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Abstract
Gonadal steroids are among the many factors that influence food intake and body weight in mammals.
Hormonal effects on these processes are particularly striking in female rats, which show large
increases in food intake and body weight after ovariectomy. A key role of estradiol in the control of
food intake and energy balance in humans is evidenced by the fact that the incidence of obesity
increases greatly after menopause [1]. The actions of estradiol on neural systems that regulate eating
may also account in part for sex differences in food intake and eating disorders, which occur much
more frequently in young women [65]. This paper presents a minireview of research examining the
changes in feeding that occur during the ovarian cycle, the effects of estradiol withdrawal and
replacement on food intake and body weight, and the neurobiological mechanisms by which estradiol
influences feeding behavior. A model of hormone action on food intake that emerges from this
research views estradiol as an indirect control of eating and meal size, producing changes in feeding
behavior by modulating the central processing of both satiating and orexigenic peptides that represent
direct controls of eating. Some of the shortcomings of the model and directions for future research
are discussed.

1. Introduction
The goal of this review is not to provide a comprehensive analysis of the research on the control
of ingestive behavior by ovarian hormones. Instead, the goal is to focus on the ability of
estradiol to influence feeding via interactions with peptidergic systems known to be involved
in the control of food intake; cholecystokinin (CCK), neuropeptide Y (NPY), and ghrelin, and
how that research does or does not fit with Smith's theoretical model of the direct and indirect
controls of meal size. Thus, the pages that follow are not intended to reflect all the work in this
area of ingestive behavior, but to show progress and shortcomings in our understanding of how
estradiol interacts with the neurobiological controls of food intake. Readers interested in the
effects of estradiol on other signaling molecules that affect feeding are referred to the work of
Mystkowski and Schwartz [50], Rivera and Eckel [55], and Eckel et al. [31], while readers
interested in the effects of estradiol on energy balance and the availability of metabolic fuels
are referred to the work of Schneider [60].

2. Changes in food intake during ovarian cycles
In rats, the release of estradiol and progesterone from the ovaries occurs cyclically, with a
period of 4-5 days and, along with neuroendocrine events in the hypothalamus and anterior
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pituitary, comprises the estrous cycle. Apart from changes in female sexual behavior seen
during the estrous cycle, food intake also fluctuates in response to these ovarian rhythms.
Female rats show cyclic changes in eating during its 4- to 5-day estrous cycle, with reduced
food intake occurring during the night of proestrus, following the rise of estradiol secretion
that begins during diestrus and continues into the afternoon of proestrus [8,11,72]. Cyclic
changes in food intake have also been reported to occur in mammals that have long ovarian
cycles accompanied by a prolonged luteal phase such as the sheep [70], guinea pig [22], and
rhesus monkey, with reduced food intake occurring around the time of ovulation in these
animals [21]. Similar data have also been obtained in human females. In an analysis of 19
separate studies addressing the relationship between ovarian hormones and food intake,
Buffenstein et al. [10] reported a mean decrease of 250 kcal per day during the periovulatory
phase of the menstrual cycle, with some studies finding a decrease of more than 600 kcal per
day. In rats, the decrease in food intake that occurs during proestrus is accomplished by a
decrease in meal size without a compensatory increase in meal frequency [8,35]. Comparable
analyses of changes in meal size and number across ovarian cycles in the other species cited
above have not, to the best of my knowledge, been conducted.

3. Effects of ovariectomy and estradiol replacement
The research described above suggests that food intake and meal size are significantly reduced
at a periovulatory point in estrous and menstrual cycles following the rise of estradiol secretion.
Experiments examining the effects of ovariectomy and hormone replacement have provided
direct evidence that estradiol is the hormone responsible for the changes in feeding behavior
seen during the ovarian cycle. Ovariectomy of adult rats causes a significant increase in food
intake and meal size, and a concomitant increase in body weight [2,8,40,77]. In rhesus females,
bilateral removal of the ovaries also causes hyperphagia that persists for approximately 3
weeks, along with increased weight gain [66]. The prevalence of obesity also increases in
postmenopausal women compared with age-matched controls [67], and estrogen replacement
therapy (ERT) has been shown to blunt the increases in body weight and adiposity [71]. Thus,
human and animal studies demonstrate that withdrawal of estradiol via ovariectomy or
menopause leads to increases in body weight and fat accumulation. Whether the effects of ERT
on body weight gain in postmenopausal women results from a decrease in food intake (as has
been shown in rhesus females), a direct action on adipose tissue, or both remains unclear.
Treating ovariectomized rats and guinea pigs with physiological doses of estradiol decreases
food intake and body weight [2,69,77,22]. Similar effects of estradiol replacement on food
intake have also been reported in ovariectomized rhesus monkeys [23]. Progesterone treatment
alone has no significant effects on feeding behavior in ovariectomized rodents or rhesus
females, although pharmacological doses of progesterone have been shown to antagonize the
effects of estradiol on food intake [34,77,24]. In ovariectomized rats, estradiol decreases eating
by causing a decrease in meal size [2,8]. Although it is likely that estradiol decreases food
intake in ovariectomized guinea pigs and rhesus monkeys by influencing meal size,
experimental tests of this hypothesis have not been conducted. The fact that the inhibitory effect
of estradiol on food intake appears to result from changes in meal size suggests that estradiol
may influence feeding by advancing the onset of satiety, an idea that will be developed in
subsequent sections.

4. Central effects of estradiol
Several lines of evidence indicate that the effects of estradiol on food intake are mediated by
its actions on estrogen receptors within the brain. In the early 1970's, Wade and Zucker [75]
were the first to report that direct stimulation of the ventromedial hypothalamus (VMH) by
estradiol influenced feeding behavior in female rats. They found that central implants of
undiluted estradiol benzoate (EB) in the VMH decreased food intake in ovariectomized rats
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during a 3-day period of hormonal stimulation. Implants of EB in the preoptic area (POA) had
no significant effects on feeding [75]. Those findings were replicated by other investigators
[5,42] and incorporated into a set point model of food intake which hypothesized that estradiol's
effects on feeding behavior were secondary to the reduction of a body weight set point via the
actions of estradiol in the VMH [42,76]. Data from our lab and from other investigators indicate
that the effects of estradiol on food intake may be mediated by its actions on estrogen receptors
in hypothalamic regions other than the VMH, and that estrogenic effects on feeding aren't
necessarily secondary to a lowering of a body weight set point. In these experiments, estradiol
implants in the paraventricular nucleus of the hypothalamus (PVN), a brain region involved in
the control of feeding behavior [7,46] decreased food intake in ovariectomized rats and guinea
pigs [12,53,14]. Direct placement of estradiol in other brain regions (posterior hypothalamus,
POA, VMH) had no significant effects on food intake [12]. The fact that PVN implants of
estradiol suppressed eating in the absence of changes in lipoprotein lipase activity in adipose
tissue suggest that peripheral metabolic changes are not responsible for the changes in feeding
seen after estrogenic stimulation of the PVN [53]. In addition, the findings that estradiol
implants in the PVN can inhibit food intake without inducing significant levels of lordosis
behavior indicates that steroid spread from the PVN to the VMH did not underlie the observed
effects on feeding [12]. Although the results of these studies suggest that the PVN is an
important site of action for estrogenic effects on feeding, other experiments have failed to
replicate these findings [25,41]. More recent findings suggest that the effects of estradiol on
food intake are not limited to the hypothalamus but also involve actions on estrogen receptors
in the hindbrain. In this experiment, surgical placement of an estradiol-containing haemostatic
cloth onto the surface of the hindbrain (over the caudal region of the nucleus of the solitary
tract) in ovariectomized rats decreased food intake 72 hours after hormone application [78].
These authors also reported that hindbrain placement of estradiol increased CCK-induced Fos
activity in the caudal nucleus of the solitary tract (NTS). It is possible that the effects of estradiol
on feeding involve actions in an estrogen-sensitive, PVN-hindbrain pathway that participates
in the neural control of food intake and autonomic functions [43,59,68]. Neuroanatomical
evidence in support of this hypothesis comes from research showing that estrogen-sensitive
PVN neurons in the parvocelluar portion of this brain region form reciprocal connections with
neurons in the dorsal vagal complex of the medulla (NTS, dorsal motor nucleus of the vagus)
[19]. It will be important for future studies to further explore the central sites at which estradiol
acts to inhibit food intake.

The central effects of estradiol on feeding behavior depend upon its ability to bind to and
activate estrogen receptors (ER) in the brain regions described above. However, the subtype
of the receptor responsible for estrogenic effects on eating (ERα, ERβ) is still not clear. In one
study, intracerebroventricular (icv) infusions of anti-sense oligodeoxynucleotides for ERβ but
not ERα blocked the effects of systemic estradiol on food intake and body weight, suggesting
that central ERβ receptors are involved in the anorectic effects of estradiol in ovariectomized
rats [47]. In ovariectomized mice with null mutations of ERα(αERKO), systemic estradiol
treatment did not produce the expected decrease in food intake, suggesting that perhaps in mice
activation of ERα is responsible for the effects of estradiol on feeding [36]. To extend this latter
observation to the female rat, investigators have examined the effects of selective ER agonists
on food intake and body weight. In these studies, systemic injections of the ERα agonist PPT
produced both a chronic [56] and an acute [58] suppression of food intake and body weight in
ovariectomized rats. These investigators also found that peripheral administration of the
ERβ agonist DPN had no significant effects on feeding or body weight. The fact that PPT
mimicked the effects of estradiol on food intake by producing a decrease in nocturnal meal
size [58] provides additional support for the idea that estradiol's actions in ovariectomized rats
involve the activation of ERα However, the hypothesis that activation of ERα is necessary for
the effects of estradiol on feeding behavior is not consistent with the results of experiments
showing that direct placement of estradiol in the PVN [9,14,53] or VMH [5,42,75] reduces
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food intake in ovariectomized rats and guinea pigs. Although the PVN contains estrogen-
sensitive neurons, the subtype of the estrogen receptor found in the PVN is ERβ not ERα
[61]. In addition, selective silencing of ERα expression in the VMH did not attenuate the effects
of systemic estradiol treatment on feeding behavior in ovariectomized rats [49]. It will be
important for future studies to further explore the involvement of these subtypes of the ER by
utilizing icv infusions of ER agonists in specific brain regions and/or RNA silencing of ER
expression to gain a better understanding of the involvement of these ER subtypes in the
anorectic action of estradiol.

5. Estradiol, CCK and satiety
Another approach we and other investigators have utilized to study the effects of estradiol on
food intake has been to evaluate the ability of estradiol to enhance satiety signals that arise
during the course of a meal. This research has focused on the interactions between estradiol
and cholecystokinin (CCK). CCK is a peptide hormone released by the small intestine during
a meal where it acts on CCK1 receptors in the gut whose stimulation activates afferent fibers
of the vagus nerve. These vagal fibers stimulate interconnected neural structures in the brain
(e.g., NTS, parabrachial nucleus, PVN) resulting in the cessation of food intake accomplished
primarily by decreased meal size [62]. Work done in our lab and by other researchers has shown
that peripheral treatment with estradiol increases the suppressive effects of intraperitoneal (ip)
injections of CCK on food intake in female rats [3,13,37,48]. This effect of estradiol on CCK-
induced satiety is not an additive effect of the individual agents. In our hands, combined
treatment of estradiol and CCK (5.0 μg/kg) suppressed intake during a 60 minute feeding test
by 36%, whereas treatment with estradiol or CCK alone produced a suppression of food intake
of 9% and 12%, respectively [12]. Similar findings have also been obtained in intact, cycling
female rats, as ip injections of CCK (2.5 μg/kg) reliably suppressed one hour food intake during
late diestrus-II (when estradiol levels are high) but not during diestrus-I (when estradiol levels
are low) [27]. In addition, administration of devazepide, a CCK1 receptor antagonist, attenuated
the anorectic effects of estradiol in ovariectomized rats [16]. In this experiment, peripheral
treatment with devazepide (.1 mg/kg) significantly increased intake during a 30 minute feeding
test in animals treated with estradiol. Devazepide had no significant effects on food intake in
untreated, ovariectomized females [16]. Similar effects of CCK receptor blockade on meal
patterns in intact, cycling female rats have also been obtained. Specifically, devazepide (.1 mg/
kg) increased nocturnal food intake and meal size during proestrus but had no significant effects
on feeding when animals were tested during diestrus [29]. Data from our lab and others indicate
that the potentiation of CCK's effects on food intake by estradiol may involve estrogenic actions
in the brain. For example, estradiol implants in the PVN enhanced the satiety action of
peripherally administered CCK, whereas cannulae placed in other brain regions (e.g., VMH,
lateral ventricles) had no significant effects on CCK-induced satiety [15]. Estradiol has also
been shown to increase CCK-induced c-Fos immunoreactivity in both the NTS and the PVN
[30]. In addition, estradiol fails to enhance the satiety action of CCK in female ERαKO mice
[36]. These findings are consistent with the idea that the anorectic effects of estradiol stem in
part from the ability of estradiol to potentiate the satiety action of CCK by activating estrogen
receptors (ERα? ERβ?) in hypothalamic and hindbrain sites that process the vagally mediated
signal initiated by the actions of CCK in the abdomen.

6. Interactions with orexigenic peptides
Although the effects of estradiol on food intake appear to be mediated in part by interactions
with CCK systems that participate in the control of meal size, the observation that CCK
antagonists do not completely reverse the anorectic action of estradiol indicates that CCK is
not the only factor involved in mediating estrogenic effects on feeding [29]. More recent work
in our lab and by other investigators has focused on the ability of estradiol to attenuate the
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orexigenic effects of ghrelin and NPY. Discovered in 1999 as an endogenous ligand for the
growth hormone secretagogue receptor [44], ghrelin is a peptide produced by the stomach that
is best known for its effects on hunger [20]. Fasting increases ghrelin levels in rodents and
humans whereas eating suppresses ghrelin secretion [6]. Administration of ghrelin also
increases eating in animals and humans [44,74], and peripheral or central administration of
antibodies to ghrelin inhibit food intake in rats [51,4]. To investigate the role of ghrelin in the
decrease in food intake produced by estradiol, we treated ovariectomized rats with EB (5.0
μg per animal, n = 5) or the sesame oil vehicle (n = 4) for 2 days. Seventy-two hours after the
onset of EB and oil treatments, animals were given ip injections of rat ghrelin (6.0 or 12.0 nM/
animal, Bachem, Temecula, CA) or the saline vehicle in a repeated measures design during
the diurnal period. Food intake (NOYES Precision Pellets) was measured during the 4 hour
period following ghrelin or saline treatment using computer controlled food dispensers present
in the home cage (Med Associates, St. Albans, VT). The procedure was repeated each week
until all animals received ip injections of saline and both doses of ghrelin. As shown in Figure
1, compared to the saline condition, ghrelin (12.0 nM) increased cumulative food intake in the
oil group but not in EB-treated females (t [3] = 5.12, p < 0.01). These findings are consistent
with a previous report showing that male rats and untreated, ovariectomized females are more
responsive to the orexigenic effects of ghrelin (given peripherally or centrally) than intact or
EB-treated ovariectomized females [17]. In these studies, estradiol appeared to attenuate
ghrelin's effect on feeding in ovariectomized animals by increasing the latency to eat in feeding
tests conducted during the first 2 hours of the nocturnal period. Significant effects of ghrelin
on meal size were not observed in EB- or oil-treated females [17]. In our hands, ip injections
of ghrelin increased food intake and meal frequency, but not meal size, in female rats during
the first 2 hours of nocturnal feeding during diestrus but not during proestrus [18]. Further
work is needed to clarify the mechanism by which estradiol reduces the acute effects of ghrelin
on feeding behavior.

Taken together, the results of these experiments suggest that the effects of estradiol on feeding
behavior may also involve an attenuation of orexigenic signals, possibly by modulating the
effects of the peripheral ghrelin signal on hypothalamic neuropeptides involved in the control
of food intake (e.g., NPY). Consistent with this hypothesis, estradiol has been shown to
attenuate the orexigenic effects of icv infusions of NPY and the release of NPY in the PVN of
ovariectomized rats [57,9].

7. Estradiol as an indirect control of food intake
What theoretical model of feeding behavior best explains how estradiol acts to influence
eating? Earlier models characterized the effects of estradiol on food intake in terms of hormonal
modulation of long-term controls on feeding [52,76], or in terms of a hormone-induced
lowering of a body weight set point [76]. A more compelling and experimentally testable
model, articulated by Smith [64] and Eckel [28], explains the effects of estradiol on feeding in
terms of a theoretical framework of direct and indirect controls of meal size. These ideas
conceptualize the various stimuli and conditions that change eating as affecting one of two
systems: (1) a direct sensory control system responsible for encoding, transmitting, and
processing sensory stimuli that accompany ingestion (e.g., the chemical and mechanical
receptors that run from the tongue to the end of the small intestine plus their afferent
connections) and (2) indirect control systems that do not have direct sensory contact with food
stimuli but instead encode, transmit, and process other stimuli that exert effects on eating and
meal size (e.g., foraging experience, circadian rhythms, adiposity levels, gonadal hormones,
etc.). This extensive flow of sensory information that occurs during a meal is supplemented by
postingestive afferent input arising from vagal afferent fibers and spinal visceral afferents. This
pattern of sensory activity provides the brain with feedback about ingested food that is
processed by neural networks involved in the control of food intake. Viewed in this way, meal
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size is determined by the relative strength and central interactions of the positive and negative
sensory feedback, produced by food, that ultimately act on the central network for feeding
which controls the rate and duration of eating [64]. The indirect controls are not directly
affected by food stimuli that activate the receptors mentioned above, and have a duration of
action that lasts beyond a single meal. In the theoretical system outlined by Smith, indirect
controls influence meal size by modulating some features of the direct control system (e.g.,
central processing of the sensory input, changing metabolic or endocrine responses to food
stimuli, changing the number or sensitivity of receptors, etc.). Viewing estradiol as an indirect
control of eating and meal size is consistent with some of the existing data on estradiol and
feeding described in this paper [2,8]. The research done in our lab and by others on estradiol-
CCK interactions discussed in earlier sections [3,13,38,48] is also consistent with this
conceptual framework because it identifies a direct control of meal size (e.g., CCK) that is
modulated by estradiol.

8. Shortcomings of the model and directions for future research
According to Smith's original model, the neurology of the direct and indirect controls of meal
size was clearly delineated; the hindbrain is responsible for mediating the effects of direct
controls of eating whereas the indirect controls require the forebrain for their effects on
behavior to be produced [63]. Much of the support for this idea of the neurology of eating
comes from the work of Grill and Norgren on the controls of food intake in the chronic
decerebrate rat [39]. These studies revealed that the brainstem has the ability to respond to the
positive and negative feedback signals from food stimuli to control meal size and food intake
in animals with no reciprocal fibers connecting the hindbrain and forebrain. The fact that the
chronic decerebrate rat does not increase eating after food deprivation and does not acquire
conditioned taste aversions suggests that these (and other) indirect controls of eating require
the forebrain. This model has proven to be heuristic during the ten plus years since its
publication, but it is becoming clear that the strict interpretation of the neurology of the direct
and indirect controls needs to be modified. Defining a neuropeptide or steroid as a direct or
indirect control of eating based in part on their site of action in the brain becomes a tautology;
indirect controls require the forebrain therefore a chemical that acts in the forebrain to affect
feeding is an indirect control. In the years since the publication of Smith's theory, it has been
shown that molecules conceptualized as direct controls of eating (e.g., ghrelin) can influence
food intake by acting in the hindbrain [32,33] and the hypothalamus [45,51]. Recent findings
indicate that estradiol, typically viewed as an indirect control of eating [16,28,64], can inhibit
food intake and enhance CCK-induced fos expression in the NTS when applied directly to the
hindbrain, with no apparent activation of forebrain sites upstream [73]. These findings suggest
that the neurology of direct and indirect controls of eating breaks down when one attempts to
classify molecules according to that conceptual framework. Relaxing the neurological criteria
for these physiological controls of feeding would still make the model useful and
experimentally testable, as indirect controls of eating would still require the identification of
a direct control that mediates its effect (e.g., estradiol as an indirect control modifying the
actions of CCK, ghrelin, and NPY).

Despite the progress in understanding how estradiol interacts with the neurobiological controls
of food intake to influence ingestive behavior, a number of questions remain. To the best of
my knowledge, the ability of estradiol to inhibit food intake in the chronic decerebrate rat has
not been examined. Should estradiol affect feeding in these animals, then this would lend
additional support to the hypothesis that the actions of estradiol in the hindbrain can suppress
food intake in the absence of hormonal activation of hypothalamic sites. As discussed in
previous sections, the results of experiments in our lab and by other investigators indicate that
estradiol attenuates the acute effects of ghrelin on food intake, and that this effect of estradiol
on the orexigenic action of ghrelin is not mediated by a change in meal size. This represents a
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unique effect of estradiol on feeding behavior, as numerous studies have demonstrated that
estradiol inhibits food intake via a decrease in meal size that's brought about by the
enhancement of the satiety action of CCK [see 16 and 28 for a review]. It will be important for
future research to elucidate the mechanism and site of action for this estradiol-ghrelin
interaction. In addition, although several lines of evidence implicate ERα as the subunit of the
estrogen receptor responsible for hormonal effects on food intake [56,58, but see 47],
experiments utilizing RNA silencing of ERα and ERβ subunit expression in specific brain
regions can provide additional information on the brain site and estrogen receptor subunit at
which estradiol acts to influence feeding behavior. Finally, the involvement of estrogen
receptors located on neural membranes (mER) in the anorectic action of estradiol is an area
that warrants further investigation. The fact that STX, an ER antagonist that does not bind to
ERα or ERβ but activates mER, reduced weight gain in ovariectomized guinea pigs is
intriguing, and suggests that mER may also play a role in the inhibitory effects of estradiol on
food intake and body weight [54]. Whether STX can also influence feeding behavior in
ovariectomized animals remains to be determined. Gaining a better understanding of the roles
that these various subtypes of the ER play in the control of food intake by estradiol may also
provide useful information on the factors that lead to increased obesity after menopause and
contribute to sex differences in eating disorders, which occur more frequently in young women
[65].
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Figure 1.
Effects of ghrelin or saline on food intake in ovariectomized rats treated with estradiol benzoate
(EB) or oil. Data represent mean ±SE of cumulative intake during the 4-hour period following
ghrelin or saline treatment. * Significantly different from saline condition (P < 0.05).
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