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Abstract
Tissue classification algorithms developed for magnetic resonance images commonly assume a
Gaussian model on the statistics of noise in the image. While this is approximately true for voxels
having large intensities, it is less true as the underlying intensity becomes smaller. In this paper, the
Gaussian model is replaced with a Rician model, which is a better approximation to the observed
signal. A new classification algorithm based on a finite mixture model of Rician signals is presented
wherein the expectation maximization algorithm is used to find the joint maximum likelihood
estimates of the unknown mixture parameters. Improved accuracy of tissue classification is
demonstrated on several sample data sets. It is also shown that classification repeatability for the
same subject under different MR acquisitions is improved using the new method.
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1. INTRODUCTION
Classification methods based on parametric statistical models have been previously proposed
and are in widespread use to classify magnetic resonance (MR) brain images into three
dominant tissue classes: cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM)
[1]. Finite mixture models (FMM’s), upon which these methods are based, use the assumption
that the intensity of any voxel is derived from a discrete set of conditional distributions. For
MR images, it is most commonly assumed that the distributions are Gaussian with their means,
variances, and prior probabilities assumed to be deterministic but unknown variables. After
estimating the model parameters using maximum likelihood, one can generate a posterior
probability of a voxel belonging to each tissue class, which can then be used as an estimate of
a “soft segmentation” of the voxels or can be maximized to establish a “hard segmentation”.

Practical application of these principles is best carried out using a model of spatial smoothness,
most notably a Markov random field (MRF) [2], the expectation maximization algorithm [3]
for numerical efficiency, and a model of intensity inhomogeneity to model the radio frequency
coil inhomogeneity [4]. The Expectation Maximization Segmentation (EMS) [5] and FMRIB’s
Automated Segmentation Tool (FAST) [6] are two highly successful implementations of these
principles. Though not based on the strict probabilistic model of these noted methods, the
approach called FANTASM [7] incorporates similar principles within a fuzzy C-means (FCM)
[8] framework and yields similar results.
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It is well known that signals in MR images are Rician in distribution [9], and therefore the
standard Gaussian model really only applies in the high signal-to-noise ratio (SNR) regime
[10]. For example, Fig. 1 demonstrates visually that the Rician FMM fit is a better fit than that
of a Gaussian FMM for the histogram of a real MR image. Quantitatively, this is confirmed
using the Kullback-Leibler (KL) distance between the fit and the true histogram, which in this
example yields 0.0418 for the Gaussian FMM and 0.0097 for the Rician FMM.

In this paper, we present a new classification method that follows the principles of an
Expectation-Maximization (EM) algorithm—including bias field correction and an MRF
model—with a Rician FMM model for the observed image. In a validation study involving 20
normal subjects, we show that our method performs better than both FAST and FANTASM.
In a second validation study involving five normal subjects, we demonstrate improved
consistency in segmentation when MR images are acquired from the same subject using two
different T1-weighted pulse sequences (SPGR and MP-RAGE).

2. BACKGROUND
MR image intensities are in fact the magnitudes of underlying complex data that are acquired
in separate in-phase and quadrature channels. The real and imaginary parts are modeled as
being independently distributed Gaussians with means AR and AI, respectively, with the same
variance σ2. Thus, the image intensity y is a Rician random variable with probability density
function (pdf)

(1)

where  and Ip is the modified pth order Bessel function of the first kind. We
substitute yi for y, with i referring to the ith voxel. Let zij be the indicator function for the ith
voxel being in the jth class for j = 1, …, K. In our case the classes are CSF, GM, and WM and
therefore K = 3. We also have vj and σj for each class and the collection of such parameters for
all classes is ɵ = {vj, σj}.

The classification problem can now be represented as an estimation problem where the
underlying segmentation zij is calculated from the observed intensity yi. The segmentation can
be computed if vj and σj are known, while vj and σj is known only when zij is known. This setup
leads naturally to use of the EM algorithm to find the maximum likelihood (ML) estimate

. The EM algorithm iteratively estimates the segmentation zij based on
current estimates of the parameters and then updates the parameters using the current estimate
of zij. This is described in the two-step process:E Step : At the mth iteration, we compute,

M Step : Find new estimation of parameters from

The algorithm converges based on the difference of successive total log-likelihoods being
small.
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3. RICIAN MIXTURE MODEL
We now develop the EM classification algorithm for the Rician mixture model given by

(2)

where fR is given in (1) and πij is the prior probability of the ith voxel belonging to the jth class.
We can incorporate spatial regularization and bias field correction into the likelihood function
as follows

(3)

where Ni is a neighborhood of the ith voxel. Here bi is a low frequency smoothly varying

polynomial field used for bias correction and is defined by , where Ps(i) is an sth

order orthogonal polynomial family, L is the maximum order (taken as 3 in our experiments),
and αs are bias field correction coefficients. Spatial consistency is achieved by replacing the
fixed prior probability πij with the spatially varying prior f(zij|zNi, ɵ) [11], defined as:

(4)

where βj controls the smoothness of the MRF for the jth class. If the segmentation of the ith
voxel is the same as the segmentation of the voxels in Ni, then f(zij|yNi, ɵ) ≈ 1. Otherwise, the
ith voxel becomes a potential noisy one. A large spatial prior is imposed if zij is small, and
conversely a small spatial prior for large zij. We note the expanded collection of variables ɵ
= {vj, σj, βj, αs}.

We use a mean field approach [5], to solve our EM algorithm. The E step requires computation
of E[zij|yi, ɵ]. Since zij is a binary random variable with values 0 or 1, its expectation is the
probability of ith voxel belonging to the jth class P(zij = 1|yi, ɵ), which is the same as the

conditional expectation wij, defined as  for the mth iteration of the EM
algorithm. Thus, the E step becomes:

where  is modified from (4) by the mean field idiom and is given by
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In essence this replaces  in (4) with its expectation .

In the M step, of the EM algorithm, we update ɵ, thus updating , , and  with,

(5)

(6)

(7)

Here, N is the number of voxels in the image domain and

To update the bias field coefficients , we solve a set of linear equations generated by
setting the first derivative of the log-likelihood with respect to αs to zero. For each s = 0, …,
L, the linear equations are given by:

We solve these equations simultaneously to determine the  values. We continue iterating
through the EM algorithm until the increases in log-likelihood, of successive iterations, are
below a threshold. The final values of the wij’s are the desired soft classification for the ith
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voxel with respect to the jth class. The hard segmentation for the ith voxel is given by

.

4. VALIDATION
We conducted two experiments to validate our method. The first experiment involves T1-
weighted images of 20 normal healthy subjects from the Internet Brain Segmentation
Repository (IBSR) [12]. These data sets have manual whole head segmentations, which we
used to compare against the hard segmentations of FAST, FANTASM, and our Rician mixture
model Classifier (RC). Tab. 1 shows the Dice coefficients between the manual segmentations
and the hard segmentation from each algorithm. The IBSR data pool formed two very distinct
groups, which we call Group 1 and Group 2. In Group 1, comprising 16 subjects, all three
methods performed well though RC performed slightly better. In Group 2, comprising 4
subjects, the WM Dice coefficients were below 0.60 for all methods indicating a gross failure
for all three methods, although RC was still the best. Further investigation revealed that the
inhomogeneity fields for Group 2 subjects were not smoothly varying, which led to gross bias
field estimation errors as well as classification errors. With the Group 1 population, we
considered the null hypothesis that the Dice coefficient of RC is less than that of FANTASM.
The resultant p-values of a t-test for GM, WM, and WT are 0.000005, 0.0009, and 0.0002,
respectively. A similar hypothesis and comparison between our Rician mixture model and
FAST yields p-values of 0.0018, 0.3371, and 0.0381. Thus, RC yields statistically significant
improvement on overall tissue segmentation.

We demonstrate repeatability of our method in the second experiment, by using two different
acquisitions, one SPGR and one MP-RAGE, of five normal healthy subjects. Ideally, we expect
to be able to generate identical segmentations for the same subject on the differing acquisitions.
Tab. 2 shows the Dice coefficients between the SPGR and MP-RAGE segmentations. The p-
values of the CSF, GM, and WM Dice coefficients for FAST and RC comparison are 0.0129,
0.017, and 0.0324. Between FANTASM and RC the p-values are 0.0003, 0.0003, and 0.0002,
which again demonstrates statistically significant improvement. Tab. 2 also shows that the CSF
segmentation has improved substantially on MP-RAGE, while it is nominally so on SPGR.

It is observed in Tab. 2 that the Dice coefficients are generally very small in the FT and FN
estimates of CSF. The reason for this is that the intensity of CSF is very small in the MP-RAGE
images (see Fig. 2). As a result, the Gaussian approximation is particularly inappropriate in
this case yielding poor results. RC is a better model for this case, yielding better, and more
consistent, results.

5. CONCLUSION
We proposed a fully automatic Rician mixture model classification algorithm and demonstrated
its usefulness for tissue classification. It was shown to be superior, especially on MP-RAGE
images, to existing state of the art segmentation algorithms which use an underlying Gaussian
(or Gaussian-like in the case of FANTASM) distribution model. It was also shown to be more
consistent at segmenting different T1-weighted acquisitions of the same subject.
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Fig. 1.
Histogram, shown in solid black, of an MP-RAGE image (inset) overlapped with a fitted
Gaussian pdf (dotted blue) and a Rician pdf (dashed red).
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Fig. 2.
SPGR and MP-RAGE data for a subject in our second experiment and the resultant hard
segmentations from FAST, FANTASM, and our Rician mixture model.
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