
470 Biophysical Journal Volume 98 February 2010 470–477
Electrostatic Solvation Energy for Two Oppositely Charged Ions
in a Solvated Protein System: Salt Bridges Can Stabilize Proteins
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†MOE Key Lab of Bioinformatics, Institute of Bioinformatics and System Biology, School of Life Science, Tsinghua University, Beijing, China;
and ‡Department of Chemistry and The James Franck Institute, University of Chicago, Chicago, Illinois
ABSTRACT Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent
methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable
treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as
a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born
theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the
changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic
interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is
applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical
parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is
grossly in error. Our calculations also suggest that a salt bridge on the protein’s surface can be stabilizing when the charge sepa-
ration is %4 Å.
INTRODUCTION
In principle, the most accurate description of molecular

structure and dynamics in a solvated system requires the

explicit retention of all charged groups, especially the

solvent molecules. However, despite the continual increases

in computational speed, capacity, and number of algorithms

for all-atom explicit-solvent simulations of biomolecular

systems, there are still important systems (e.g., ribosomes)

and processes that are far too large in size and/or require

excessively long computational times for treatment with

explicit-solvent methods. Therefore, these systems and

processes can only be described using reduced representa-

tions, such as those provided by implicit-solvent approaches

in which the solvent is replaced by a continuum model.

Despite the diversity among the continuum models used

for this purpose, the indications are that these models can

attain accuracy comparable to that of the explicit-solvent

models when the correct physics is included (1). Moreover,

the computational speed of implicit-solvent models, which

are orders of magnitude greater than that of explicit-solvent

models, makes it possible to use them to explore a wider

range of conditions, parameter space, mutants, etc., to

enhance the scope and implications obtainable from

explicit-solvent simulations.

Electrostatic modeling figures predominantly in implicit-

solvent continuum descriptions for a wide range of applica-

tions. Foremost among electrostatic continuum schemes are

those based on the Born model or its equivalent in terms of

the solution of the Poisson or Poisson-Boltzmann (PB) equa-

tion. Although these Born-type methods have been enor-
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mously useful, when used with independently measured

parameters (ionic radii, dielectric constants, etc.), they suffer

from some well-known limitations in treating, for instance,

hydration energies of multivalent ions (2–6), calculating

the absolute electrostatic solvation and transfer free energies

between hydrophobic and hydrophilic environments (7), and

estimating the absolute pKa shifts for protein residues

(8–10). Attempts to remedy these difficulties within Born-

type models include the empirical adjustment of atom radii

to values deviating from more direct experimental measures

to reproduce ion solvation energies (11–14) and thereby

describe the major influences of the liquidlike electrostatic

relaxation of the solvent, the strong orientation in the

first solvent shell surrounding a charged or partially charged

atom and/or the use of different model-dependent solvent

dielectric constants for calculating different properties (9).

However, the above parameter-jiggling approaches not only

obscure the true physical description, but also fail for many

molecular systems (and properties) that are dissimilar to the

training compounds (and properties) (15–22). For example,

when the Born radii are chosen to fit hydration energies,

the Born calculations of transfer energies and pKa shifts

grossly overestimate experiments (8,10). One possible

reason for this failure may arise from oversimplifying the

description of the liquidlike dielectric response of the solvent

by introducing a single (discordant) effective radius (11),

because a highly oriented first solvent layer affects the elec-

tric field, thereby tending to orient solvent molecules in the

second layer, which further affects the field and orients the

molecules in the next layer, and so on.

The venerable Langevin-Debye (LD) model has been

developed to describe the nonlinear liquidlike electrostatic

influences of solvent reorientation, an effect included in
doi: 10.1016/j.bpj.2009.10.031

mailto:freed@uchicago.edu
mailto:hgong@tsinghua.edu.cn


Theoretical Calculation on Salt Bridges 471
the catchall term ‘‘dielectric saturation’’ (23,24). After the

inclusion of ‘‘corrections’’ by Onsager and Kirkwood

(25,26), the LD model requires input of information (or its

equivalent) concerning the bulk static and optical dielectric

constants of the solvent and the dipole moment of the solvent

in the gas and liquid phases. This information about the

solvent is more detailed than that provided by Born-type

models, which depend only on the bulk static dielectric

constant of the solvent. Indeed, recent works by Sandberg

and Mehler and their co-workers demonstrate that the LD

model can be used to explain the hydration energy of multi-

valent ions (2,27). Recently, we described how its use leads

to an ~50% reduction of computed electrostatic transfer ener-

gies and pKa shifts, which may help to eliminate the gross

overestimation predicted by Born-type models when using

otherwise measured, realistic atomic radii and protein dielec-

tric constants (7).

The numerical solution of the LD model produces

a distance-dependent dielectric function. Various analytical

alternatives to this numerical solution have been proposed,

and applied, to describe electrostatic interactions in molec-

ular dynamics simulations of biological macromolecules

(28,29). For instance, the generalized Born model adopts

a universal distance-dependent screening function for elec-

trostatic pair interactions (11). However, our previous

work uses the LD model to demonstrate that this single

universal screening function for electrostatic pair interactions

must, at least, be replaced by two universal screening func-

tions, one for charges of like sign and the other for a pair

of charges of opposite signs (10). Here, we extend the anal-

ysis of the LD model to study the dependence of electrostatic

energy and screening functions on the location of a pair of

ions within and/or near a solvated spherical protein (15). In

addition to our goal of providing insight toward improving

generalized Born approaches for protein systems, our work

enables a quick, qualitative initial estimation of how the

location dependence of dielectric reorientation/saturation

affects the stability of salt bridges in proteins, thus generally

succeeding in establishing the correct physics and providing

motivation for a full quantitative extension to treat the

stability with lengthy all-atom molecular dynamics simula-

tions. Moreover, our results indicate that very short (%4-Å)

salt bridges on the protein’s surface can stabilize folded

protein structures.
THEORY

LD model and numerical solutions

The LD model describes the electrostatics for a set of

solvated charges in terms of a coupled set of equations for

the external electric field, E; the electric displacement, D;

the polarization, P; and the local field, F, inside a microscop-

ically small sphere called a Lorentz sphere,

D ¼ 30E þ P; (1)
F ¼ E þ P=330; (2)
P ¼ na0F þ gn mLðCmbmFÞbF; (3)

where b ¼ 1/kT, k is Boltzmann’s constant, T is the absolute

temperature, 30 is the permittivity of the vacuum, a0 and

m are the electric polarizability and the magnitude of

permanent dipole moment of the solvent molecules, respec-

tively, n is the number density of the solvent molecules, Cm

and g are the Onsager and Kirkwood correction factors,

respectively, and L(x) ¼ coth(x) � 1/x is the Langevin

function. The electric polarizability, a0, and permanent

dipole moment, m, of the solvent molecules are estimated

from the experimental bulk static and optical dielectric

constants.

The numerical solution of Eqs. 1–3 makes it possible to

express the electric field, E(r), as a function of D(r) at the

spatial position r. Since Eqs. 1–3. imply that E(r) and D(r)

are collinear, the relative permittivity, 3(r), at r is defined

as the ratio of the magnitudes D(r) and E(r) and is calculated

as a function of the known electric displacement,

3ðrÞ ¼ DðrÞ=½30EðrÞ� ¼ f ðDðrÞÞ; (4)

where the shape of the function, f, depends on the physical

properties of the solvent, including the dipole moment, m,

the polarizability, a0, and the number density, n, and there-

fore differs for charges in, for instance, proteins or water.

Generally, 3(r) varies between the optical dielectric constant,

1.77 at short distances, r, from a charge and (for large r) the

bulk static dielectric constant, which is ~4 inside proteins

(30) and 78.5 in water. The shapes of 3(r) for a single ion

in a protein and in water are presented in our previous

work (7). Many continuum model calculations of electro-

static interactions often artificially adjust the dielectric

constant inside the protein to 15–20 to reproduce experi-

mental data despite the fact that this value significantly

exceeds a reasonable estimate of ~2.5–4 for the actual dielec-

tric constant (8,9,31). However, our previous article suggests

that this disagreement between the experimental and ‘‘theo-

retical’’ dielectric constant arises at least partially from the

attempts to model dielectric saturation, solvent electrostatic

relaxation, and protein conformational relaxation as confined

mostly to nearest neighbors and thus adequately described as

having ‘‘fudged’’ atomic radii. In contrast, the transfer exper-

iments can be correctly described using the LD model and

can otherwise measure physically reasonable parameters

(7). Fig. 4 A of our recent work (7) shows the LD prediction

of an increase in the effective dielectric constant from the

center to the surface of globular proteins. Moreover, this

result agrees with the two-dielectric constant, concentric-

sphere protein model postulated by Simonson and Brooks

(32) as describing the origin of the high effective dielectric

constants of proteins due to structural relaxation of charged

residues.
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A salt bridge is modeled here as a dipole, a pair of ions

separated by a fixed distance, L, that is situated at various

positions, h, with respect to a solvated spherical protein

(Fig. 1). The electric displacement, D(r), for such a system

with a pair of interacting ions is simply given by

DðrÞ ¼ q1e

4pkr� R1k3
ðr� R1Þ þ

q2e

4pkr� R2k3
ðr� R2Þ;

(5)

where e is the elementary charge, R1 and R2 designate the

positions of the two ions, and q1 and q2 are their charges.

Electrostatic solvation energy, interaction energy,
and screening function

The total electrostatic energy is determined from the integral,

Wtotal ¼
1

2

ZZZ
V

ðD$EÞdt ¼ 1

2

ZZZ
V

DðrÞ2

303ðrÞdt

¼ 1

2

ZZZ
V

DðrÞ2

30f ðDðrÞÞdt; (6)

where V represents integration over all space excluding the

interior of the ions and f is the relative permittivity as a func-

tion of the electric displacement D(r) as obtained numeri-

cally from Eq. 4. Referring to the geometry of our model

of an ion pair in Fig. 1, the protein-phase dielectric function,

fprot, is introduced into the integrand of Eq. 6. when the posi-

tion r lies inside the spherical protein, and the water function,

fwater, is used otherwise. f is set to unity when calculating the

total electrostatic energy of the dipole in vacuum. Equation 5
FIGURE 1 Geometrical description of the model biological system.

A spherical protein of radius R is placed in water. A pair of oppositely

charged ions, separated by a distance L, is placed along a radial line with

the center of the dipole situated at a distance h from the center of the protein.
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gives D for a two-charge system, whereas D ¼ qe/(4pr2)

applies for a single charge, with r the distance from the

center of the ion.

The solvation energy of the dipole is defined as the differ-

ence in electrostatic energy between the solvated dipole in

the target system and the dipole in vacuum,

Wsolv ¼ W
prot=water
total �Wvac

total

¼ 1

2

ZZZ
V

DðrÞ2

30

�
1

f ðDðrÞÞ � 1

�
dt; (7)

where Wsolv is the electrostatic solvation energy, W
prot=water
total is

the total electrostatic energy of a dipole placed in our model

system of a spherical protein in water, and Wvac
total is the total

energy of the dipole in a vacuum. The electrostatic pair-inter-

action energy, Wint, is the difference between the total energy

of the two-charge system and the sum for two independent

single-charge systems,

Wint ¼ Wq1 þ q2

total �Wq1

total �Wq2

total

¼ 1

2

ZZZ
V

DðrÞ2

30f ðDðrÞÞdt � 1

2

ZZZ
V1

D1ðrÞ2

30f ðD1ðrÞÞ
dt

� 1

2

ZZZ
V2

D2ðrÞ2

30f ðD2ðrÞÞ
dt;

(8)

where V is the same as in Eq. 6, and V1 and V2 represent the

full space excluding the interior of ions 1 and 2, respectively.

D is the electric displacement of a two-charge system (see

Eq. 6), and D1 and D2 are the corresponding values for the

single-charge systems.

Setting the relative permittivity, f (Eq. 8), to unity

throughout space yields the interaction energy for a pair of

charges in vacuum as

Wvac
int ¼

1

2

ZZZ
V

DðrÞ2

30

dt � 1

2

ZZZ
V1

D1ðrÞ2

30

dt

� 1

2

ZZZ
V2

D2ðrÞ2

30

dt: (9)

The pair screening function, fS, is defined as the ratio of the

interaction energies in vacuum and in the target biological

system as

fSðhjq1; q2; a1; a2; L;RÞ ¼ Wvac
int ðhÞ=WintðhÞ; (10)

where h is the distance between the center of the dipole and

the center of the spherical protein, L is the length of the

dipole, R is the radius of the spherical protein, and q1 and

q2 are the charges and a1 and a2 are the radii of the two ions.

The integrals in Eqs. 6–9 can be reduced to two-dimensional

integrations by adopting confocal ellipsoidal coordinates to

enable their evaluation numerically.
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METHODS

All the parameters required to generate the numerical solution of the LD

model for proteins and water are described in our prior work (7). The

same radii and dielectric constants are used in calculations with the Born

and LD models to compare them on an equal footing and to expose the

general physics. The target system depicted in Fig. 1 describes a spherical

protein in water with a dipole of fixed length, L, that is situated at locations

ranging from a distant position in water to the interior of the protein. To

reduce the numerical integration to two dimensions, the center of the spher-

ical protein and the two ions are always taken as collinear. In addition, the

radii of the ions are set to 1.4 Å, except when otherwise stated. The

radius of gyration of a globular protein is calculated from the formula

Rg ¼ 2.83 � N0.34 (33), where N is the number of residues in the protein.

Most of the calculations below set the protein radius to 13.4 Å, which equals

the radius of gyration of a 100-residue globular protein. Similar calculations

have been repeated for 200- and 300-residue proteins with radii equal to

16.9 Å and 19.5 Å, respectively, and the data are available on request. No

qualitative changes are found.
RESULTS AND DISCUSSION

The solvation energy of dipoles

Fig. 2 A presents the calculated solvation energy of a dipole

with fixed length (L¼ 3 Å) as a function of the distance, h, of

the center of the dipole from the protein center using the LD

and Born models. By neglecting dielectric saturation and

liquidlike solvent electrostatic relaxation, the Born model

greatly overestimates the absolute solvation energy of

a dipole, even in pure water.

As a test of our model, the solvation energy of amides is

predicted with the LD model using the partial charges and

atomic radii directly from the Amber94 force field. The amide

group is simply represented as two dipoles (C¼O and NH),
FIGURE 2 Comparison of solvation and transfer free energies between

the LD model (solid line) and the Born model (dashed line). (A) The elec-

trostatic solvation energy calculated for a dipole composed of two unit

charges of opposite sign and with a fixed length of 3 Å placed at various

positions in the protein-water system. (B) The transfer free energy required

to move the dipole from water into the interior of the protein, calculated by

subtracting the baseline from the two curves in A. The protein is spherical,

with a radius of 13.4 Å, which corresponds to the radius of gyration of

a 100-residue globular protein. The dotted vertical line denotes the position

of the boundary between the spherical protein and water.
and their correlations are neglected. The sum of the calculated

solvation energies for the two dipoles is �12.07 kcal/mol,

which is our estimate of the solvation energy of amides.

Our result compares well with the experimental solvation

energy of�10 kcal/mol (34) and�11.75 kcal/mol calculated

by Baldwin and his colleagues (34) using the DELPHI

program (13), a PB solver program which uses an optimized

set of atomic radii to match the solvation free energy of some

small model compounds. Although independently measured

parameters are used in our estimation, the energy is as good

as in the DELPHI calculation, with parameters that depart

from independent measurements of the same physical quan-

tity. In contrast, the Born model predicts this solvation

energy as �16.6 kcal/mol, using the same set of indepen-

dently measured atomic radii.

The transfer free energy,

DEtransðhÞ ¼ WsolvðhÞ �WsolvðNÞ; (11)

which is calculated by subtracting the solvation energy in

pure water from the total solvation energy in the presence

of the protein, displays the existence of even larger errors

in the Born model estimations. As shown in Fig. 2 B, the

Born model estimate for the energetic barrier for burying

an interacting pair of ions is as high as 30 kcal/mol. In

contrast, the LD model, by properly describing the long-

range consequence of liquidlike electrostatic relaxation and

dielectric saturation, reduces this counterintuitive high

barrier by two-thirds to 10 kcal/mol, a more reasonable

desolvation energy barrier, considering that such dipoles

have been observed inside proteins.

The huge overestimation of the transfer free energy by the

Born model is in accord with our prior (7) calculation of the

solvation energy and electrostatic transfer free energy for

burying a single charge inside a spherical protein. Although

both calculations indicate the presence of large errors in the

Born model, the overestimation of the energetic barrier in

that model is more severe for dipole burial (~3 times) than

for burial of a single charge (~2 times).

To analyze the origins of the difference between the two

models, the transfer free energy is decomposed into three

terms,

DEq1 þ q2
trans ðhÞ ¼ DEq1

transðhÞ þ DEq2
transðhÞ þ DEintðhÞ; (12)

where DEtrans (h) is the transfer free energy calculated by

subtracting the solvation energy for pure water from the

solvation energy for the dipole centered at h, and DEint (h) ¼
Wint (h) - Wint (N) is the pair-interaction energy between the

two ions relative to the value in pure water. The decomposi-

tion of the transfer free energy for the LD and Born models is

contrasted in Fig. S1 of the Supporting Material. Both

models predict that the electrostatic pair interactions

contribute to stabilizing the burial of a dipole, presumably

due to the low dielectric environment inside proteins.

Although the Born model overestimates the absolute scale
Biophysical Journal 98(3) 470–477
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of the electrostatic interactions, the magnitude of overestima-

tion is marginal compared with the errors incurred for the

self-energy. However, the sum of the pair-interaction and

solvation energies of the individual charges produces a larger

error in the solvation energy obtained from the Born model.
Stability of salt bridges

Electrostatic interactions were initially believed to be impor-

tant in stabilizing protein folding until Kauzmann proposed

the dominant role of hydrophobic interactions (35). In

a 1985 review, Dill also raised doubts concerning the signif-

icance of electrostatic interactions, because only ~10% of the

residues in globular proteins have charged side chains (36).

Since Fersht’s first estimate for the strength of a salt bridge

(37), the question of whether a salt bridge stabilizes proteins

has remained controversial (see reviews in Pace et al. (38)

and Bosshard et al. (39)), because, despite a favorable inter-

action energy between the oppositely charged ion pairs, the

desolvation penalty is highly unfavorable when the charged

groups are moved during the folding process to a location in

the interior or on the surface of a globular protein, where

solvent accessibility is limited compared with the free

accessibility in the solvent. pH titration and mutational

analysis are experimental methods applied most frequently

to evaluate the contribution of salt bridges to protein stability

(39). Unfortunately, pH titrations can never achieve a state in

which both opposite charges become neutral, so the titration

experiments are unable to decouple the net contribution of

the salt bridges from the desolvation energy of the individual

charges. In a similar way, mutational analysis usually intro-

duces energy changes from different side-chain packing

and van der Waals interactions. Nevertheless, both charges

can be neutralized simultaneously, and therefore, mutational

analysis experiments probably provide a better approach to

the analysis of salt-bridge energetics. Unfortunately, oppo-

site conclusions can be drawn when the mutations introduce

side groups that differ in length (40), which indicates that

none of the above experimental methods can accurately

estimate the net contribution of a salt bridge to protein

stability (39). Recently, NMR measurements of pKa shifts

have been used frequently to estimate the contribution of

ion pairs to protein stability. However, most pKa values

are measured by directly varying the pH (similar to pH titra-

tions), and even for the small set of pKa values measured

indirectly, no definitive conclusion can be drawn as to

whether salt bridges stabilize or destabilize proteins (38).

Although computations, in principle, can decouple the solva-

tion and pair-interaction energies to estimate the net contri-

bution of salt bridges, most computational treatments

employ a Born-like continuum model, because calculations

with microscopic models usually suffer from insufficient

sampling and convergence problems. Consequently, the des-

olvation term is frequently overestimated, and some compu-

tational studies predict that salt bridges destabilize folded
Biophysical Journal 98(3) 470–477
protein structures (41). Kumar and Nussinov systematically

analyze the salt bridges in 36 high-resolution protein struc-

tures using continuum electrostatic calculation and discover

large variations among the contributions from different ion

pairs, although more salt bridges are evaluated as stabilizing

than as destabilizing (42). Despite the above controversies,

both statistical analyses and experimental works indicate

that salt bridges increase the thermodynamic stability of

folded proteins. Significantly more ion pairs are found on

the surface of hyperthermophilic proteins than on their mes-

ophilic counterparts (38,43). Through numerous mutational

analyses of a thermophilic cold-shock protein, Pace success-

fully identifies a pair of oppositely charged surface residues

that contribute significantly to thermal stability (44). By

similar mutational analysis on a surface salt bridge of ubiq-

uitin, Makhatadze and his colleagues draw the same conclu-

sion: surface salt bridges are stabilizing (45). Their later

series of studies also indicates that complex salt bridges,

the electrostatic network among a group of charged residues,

stabilize proteins more significantly due to the cooperativity

between single ion pairs (46).

The contribution of a salt bridge to the free energy of

protein folding can be calculated theoretically from the elec-

trostatic energy difference between a pair of ions buried

in a protein and two separate noninteracting ions solvated

in water. This energy difference is estimated here using a

two-step thermodynamics pathway in which a salt bridge

is first formed in pure water and then moved to the interior

of a spherical protein. Consequently, the total electrostatic

free energy for this process is

DEsalt-bridgeðhÞ ¼ WintðNÞ þ DEq1þ q2
trans ðhÞ; (13)

where again h is the distance between the center of the dipole

and the protein center, Wint(N) is the interaction energy for

a pair of ions in pure water, DEq1þq2

trans is the energy required to

transfer a pair of ions from pure water to the new position h
relative to the center of the protein, and the Born and LD

models are contrasted on an equal footing using the same

parameters for ion radii and static dielectric constants.

The calculated interaction energy values for a pair of

oppositely charged ions with a separation of L ¼ 3 Å in

pure water are �23.20 kcal/mol and �1.47 kcal/mol using

the LD and Born models, respectively. As discussed in our

previous work (10), the Born model grossly overestimates

the screening by water and therefore underestimates the

magnitude of the interaction energy for an ion pair. The

curve in Fig. 3 A, for the free energy to form a salt bridge

in the protein/water system as a function the relative position

h is obtained by displacing Fig. 2 B by the interaction

energies in pure water. Despite the positive desolvation

energy barrier, and neglecting the corrections discussed

below, the LD model predicts that this pair of opposite

charges will stabilize the protein by >10 kcal/mol regardless

of whether the charges lie on the surface or in the interior of



FIGURE 3 Free energy of formation of a salt bridge between a pair of

oppositely charged unit charges in the protein/water system. (A) The energy

for a dipole with an intercharge separation of 3 Å as calculated using the LD

(solid line) and Born models (dashed line). (B) The energy profiles for ion

pairs at larger intercharge separations for the LD model: 4 Å (solid line),

5 Å (dashed line); and 6 Å (dotted line). The vertical thin dotted lines in

both graphs represent the location of the boundary between the protein

and water. The horizontal thin dotted lines represent an energy of 0 kcal/mol,

so the points beneath this line correspond to situations that stabilize protein

folding.

FIGURE 4 Electrostatic interaction energy for a pair of opposite unit

charges as calculated from the LD (solid lines) and Born models (dashed

lines). The ion pair separations are 3 Å (black), 4 Å (red), 5 Å (green),

6 Å (blue), and 7 Å (cyan).
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the protein. In contrast, due to both the overestimation of the

solvation barrier and the underestimation of the electrostatic

interaction energy, the Born model predicts that the salt

bridge will be highly unfavorable (>10 kcal/mol) even

when it lies on the surface of a protein. The apparently unrea-

sonably large stability (10 kcal/mol) calculated above should

be reduced in actual proteins, since the radii of charged

groups in protein residues typically exceed the illustrative

value of 1.4 Å adopted here. However, the sign of the above

calculation still holds for calculations with realistic radii,

indicating the positive contribution of very short salt bridges

to protein stability. In summary, the LD model agrees

(whereas the Born model disagrees) with the findings of

Pace and Makhatadze and their respective co-workers that

ion pairs on the protein surface can improve the stability of

proteins (44–46).

Fig. 3 B presents the computed free-energy profiles for

ion pairs with larger separations (4–6 Å). The weaker pair-

interaction energies at larger separations cannot balance the

desolvation energy barrier, especially when the ion pair

resides at the center of the protein. However, at an ion

separation of 4 Å, the overall energy required to form a

salt bridge on the protein surface is still favorable. The rela-

tively favorable energy of short salt bridges (%4 Å) on the

surface or in the interior of proteins explains the observation

that there are significantly more opposite charges than like

charges in charge-charge separations of %4 Å in protein

structures (47).

To simplify the calculation, the above calculation assumes

that the dipole in the initial hydrated state (outside the

protein) is completely solvent-accessible. However, the
initial state in a real folding process is the unfolded state,

a polypeptide with high flexibility, in which the charged

side chains may be in contact with other residues and thus

not be as well solvated as is a single isolated dipole. Correct-

ing for this approximation further elevates the energy of the

initial state and lowers the overall free-energy stabilization of

salt-bridge formation. Hence, the salt bridge should give

more stability than what is calculated here. Although the

representation of the charged residues comprising the salt

bridges as pure ions is an oversimplification (because the

residues delocalize the charge and therefore possibly

generate weaker fields), the qualitative comparison of salt

bridges between the Born and LD models is still robust,

because the same ion charges and radii are used throughout

our calculations.

Despite the neglect of atomistic molecular details, our

simple calculation for the stability of salt bridges is fast

and can be completed within a CPU hour. On the other

hand, Warshel and colleagues, in an attempt to describe

electrostatic relaxation and dielectric saturation effects inside

proteins, calculate the electrostatic free energy in molecular

simulations using a model with a finite lattice of Langevin

dipoles (9,31). However, because only the linear response

of the dipoles is evaluated, their work fails to describe

accurately dielectric saturation in water. In addition, the

molecular simulations in their study require significantly

more computer time than our Debye model calculations.

The pair-interaction energy and screening
function

Fig. 4 depicts the pair-interaction energy between two unlike

charges as a function of the relative position between the

dipole and the boundary between the protein and water.

Although both the LD and Born models predict a favorable

interaction, the Born model yields a severe underestimation,

especially for ion pairs at short distances. In addition, all
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FIGURE 5 Screening function for a pair of opposite unit charges as calcu-

lated from the LD (solid lines) and Born models (dashed lines). The ion pair

separations are 3 Å (black), 4 Å (red), 5 Å (green), 6 Å (blue), and 7 Å

(cyan).
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curves calculated by the Born model display artifactual kinks

at the protein/water boundary. The differences between the

LD and Born models gradually decrease when the separation

distance of the ion pairs increases, possibly because the

weakened electric field between the more distantly separated

ion pairs results in diminished dielectric saturation effects,

and the errors introduced by the Born model are thus smaller.

In Fig. 5, the screening functions (effective dielectric)

between ion pairs at various separations show a similar

tendency of the Born model to heavily overestimate

screening by both protein and water. Even the twofold over-

estimation by the Born model of screening inside proteins

can still greatly influence the calculation of the interaction

energy (Fig. 4). When the fixed dipole is transferred from

the center of a protein into water (Fig. 5, solid curves), the

screening function increases gradually from very low values

to the highest achievable values in pure water, as described

in our previous work (10). In addition, the screening func-

tions increase for longer dipoles because the dielectric satu-

ration is weaker due to a weaker electric field.

In our previous article, two universal equations were

formulated to describe the screening function for a pair of

charges in pure water, given the charges and radii of the

ions (10). The work described here begins the process of

devising formulas for the electrostatic pair-screening function

in a protein/water system that will be useful for implicit-

solvent molecular dynamics simulations for proteins. Indeed,

an LD-based dielectric screening function applied in implicit-

solvent molecular dynamics simulations of RNA molecules

showed that LD treatment of the dielectric screening can

stabilize the RNA molecules (H. Gong, E. Haddadian, T. R.

Sosnick, and K. F. Freed, unpublished).
SUPPORTING MATERIAL

A figure is available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)01673-7.
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