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Abstract

A new type of synthetic membrane transporter is described and shown to operate in vesicles by a
relay mechanism. The transporter structure is a phosphatidylcholine derivative with a urea group
appended to the end of its sn-2 acyl chain. The urea can bind a chloride ion at the membrane surface
via hydrogen bonds and then relay it through the bilayer interior to an acceptor molecule located in
the opposite membrane leaflet. Three phosphatidylcholine derivatives were studied and transport
rates increased with transporter affinity for chloride. The results of various controls studies are
consistent with an anion counter transport process using a relay mechanism and a kinetically active
aggregate of two or four transporter molecules. Transport is inhibited if the transporter resides in
only one leaflet of the membrane, if the bilayer is too thick, and if the counter anion is sulfate dianion.
The expected favorable formulation properties of these amphiphilic compounds should facilitate
efforts to transform them into tools for biomedical research and perhaps as therapeutic agents.

Synthetic bilayer membrane transporters are usually classified mechanistically as mobile
carriers or as ion channels.> A mobile carrier associates with a target ion to form a discrete
supramolecular complex that diffuses across the membrane; whereas, an ion channel is a
relatively immobile structure that spans the bilayer and allows a continuous flow of ions.2 In
recent years there has been increased effort to design synthetic membrane transport systems
for anions, especially CI~.3 One of the long-term goals of this work is to create transporter
replacement therapies that can alleviate the symptoms of diseases caused by diminished levels
of endogenous CI™ transport (e.g., cystic fibrosis).4 The field of anion transport is still in its
early stages with most published studies focusing on fundamental transport studies using model
bilayer membranes. In terms of transporter designs, nearly all have been highly lipophilic
compounds that partition strongly and non-selectively into any membrane.> However, next-
generation designs must begin to address the requirements for pharmaceutical success,
including the following formulation features: (a) acceptable solubility in physiological
solution, (b) appropriate cell targeting and subsequent membrane partitioning, (c) lengthy
residence time in the apical plasma membrane of target cells. Suitably designed amphiphilic
transporters are likely to exhibit these desirable properties, however, it is quite challenging to
design amphiphilic transporters that operate by carrier or ion channel mechanisms. This
quandary has prompted us to design a new type of membrane transporter that operates by a
relay mechanism.®

A generalized picture of the relay transport process is shown in Scheme 1. The transporter
structure is a phospholipid derivative with an ionophore appended to the end of its sn-2 acyl
chain.” The ionophore can bind an ion at the membrane surface and then relay it through the
bilayer interior to an acceptor molecule located in the opposite leaflet.8 In this initial study, the
ionophore is a simple urea group that can associate with CI~ via hydrogen bonds.® The
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phosphatidylcholine derivatives 1-3 were synthesized in a few steps and high yield using
established procedures.1? Transporter 1 contains a 4-nitrophenylurea group with a relatively
high affinity for CI~, transporter 2 contains a weaker binding 4-tert-butylphenylurea group,
and carbamate derivative 3 is a control structure with very weak ClI- affinity.11

The ability of compounds 1-3 to transport CI™ into vesicles was measured using a standard
fluorescence quenching assay.12 Briefly, compounds 1-3 were pre-incorporated into separate
samples of unilamellar vesicles composed of 1-palmitoyl-2-oleoylphosphatidylcholine
(POPC):cholesterol (7:3 molar ratio, diameter 200 nm) and encapsulating the chloride sensitive
fluorescent probe lucigenin. Addition of NaCl to the vesicle dispersions induces CI™ influx and
quenching of the lucigenin fluorescence. The traces in Figure 1 clearly show that transporter
1 is superior to 2, whereas control 3 is essentially inactive. This trend of stronger anionophore
producing enhanced transport has been reported before with a separate class of mobile carriers
for CI™ that also utilize urea groups.13

In order to elucidate the transport mechanism, a series of additional experiments were
conducted with the most effective transporter, 1. The first experiment demonstrated that
replacing the intravesicle NaNO3z with an isomolar concentration of Na,SO,4 produced a greatly
diminished rate of CI™ influx (see Figure S1 in the SI). This is consistent with an anion exchange
process; that is, significant CI™ influx can only occur if there is a corresponding counter anion
efflux, which is greatly diminished with the heavily solvated SO42-.3

The relay mechanism in Scheme 1 implies that the transporter must reside in both leaflets of
the bilayer. This condition was met in the initial experiment which employed vesicles with 1
pre-incorporated in the membrane. However, no CI™ transport was observed when the
experiment was repeated with one variation, external addition of 1 to preformed vesicles (see
Figure S2 in the Sl for details). In this case, the polar lipid 1 inserts into the outer leaflet of the
vesicle membrane (confirmed by UV absorption) and does not migrate to the inner leaflet. To
be effective, transporter 1 needs to populate both sides of the bilayer membrane.

The dependence of observed CI™ influx rate constants (kops) On transporter concentration was
determined in two vesicle systems with membranes of different compositions and thickness
(i.e., 1,2-dimyristoylphosphatidylcholine (DMPC):cholesterol (7:3) and the thicker
POPC:cholesterol (7:3)). In both cases, the curves were non-linear (Figure 2) indicating that
transport is mediated by kinetically active aggregates of 1. Furthermore, linear relationships
are obtained for the two membrane compositions when Koy, is plotted against [1]", where n =
2 and 4, respectively.1* Thus, the transporter aggregate number is two for the
DMPC:cholesterol membrane which is consistent with the slightly overlapped tail-to-tail dimer
shown in Scheme 1. An aggregation of four in the thicker POPC:cholesterol membrane
membrane suggests that a pair of transporters are in each leaflet as shown in Scheme 2. An
increased transporter aggregation number in thicker membranes has been seen before with self-
assembled pore systems.1>

The final mechanistic study with 1 measured CI™ influx rates as a function of vesicle membrane
thickness. Transport was monitored in vesicles composed of phospholipids with increasing
acyl chain length, and thus increased membrane thickness.1>:18 Figure S3 in the SI shows that
increasing the acyl chain carbon number from 14 to 18 produced an incremental decrease in
transport rate. Significantly, when the acyl carbon number was increased to 20 and above there
was a dramatic drop to essentially zero transport. This membrane thickness threshold effect is
consistent with the relay mechanism and not with the two alternatives.1’ When the membrane
is relatively thin, the transporters can effectively relay CI™ across the lipophilic core of the
membrane as shown in Scheme 1 and Scheme 3. Once the membrane is thicker than the tail-
to-tail aggregate in Scheme 2 (whose polar head groups are anchored to their respective
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membrane interfaces), there is a gap between the urea groups in each leaflet and the energetic
barrier for CI™ relay becomes prohibitively high.

In summary, we report a new class of synthetic membrane transporters whose molecular
structures are phospholipids with anionophores appended to the end of the sn-2 acyl chain. The
current design uses urea groups to bind and transport CI~, however, it should be possible to
employ other molecular recognition units to produce transporters that are selective for other
anions, as well as cations and neutral polar molecules. Mechanistic studies indicate that the
transporters operate by a new and distinct membrane relay process. The expected favorable
formulation properties of these amphiphilic compounds (e.g., as liposomes, micelles, etc)
should facilitate efforts to transform them into tools for biomedical research and perhaps as
therapeutic agents.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Fluorescence quenching due to CI™ influx. At 100 s, an aliquot of NaCl (25 mM final conc.)
was added to vesicles encapsulating the chloride sensitive probe, lucigenin (1 mM) and
NaNOs3 (225 mM), T = 25 °C. The vesicle membranes were composed of POPC:cholesterol
(7:3) and either 1, 2, or 3 (5 mol %).
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Figure 2.
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Rate constants (kops) for CI™ influx at different concentrations of 1 in vesicles composed of
DMPC:cholesterol (7:3) (v) and POPC:cholesterol (7:3) (1), T = 25 °C. Inset: linear
relationships with [1]", where n = 2 and 4, respectively.
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Scheme 1.
Relay mechanism for dimeric transporter aggregate.
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Scheme 2.
Relay mechanism for transporter aggregate of four.
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