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Abstract
This article summarizes the proceedings of a symposium that was presented at a conference entitled
“Alcoholism and Stress: A Framework for Future Treatment Strategies”. The conference was held
in Volterra, Italy on May 6–9, 2008 and this symposium was chaired by Jeff L. Weiner. The overall
goal of this session was to review recent findings that may shed new light on the neurobiological
mechanisms that underlie the complex relationships between stress, anxiety, and alcoholism. Dr.
Danny Winder described a novel interaction between D1 receptor activation and the CRF system
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that leads to an increase in glutamatergic synaptic transmission in the bed nucleus of the stria
terminalis. Dr. Marisa Roberto presented recent data describing how PKCε, ethanol, and CRF interact
to alter GABAergic inhibition in the central nucleus of the amygdala. Dr. Jeff Weiner presented
recent advances in our understanding of inhibitory circuitry within the basolateral amygdala and how
acute ethanol exposure enhances GABAergic inhibition in these pathways. Finally, Dr. Brian McCool
discussed recent findings on complementary glutamatergic and GABAergic adaptations to chronic
ethanol exposure and withdrawal in the basolateral amygdala. Collectively, these investigators have
identified novel mechanisms through which neurotransmitter and neuropeptide systems interact to
modulate synaptic activity in stress and anxiety circuits. Their studies have also begun to describe
how acute and chronic ethanol exposure influence excitatory and inhibitory synaptic communication
in these pathways. These findings point toward a number of novel neurobiological targets that may
prove useful for the development of more effective treatment strategies for alcohol use disorders.

INTRODUCTION
There is a large and growing body of clinical and preclinical evidence suggesting an important,
albeit complex, relationship between stress, anxiety and alcohol use disorders (AUDs) (Piazza
and Le Moal, 1998; Kushner et al., 2000a; Roberts et al., 2000; Weiss et al., 2001). For example,
clinical studies have documented a significant degree of comorbidity between anxiety disorders
and AUDs (Regier et al., 1990; Kessler et al., 1997; Kushner et al., 1999). Furthermore, ethanol
dependence is often viewed as a chronic relapsing disease (Heilig and Egli, 2006) and there is
evidence that stress and anxiety may promote relapse and negatively influence treatment
prognosis (Miller and Harris, 2000; Willinger et al., 2002; Kushner et al., 2005; Fox et al.,
2007; Sinha and Li, 2007).

Although these and many other studies consistently report a strong association between anxiety
and AUDs (see Kushner et al., 2000a; Bradizza et al., 2006; Cosci et al., 2007), the etiological
nature of this relationship is not well understood. However, recent preclinical findings are
beginning to shed light on this clinically important topic. Human and animal studies have
shown that acute exposure to low to moderate doses of ethanol are anxiolytic (see Kushner et
al., 2000a; Koob, 2004) for reviews) and repeated exposure and withdrawal are associated with
neuroadaptive changes that may lead to persistent increases in a range of anxiety measures
(Roberts et al., 2000; Valdez et al., 2002; Kliethermes, 2005; Santucci et al., 2008). Several
studies have also shown that, during withdrawal, ethanol-exposed animals display significant
increases in voluntary ethanol consumption (Roberts et al., 1996; Becker and Lopez, 2004;
Lopez and Becker, 2005). Moreover, increased intake in ethanol-dependent animals can be
effectively reduced by treatments that can attenuate withdrawal-associated anxiety (e.g. CRF1-
R antagonists)(Roberts et al., 1995; Valdez et al., 2002; Chu et al., 2007). These and other
recent findings have led to the recognition that ethanol use and abuse likely involve both the
positive and negative reinforcing effects of this drug (Koob and Le Moal, 2005). Early on, the
positive or euphoric effects of ethanol (associated with the classical activation of the
mesolimbic reward circuit) may dominate. However, following prolonged ethanol exposure
and/or in some individuals with pre-existing anxiety disorders (Kushner et al., 2000b; Cosci
et al., 2007), the negative reinforcing effects of ethanol, including anxiolysis, may become
increasingly important and play a major role in both the development of abusive drinking
behavior and in relapse (Lopez and Becker, 2005; Le Moal and Koob, 2007; Koob and Le
Moal, 2008).

Interestingly, although much is known about the basic neurophysiological mechanisms
underlying ethanol’s positive reinforcing effects, the neural substrates responsible for the
negative reinforcing effects of this drug, (including relief from anxiety) are much less
understood. To that end, this symposium sought to highlight recent advances in our
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understanding of how synaptic communication in brain regions that regulate stress and anxiety-
related behaviors (e.g. amygdala, bed nucleus of the stria terminalis) can be modulated by
endogenous factors like dopamine and CRF as well as acute and chronic ethanol.

Ethanol and CRF: Which is driving GABA release in the amygdala?
Maureen Cruz, Michal Bajo, George R. Siggins, Robert O. Messing and Marisa Roberto

Corticotrophin-releasing factor (CRF) is an anxiogenic neuropeptide and an important
component of the stress circuits that modulate anxiety associated with drug dependence. The
anxiogenic effects of CRF are mediated by type 1 CRF receptors (CRF-R1s), which are
abundantly expressed in the cortex, cerebellum, hippocampus, amygdala, olfactory bulb, and
pituitary (Potter et al., 1994; Chalmers et al., 1996; Palchaudhuri et al., 1998). CRF-R1
activation also plays an important role in regulating voluntary ethanol intake. The central
nucleus of the amygdala (CeA) is a pivotal site of action for both the acute positive
reinforcement of ethanol addiction and for the negative reinforcement associated with ethanol
abstinence (Koob and Le Moal, 2001). CRF release in the CeA is increased in alcohol-
dependent animals (Merlo Pich et al., 1995; Olive et al., 2002) and appears to contribute to
alcohol withdrawal-related anxiety, which can be reduced by CRF-R1 receptor antagonists
injected into the CeA (Rassnick et al., 1993). CRF also contributes to increased alcohol
consumption in dependent animals because their increased ethanol self-administration is
reduced by CRF-R1 antagonists (Spies et al., 1995; Overstreet et al., 2004) or the deletion of
the CRF-R1 (Chu et al., 2007).

GABAergic transmission in the CeA has been implicated in regulating ethanol intake (Hyytia
and Koob, 1995; Roberto et al., 2004a). Most of the neurons in the rodent CeA are GABAergic
inhibitory neurons with inhibitory recurrent or feed-forward connections, as well as inhibitory
projections to brainstem nuclei (Sun and Cassell, 1993; Davis et al., 1994). CRF is abundant
in the CeA, where it is co-expressed with GABA (Watson et al., 2001). We have previously
shown that CRF and ethanol enhance GABA release from mouse CeA neurons in a CRF-R1-
dependent manner (Nie et al., 2004). However, little is known about the cellular mechanisms
through which GABA transmission in the CeA modulates the behavioral and motivational
effects of CRF and ethanol.

Recent in vitro evidence indicates that PKC signaling is stimulated by CRF-R1 activation
(Suzuki et al., 1984; Kim et al., 2007). PKC is a family of serine-threonine kinases that respond
to lipid second messengers and have been implicated in neurobehavioral disorders, including
anxiety and drug abuse (Olive and Messing, 2004). Among the PKC isozymes, we
hypothesized that protein kinase C epsilon (PKCε) mediates downstream effects of CRF-R1
activation in the CeA because PKCε is expressed throughout the amygdala (Choi et al.,
2002) and PKCε−/− mice show reduced anxiety-like behavior (Hodge et al., 2002) and reduced
alcohol consumption (Hodge et al., 1999; Olive et al., 2000). To test this hypothesis, we studied
the role of PKCε signaling in basal CeA GABAergic transmission and in ethanol- and CRF-
induced GABA release in an in vitro slice preparation using both genetic and pharmacological
approaches (Bajo et al., 2008). Here we examined signaling pathways downstream of the CRF-
R1 in the CeA that mediate GABAergic signaling and anxiety. We characterized the effects of
acute ethanol and CRF on CeA GABAergic synapses in mice with a null mutation for PKCε
(PKCε−/−) and wild type (PKCε+/+) littermates.

Using local stimulation within the CeA, we evoked pharmacologically isolated GABAA
receptor-mediated IPSPs in PKCε−/− mutant mice and PKCε+/+ wild-type littermates. We
found that basal GABAergic transmission is enhanced (25%) in CeA neurons from PKCε−/−

mice when compared with neurons from PKCε+/+ mice. To determine if this effect was
presynaptic, we measured the paired-pulse facilitation (PPF) ratio of the IPSPs. Generally,
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changes in PPF are inversely related to transmitter release. We found that the basal PPF ratio
of IPSPs was decreased in PKCε−/− mice. To further characterize the enhanced GABAergic
transmission in PKCε−/− mice, we recorded pharmacologically isolated spontaneous miniature
GABAA IPSCs (mIPSCs) using whole-cell patch clamp in the presence of 1μM TTX.
Compared to neurons in PKCε+/+ mice, neurons from PKCε−/− mice demonstrated an increased
(nearly doubled) mean baseline frequency of mIPSCs with no significant difference in the mean
amplitude of mIPSCs.

To examine the role of PKCε in CRF enhancement of GABAergic transmission in the CeA,
we superfused CRF (200nM) on CeA slices from both PKCε−/− and PKCε+/+ mice. In neurons
from PKCε+/+ mice, CRF increased GABAergic transmission (43%) but this effect was absent
in neurons from PKCε−/− mice. CRF decreased the PPF ratio in PKCε+/+ mice, but had no
effect on the PPF ratio in PKCε−/− mice. Furthermore, CRF increased (52%) the mean
frequency of mIPSCs in PKCε+/+ mice, but decreased (25%) the mean mIPSC frequency in
PKCε−/− mice. CRF did not significantly alter the mean amplitude of mIPSCs in either
PKCε−/− or PKCε+/+ mice. To confirm the role of PKCε in CRF-induced changes in
GABAergic transmission, we superfused Tat-ε V1-2 (500nM), a PKCε inhibitor peptide, onto
CeA slices from PKCε+/+ mice. The inhibitor increased the mean evoked IPSP amplitude and
decreased the PPF ratio of IPSPs, and blocked the CRF effects.

We investigated whether ethanol-stimulated GABA release also involved PKCε. Ethanol
(44mM) increased (47%) the mean amplitude of evoked IPSPs in PKCε+/+ neurons but not in
PKCε−/− neurons. Ethanol decreased the PPF ratio of IPSPs in PKCε+/+ neurons, but this effect
was absent in PKCε−/− neurons. Like CRF, ethanol increased (more than doubled) the mean
frequency of mIPSCs in PKCε+/+ neurons but decreased (20%) the mean mIPSC frequency in
PKCε−/− neurons. Ethanol had no significant effect on mIPSC amplitudes in both the
PKCε−/− and PKCε+/+ neurons. Pretreatment of PKCε+/+ neurons with the PKCε inhibitor Tat-
ε V1-2 completely abolished the ethanol effects, confirming findings in the PKCε−/− CeA.

Both CRF and ethanol increased the mean amplitude of evoked GABA IPSPs and decreased
the PPF ratio of IPSPs in PKCε+/+ mice. Furthermore, CRF increased the mean frequency of
mIPSCs in PKCε+/+ neurons and decreased the mIPSC frequency in PKCε−/− neurons.
Pretreatment with a PKCε inhibitor of PKCε+/+ neurons blocked the CRF- and ethanol-induced
effects on IPSP amplitudes and PPF. These data indicate that the PKCε isozyme has a double
function. Under drug-stimulated conditions, PKCε facilitates vesicular GABA release.
However, without drug treatment, a basal level of PKCε activity serves to limit spontaneous
GABA release.

In conclusion, our data identify a PKCε signaling pathway in the CeA that is activated by CRF-
R1 stimulation, regulates neurotransmitter release at GABAergic terminals, and may contribute
to increased anxiety-like behavior (Bajo et al., 2008). Moreover, consistent with our previous
observation that ethanol-induced GABA release in the amygdala is CRF-R1-dependent (Nie
et al., 2004), here we also find that ethanol-stimulated vesicular GABA release depends on
PKCε. Taken together, these findings indicate a signaling pathway whereby CRF, acting via
presynaptic CRF-R1s in the amygdala, activates PKCε to stimulate GABA release (Bajo et al.,
2008). Because CRF is anxiogenic and plays an important role in promoting alcohol drinking
(Heilig and Koob, 2007), disturbance of this CRF-R1-PKCε signaling pathway in the CeA
likely contributes to decreased anxiety-like behavior and decreased alcohol consumption in
PKCε−/− mice. These studies provide insight into some of the neurobiological mechanisms that
contribute to alcohol-stress-anxiety interactions. Being able to identify which enzymes are
implicated in alcohol intake and dependence may be helpful in developing new and innovative
preventive strategies and pharmacotherapeutic remedies for stress- and alcohol-related
biomedical phenomena.
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Dopamine Regulation of Synaptic Transmission in the Bed Nucleus of the
Stria Terminalis

Thomas L. Kash and Danny G. Winder

Drugs of abuse, including alcohol, are thought to exert effects on behavior through modulation
of neuronal activity and plasticity in specific brain regions. A great deal of effort has been
focused on understanding the impact of drugs of abuse on the mesolimbic dopamine system,
in particular the dopamine neurons of the ventral tegmental area (VTA) (Borgland et al.,
2006) and the medium spiny neurons of the nucleus accumbens (Thomas et al., 2001), as this
network is thought to serve as a common pathway for drug-seeking behavior. However, there
is growing evidence that drugs of abuse can alter function in regions outside of the classical
reward circuitry, and this modulation is critical for specific aspects of addiction (Koob and Le
Moal, 2008).

The bed nucleus of the stria terminalis (BNST), a component of the central extended amygdala,
is a region of the brain that has been implicated primarily in the regulation of stress and anxiety
(Walker and Davis, 2008). A large literature suggests that corticotrophin releasing factor (CRF)
signaling within this region plays an important role in these behaviors (Davis et al., 1997).
Further, while not part of the classical reward circuitry, the BNST receives dopaminergic
projections, from both the VTA and the periaqueductal gray (Fadda et al., 1985), and has been
suggested to be an important regulator of VTA dopamine neuron firing (Georges and Aston-
Jones, 2002).

In keeping with the important interconnections between the BNST and reward circuitry, studies
have suggested that the BNST may also be involved with behavioral adaptations following
prolonged exposure to drugs of abuse (Dumont et al., 2005; Grueter et al., 2008). Given the
role that dysregulation of emotional behaviors, including fear and anxiety, is proposed to play
in chronic drug abuse, the involvement of the BNST in these processes, while exciting, is not
surprising. Several studies demonstrate that the BNST is also involved in the acute reinforcing
actions of drugs of abuse. In particular, acute administration of ethanol, and a range of other
abused drugs, leads to a significant increase in dopamine levels in the BNST (Carboni et al.,
2000). Further, it has been shown that dopamine receptor antagonism in the BNST can alter
operant responding for alcohol and cocaine (Watkins et al., 1999; Eiler et al., 2003). Taken
together, these studies suggest that dopamine signaling in the BNST is involved in regulation
of the acute actions of multiple drugs of abuse.

Based on the above findings, we hypothesized that dopamine modulates synaptic transmission
in the BNST. To test this hypothesis, we examined the ability of dopamine to modulate synaptic
transmission in the BNST using an ex vivo slice preparation. We found that a brief application
of dopamine led to a transient increase in the frequency of spontaneous excitatory post-synaptic
currents (sEPSCs) in BNST. This effect was blocked by the D1 dopamine receptor (D1R)
antagonist SCH23390 and was absent in the D1R knockout mouse. These results strongly
support the possibility that dopamine is exerting this effect through D1R-mediated signaling.
In order to understand the mechanisms underlying this action of dopamine, we next examined
the ability of dopamine to modulate spontaneous excitatory synaptic transmission in the
presence of the sodium channel blocker tetrodotoxin (mEPSCs). Curiously, we found that
dopamine had no effect on either mEPSC frequency or amplitude. Taken together, these results
suggest that dopamine is enhancing glutamatergic transmission in the BNST in a D1R and
activity-dependent fashion.

This lack of an effect on mEPSCs suggested that dopamine could be acting to modulate synaptic
transmission by altering the excitable properties of neurons in the BNST. In order to evaluate
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this possibility, we examined the ability of dopamine to modulate the membrane potential of
BNST neurons. We found that in most neurons dopamine had no effect on the membrane
potential. However, in a small subpopulation of neurons we found that dopamine caused a
robust depolarization associated with an increase in spontaneous action potential firing.

Several studies in rat have demonstrated that dopamine fibers are associated with CRF-positive
neurons in the BNST (Fadda et al., 1985; Phelix et al., 1999). Using double-label
immunohistochemistry we observed a similar pattern of expression in the mouse BNST. Based
on this, we reasoned that the actions of dopamine could be mediated in part through activation
of the CRF system. In order to test this, we applied dopamine in the presence of the CRF-R1
antagonist, NBI27914, and found that the effect was blocked. This finding raised the possibility
that dopamine is enhancing glutamatergic transmission in the BNST by causing release of CRF.
We tested this possibility by examining the actions of both CRF and another CRF receptor
agonist, urocortin, on sEPSCs in the BNST. Both of these compounds increased the frequency,
but not amplitude, of sEPSCs in the BNST. Using selective antagonists for CRF-R1 and CRF-
R2, we found that the effects of CRF and urocortin were mediated through activation of CRF-
R1. Finally, in order to identify the mechanism of action, we examined the ability of CRF to
modulate mEPSCs. We found that CRF significantly increased mEPSC frequency but had no
effect on mEPSC amplitude, consistent with an increase in glutamate release. Taken together
these results suggest that CRF enhances glutamate release via activation of the CRF-R1 in the
BNST.

Our results demonstrate the dopamine, acting at the D1R, enhances fast excitatory synaptic
transmission in the BNST through a CRF-R1 dependent mechanism. When taken together with
previous results, our findings suggest that glutamatergic transmission in the BNST plays an
important role in self-administration of drugs of abuse, including alcohol and cocaine.
Moreover, these findings, particularly the functional link between dopamine and CRF
signaling, support the idea that the activation of regions involved in regulation of emotion,
such as the BNST, may reflect arousal independent of the valence of the event.

Acute Effects of Ethanol on Local and Lateral Paracapsular GABAergic
Synapses in the Rat Basolateral Amygdala

Yuval Silberman and Jeff L. Weiner

Along with the BNST and CeA discussed earlier, the basolateral amygdala (BLA) is also an
integral element of both stress/anxiety ((LeDoux, 1993; Davis et al., 1994) and reward
neurocircuitry (Balleine and Killcross, 2006; Tye et al., 2008). The groups of cells within the
lateral, basal and accessory basal nuclei of the amygdala are typically referred to as the BLA.
This brain region consists primarily of glutamatergic pyramidal neurons (~90% of all cells in
the BLA), which provide the main excitatory input to the CeA as well as many other limbic
and cortical structures (Sah et al., 2003). As such, the BLA is in the unique position to serve
as the major input for sensory information into the amygdala complex and is critically involved
in establishing the emotional salience of environmental stimuli. While GABAergic
interneurons represent only a small portion of the neurons within the BLA, they are thought to
play an integral role in the regulation of excitatory transmission in this brain region (Washburn
and Moises, 1992), and thus are likely to be critically involved in the regulation of anxiety-
like behaviors.

Although it is clearly an oversimplification, in general, increasing excitatory output of the BLA
is usually associated with increases in anxiety-like behavior whereas dampening this activity
usually results in anxiolysis (Davis et al., 1994; Menard and Treit, 1999). Thus, GABAergic
inhibitory tone in the BLA likely plays an integral role in regulating anxiety-like behaviors.
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Since acute ethanol exposure has been shown to enhance GABAergic synaptic transmission
in many brain regions (Siggins et al., 2005; Weiner and Valenzuela, 2006), our recent studies
have focused on characterizing the acute effects of ethanol on GABAergic synaptic inhibition
in the BLA.

A wide range of distinct classes of local interneurons have been described within the BLA,
based on differences in their morphological and electrophysiological characteristics
(Washburn and Moises, 1992; Woodruff and Sah, 2007) as well as the types of classical
interneuronal markers that they express (McDonald and Mascagni, 2002; Mascagni and
McDonald, 2003; Muller et al., 2007; Woodruff and Sah, 2007). These cells are sparsely
distributed throughout the BLA and are thought to provide the majority of feedback inhibition
onto BLA pyramidal neurons. Importantly, Marowsky and colleagues, using GAD-GFP
transgenic mice, recently identified a novel cluster of GABAergic cells located along the
external capsule-BLA border. They demonstrated that these cells are devoid of many of the
classical markers of GABAergic interneurons (e.g. Parvalbumin, CCK), are excited by cortical
input through the external capsule, and provide a major feed-forward inhibitory input onto
BLA pyramidal neurons (Marowsky et al., 2005). Thus, we sought to confirm that lateral
paracapsular (lpcs) cells are also present in the rat BLA and to characterize ethanol modulation
of local and lpcs inhibition in this brain region.

Using young Sprague-Dawley rats (4–6 weeks old) and immunohistochemical techniques to
look for GAD expression, we first confirmed that both local and lpcs interneurons were present
in the rat BLA. As observed in the mouse, local interneurons were visualized as punctate
staining throughout the BLA while lpcs cells appeared densely clustered along the BLA-
external capsule border. In addition, while the majority of local interneurons stained positive
for parvalbumin, lpcs interneurons were devoid of this protein (Silberman et al., 2008).

We next used whole-cell patch clamp methods to record from BLA pyramidal neurons. Using
a standard paired-pulse protocol, we first demonstrated that we could discretely activate
GABAergic synapses arising from local and lpcs interneurons and then examined their
sensitivity to ethanol. Notably, although ethanol potentiated both local and lpcs evoked IPSCs
(eIPSCs) to a similar extent, across a range of pharmacologically relevant concentrations (10–
80 mM), the mechanism of ethanol action differed markedly at these two pathways. Ethanol
potentiation of local eIPSCs was associated with a decrease in paired pulse ratio and could be
significantly enhanced by pretreatment with a GABAB receptor antagonist, SCH-50911. In
addition, pretreatment with a low concentration of the GABAB receptor agonist baclofen
significantly reduced ethanol potentiation of local eIPSCs. These effects are very similar to
those observed in the hippocampus where several studies have demonstrated that ethanol
enhances GABAergic inhibition primarily via a presynaptic facilitation of GABA release
(Ariwodola and Weiner, 2004; Li et al., 2006).

In contrast, ethanol had no effect on PPR at lpcs synapses and ethanol potentiation of lpcs-
mediated inhibition was not influenced by pretreatment with either a GABAB receptor agonist
or antagonist. Interestingly, bath application of a GABAB receptor antagonist alone
significantly potentiated lpcs, but not local, IPSCs, possibly suggesting higher ambient GABA
levels at lpcs synapses.

Taken together, these initial studies demonstrated that ethanol significantly potentiated local
and lpcs-mediated GABAergic inhibition in the BLA, consistent with the well-known
anxiolytic effects of this drug. Moreover, while ethanol potentiation of local GABAergic
synapses appears to be mediated via a presynaptic mechanism, common to several other brain
regions (Siggins et al., 2005; Weiner and Valenzuela, 2006), ethanol enhancement of lpcs
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IPSCs does not involve a facilitation of terminal GABA release and may be mediated
postsynaptically.

While there are many potential mechanisms through which ethanol may enhance lpcs synapses,
several lines of evidence point to a possible role of the β noradrenergic receptor system (β-
AR). Previous work in the cerebellum demonstrated that NE can enhance GABAA receptor
function (Cheun and Yeh, 1996) and that β-AR function is required for postsynaptic facilitatory
effects of ethanol on GABA-mediated inhibition of Purkinje cell firing (Lin et al., 1991).
Interestingly, the BLA receives dense NE input from the locus coeruleus and other
noradrenergic brain regions via inputs near the external capsule (Fallon et al., 1978; Roder and
Ciriello, 1993) where lpcs interneurons are localized and β-AR activation has been shown to
suppress LTP in the BLA. We therefore tested the hypothesis that ethanol potentiation of lpcs
synapses may be dependent on β-AR activation. Our initial studies demonstrated that 20 μM
NE significantly potentiated lpcs, but not local, IPSCs and this effect was completely blocked
by pretreatment with a cocktail of α1, α2, and β-AR antagonists. In addition, although
pretreatment with this antagonist cocktail had no effect on its own, this cocktail significantly
and selectively reduced ethanol potentiation of lpcs synapses. Additional preliminary studies
suggest that pretreatment with a β-AR antagonist alone can significantly antagonize ethanol
potentiation of lpcs IPSCs.

In summary, our findings suggest that ethanol significantly enhances GABAergic synaptic
inhibition arising from both local and lpcs interneurons in the BLA. Therefore, acute ethanol
exposure increases both cortical feed-forward inhibition as well as local feedback inhibition
onto the primary excitatory output cells of the BLA. Since increases in BLA GABAergic
inhibition are associated with decreases in anxiety-like behavior, ethanol enhancement of these
two inhibitory pathways likely contributes to the acute anxiolytic effects of this drug. Given
the important role that anxiety is thought to play in the etiology of alcohol abuse, it will be
important in future studies to further resolve the specific mechanisms through which ethanol
enhances GABAergic inhibition at local and lpcs synapses and to examine how these pathways
may be influenced by chronic ethanol exposure and withdrawal.

Glutamate, GABA, and Amygdala-Dependent Anxiety: Tipping the Balance
with Chronic Ethanol and Withdrawal

Anna K. Lack, Marvin R. Diaz, Daniel T. Christian, Ann M. Chappell, and Brian A. McCool

The lateral/basolateral amygdala (BLA) is a central component of the brain’s fear/anxiety
circuit and acts as the primary input nuclei of the amygdala. For example, the BLA receives
extensive input from sensory/limbic/insular cortex (Ong et al., 2000) and thalamic nuclei (Ong
et al., 2000). The region in turn provides major excitatory input to the neighboring central
nucleus (Nose et al., 1991), to the nucleus accumbens (North et al., 1987), and has extensive
reciprocal connections with medial prefrontal and orbitofrontal cortex (Krettek and Price,
1978; Porrino et al., 1981). Communication within the context of these important anatomical
relationships appears to be governed by the balance between excitatory and inhibitory
neurotransmission within the BLA (Sanders and Shekhar, 1995; Sajdyk and Shekhar, 1997a).

The privileged position held by the BLA within the fear/anxiety circuit may sub serve its central
role in drug abuse-related behaviors. For example, the BLA appears to be critical for cue-
induced re-instatement of cocaine (Fuchs et al., 2006) and heroin (Rizos et al., 2005) seeking
in rodents following chronic exposure. Consistent with these observations, long-term cocaine
and morphine self-administration increases the expression of BLA glutamate-gated ion channel
subunits (Panchenko et al., 1999; Brunton et al., 2005). Likewise, chronic ingestion of an
ethanol-containing liquid diet increases NMDA-type glutamate receptor function measured in
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acutely isolated rat BLA neurons (Samson et al., 1997). These findings suggest that altered
glutamatergic signaling in the BLA following chronic drug exposure may be a common
characteristic shared by drugs of abuse. Importantly, the relationships between increased
glutamate receptor expression or function, BLA neurophysiology, and withdrawal-related
anxiety-like behavior have been largely unexplored.

We have recently employed a chronic intermittent ethanol inhalation paradigm (Becker and
Hale, 1993) to investigate this relationship. Male Sprague-Dawley rats received twelve hours
of ethanol vapor for ten consecutive days. Experimental groups consisted of individuals housed
in identical conditions but receiving only air during the ten day period (CON), ethanol-exposed
individuals where measures were made immediately following the tenth ethanol exposure,
while animals were still intoxicated (CIE), and ethanol-exposed individuals withdrawn from
the ethanol treatment for twenty-four hours (WD). Alterations in BLA neurophysiology were
assessed using both whole-cell patch clamp electrophysiology and field potential recordings.
Behavioral manifestations within these treatment groups were assessed using a light/dark test
for anxiety-like behavior. In some experiments, glutamate receptor agonists or antagonists were
microinjected into the BLA using standard procedures.

Consistent with previous work showing that chronic ethanol liquid diet exposure increases
NMDA receptor function in isolated BLA neurons, CIE and WD increased the function of
synaptic NMDA receptors recorded from principal neurons within BLA coronal brain slices
(Lack et al., 2007). This increase was evident using two independent measures. First, the ratio
of NMDA- to AMPA-mediated synaptic responses, measured by first examining the amplitude
of a compound synaptic response and then inhibiting the AMPA-component with the antagonist
DNQX, was significantly larger in both CIE and WD neurons. Second, an NMDA-specific
stimulus-response relationship was significantly greater in CIE and WD neurons across a range
of stimulus intensities. These data suggest that, like many brain regions, chronic ethanol/
withdrawal increase synaptic function of NMDA receptors in the BLA.

Kainate receptor (KAR)-mediated synaptic responses can be measured in BLA neurons (Li
and Rogawski, 1998). And, these receptors can initiate long-term increases in synaptic strength
that are distinct from other forms of synaptic plasticity in the BLA (Li et al., 1998). Importantly,
KAR-mediated synaptic responses in BLA neurons are acutely sensitive to ethanol and are
more potently inhibited than NMDA receptor synaptic responses expressed in these same
neurons (Lack et al., 2008). KAR-mediated synaptic plasticity was likewise inhibited by acute
ethanol. Chronic ethanol exposure increased KAR-mediated synaptic responses relative to both
CON and WD neurons (Lack et al., 2009). Thus, CIE-dependent increases in KAR synaptic
function are transient. However, KAR-mediated synaptic plasticity was diminished in both
CIE and WD BLA neurons. This suggests that CIE/WD either 1) inhibits the mechanisms
required to establish KAR-dependent synaptic plasticity or 2) engages the mechanisms
responsible for the expression of synaptic plasticity and thus occlude the subsequent in vitro
initiation in CIE and WD BLA slices.

Expression of synaptic plasticity depends upon AMPA receptor-dependent transmission in
many brain regions including the BLA. Along these lines, CIE and WD both significantly
increased spontaneous AMPA-mediated synaptic transmission in BLA neurons. This increase
appeared to involve both increased postsynaptic AMPA receptor function as well as increased
presynaptic release of glutamate (Lack et al., 2007). These data suggest that the CIE/WD-
dependent decrease in KAR-mediated synaptic plasticity was more likely related to an
activation of AMPA-related mechanisms required for the expression of synaptic plasticity.
Consistent with this interpretation, BLA field EPSPs stimulus-response relationships were
increased in both CIE and WD treatment groups (Lack et al., 2009).
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The behavioral manifestations related to increased BLA-dependent glutamate signaling,
particularly subsequent to chronic ethanol exposure or withdrawal, have not been examined.
WD, but not CIE, significantly increased anxiety-like behavior measured in the light/dark
apparatus (Lack et al., 2007). Importantly, this increase in anxiety-like behavior was alleviated
by microinjection of the AMPA receptor antagonist, DNQX, into the BLA of WD animals.
These data suggest that increased BLA glutamatergic synaptic transmission during WD may
contribute to increased anxiety-like behavior in this group. In contrast, the absence of a
significant anxiety-related phenotype in CIE animals contrasts with the increased
glutamatergic function in the BLA of these animals. Since the balance between excitatory and
inhibitory BLA neurotransmitters is known to regulate anxiety-like behavior (Sanders and
Shekhar, 1995; Sajdyk and Shekhar, 1997b), our data suggests that ethanol-sensitive inhibitory
systems (e.g. GABA) may make substantial contributions to the regulation of anxiety-like
behavior in intoxicated animals.

In conclusion, we’ve recently shown that chronic intermittent ethanol inhalation and
subsequent withdrawal engage and up-regulate BLA glutamate receptor systems. These
alcohol-dependent alterations largely parallel those responsible for cue-dependent synaptic
plasticity during classical fear learning (Walker and Davis, 2002). Together, these findings
suggest that treatments or physiological/psychological paradigms that reverse or ameliorate
cue-related fear learning may have some efficacy for reversing or diminishing synaptic
alterations resulting from chronic ethanol exposure and withdrawal.

SUMMARY
The results of these studies provide new insight into some of the modulatory mechanisms that
regulate fast synaptic communication within brain regions involved in both reward and stress/
anxiety systems. In particular, CRF signaling has emerged as an important presynaptic
regulator of excitatory and inhibitory synaptic transmission in some of these areas. In the
BNST, activation of CRF-R1s mediates dopamine enhancement of glutamate release (Kash et
al., 2008), while CRF-R1s in the CeA can influence basal GABAergic tone and enhance GABA
release through a PKCε-dependent mechanism (Bajo et al., 2008). These data suggest that CRF
plays an important role in setting the delicate balance between excitation and inhibition in brain
circuits that likely influence ethanol self-administration, stress, and anxiety-like behaviors. In
fact, at least within the CeA, CRF-R1 activation is required for ethanol enhancement of
GABAergic transmission (Nie et al., 2004; Bajo et al., 2008). Additional studies will be needed
to elucidate the behavioral significance of these findings and importantly, to determine how
the CRF system in these, and other, brain regions adapts following chronic ethanol exposure.
However, the observations that CRF-R1 antagonists can have anxiolytic properties (Takahashi,
2001; Holsboer and Ising, 2008) and are particularly effective at reducing alcohol drinking in
stressed (Marinelli et al., 2007; Lowery et al., 2008) or ethanol-dependent (Funk et al., 2007;
Gilpin et al., 2008) animals suggest that dysregulation of CRF-R1 signaling may play an
integral role in the development of alcoholism.

In the BLA, new evidence was presented describing two distinct inhibitory pathways that
regulate excitability in this brain region. Ethanol significantly enhanced both of these inhibitory
pathways, consistent with this drug’s well-known anxiolytic properties. However the
mechanisms underlying these effects were quite different. Although ethanol enhanced local
GABAergic inhibition via a presynaptic mechanism that was tightly regulated by GABAB
receptor activity, ethanol potentiation of lpcs-mediated inhibition was not modulated by
GABAB receptor activity nor was it associated with an increase in terminal GABA release
probability (Silberman et al., 2008). In contrast, ethanol enhancement of lpcs IPSCs did require
β-NE receptor activation, as previously shown for ethanol potentiation of GABA inhibition of
Purkinje cell firing (Lin et al., 1991). Additional studies will be needed to further characterize
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the mechanisms underlying ethanol facilitation of local and lpcs-mediated GABAergic
inhibition in the BLA and, importantly, to determine how these pathways adapt following
repeated ethanol exposure and withdrawal. Interestingly, baclofen (a GABABR agonist) has
been shown in animal and human studies to reduce measures of alcohol intake, craving and
relapse (Addolorato et al., 2002b; Addolorato et al., 2002a; Colombo et al., 2004; Flannery et
al., 2004). The observation that baclofen pretreatment significantly reduced the acute
potentiating effect of ethanol of local BLA IPSCs may provide a possible neurobiological
mechanism that contributes to the efficacy of this drug as a treatment for alcoholism. It will be
of interest in future studies to examine the effect of intra-BLA manipulations of the GABAB
and β-NE receptor systems on ethanol drinking and measures of ethanol-mediated anxiolysis.

Finally, it was shown that chronic ethanol exposure and withdrawal have profound
neuroadaptive effects on excitatory synaptic transmission in the BLA. A ten day intermittent
inhalation procedure resulted in significant increases in NMDA and KA receptor function as
well as increased pre- and postsynaptic measures of AMPA receptor-gated synaptic excitation
(Lack et al., 2007). Importantly, although enhanced glutamatergic transmission was evident
immediately after the chronic ethanol treatment, increases in behavioral measures of anxiety-
related behavior only emerged during withdrawal. As noted by these authors, since the
expression of anxiety-related behaviors is largely governed by the balance between excitatory
and inhibitory transmission in brain regions like the BLA, it seems likely that the acute
facilitatory effects of ethanol on GABAergic inhibition in this, and other brain regions, may
counter the hyperglutamatergic activity that develops during chronic ethanol treatment.
Interestingly, several studies have demonstrated that tolerance does not develop to the acute
potentiating effects of ethanol on GABAergic synapses in several brain regions within the
stress/anxiety circuitry (Kang et al., 1998; Roberto et al., 2004b). The persistence of these acute
effects of ethanol on GABAergic inhibition, particularly in the presence of increased
glutamatergic excitation, provides a plausible neurobiological mechanism that may help
explain the increased saliency of ethanol’s negative reinforcing effects that is thought to emerge
during the progression of alcohol dependence (Koob, 2004; Koob and Le Moal, 2008).

In conclusion, these studies demonstrate that acute and chronic ethanol exposure have profound
effects on the balance between excitatory and inhibitory synaptic transmission in several key
brain regions within the stress/anxiety circuitry. These studies also highlight new synaptic
elements that either potently modulate synaptic communication in these regions (e.g. CRF-
R1s) and/or significantly alter ethanol effects on synaptic activity in these circuits (e.g.
GABAB-Rs, β-ARs). These findings, along with those of many other studies, suggest that
drugs that can selectively target some of these synaptic elements may prove to be effective
pharmacotherapies for the treatment of alcohol addiction.
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