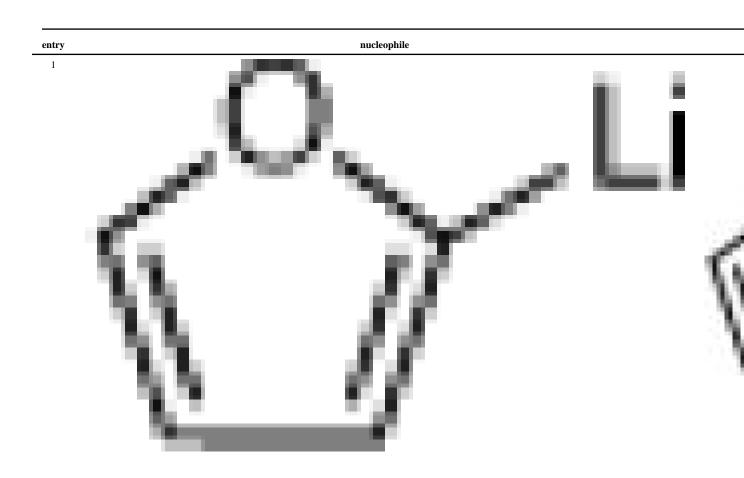
R

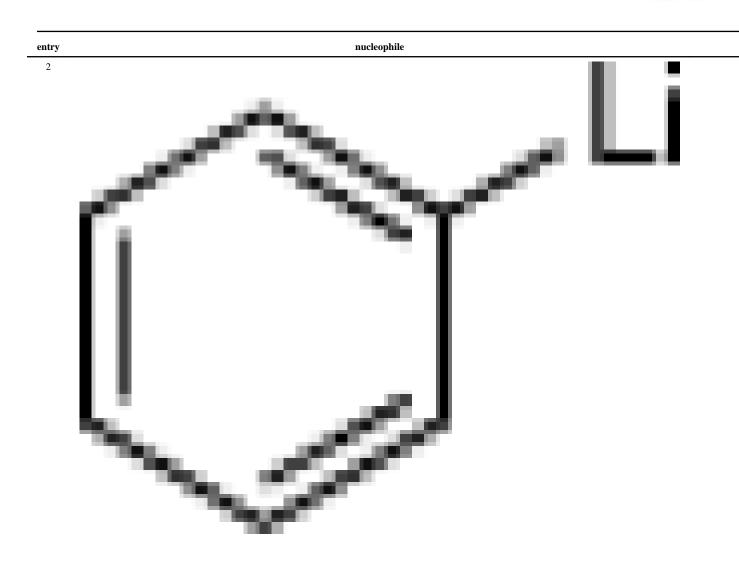

. Rr

electrophile

entry


Org Lett. Author manuscript; available in PMC 2011 February 5.




Conditions: 2.0 equiv *n*-BuLi, 2.0 equiv CuI.

^a3 mol % Pd(PPh3)4, THF, rt, 12 h.

 $\label{thm:component} \textbf{Table 6}$ Three-Component Coupling of Linchpin (+)-13 or (-)-14 with Various Nucleophiles and CCR with Phenyl iodide

entry nucleophile

3

SSS

SSS

Annual Company of the Company of t

Conditions:

^aR = Allyl, Allyl bromide, rt, 12 h.

 b R = Ph, 3 mol % Pd(PPh₃)₄, Phenyl iodide, THF, rt, 12 h.