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We apply modeling approaches to investigate the distribution of late recombination nodules in maize (Zea mays). Such

nodules indicate crossover positions along the synaptonemal complex. High-quality nodule data were analyzed using two

different interference models: the “statistical” gamma model and the “mechanical” beam film model. For each chromo-

some, we exclude at a 98% significance level the hypothesis that a single pathway underlies the formation of all crossovers,

pointing to the coexistence of two types of crossing-over in maize, as was previously demonstrated in other organisms. We

estimate the proportion of crossovers coming from the noninterfering pathway to range from 6 to 23% depending on the

chromosome, with a cell average of;15%. The mean number of noninterfering crossovers per chromosome is significantly

correlated with the length of the synaptonemal complex. We also quantify the intensity of interference. Finally, we develop

inference tools that allow one to tackle, without much loss of power, complex crossover interference models such as the

beam film. The lack of a likelihood function in such models had prevented their use for parameter estimation. This advance

will allow more realistic mechanisms of crossover formation to be modeled in the future.

INTRODUCTION

Meiosis allows the segregation of homologous chromosomes

(homologs) in sexually reproducing organisms to produce hap-

loid gametes from parental diploid cells. During prophase I of

meiosis, DNA double-strand breaks are initiated by the Spo11

topoisomerase-like transesterase (Keeney et al., 1997) and

repaired using a homologous nonsister chromatid as a template.

This leads to either reciprocal exchanges (crossovers [COs])

affecting the rest of the chromosome arm or nonexchange

events (noncrossovers [NCOs]), which may be detected through

associated gene conversions localized to small segments

(Bishop and Zickler, 2004). Crossovers have two major conse-

quences: (1) they create physical connections (visible as chias-

mata) that, in association with sister chromatid cohesion, hold

the homologs together in stable pairs (bivalents) ensuring proper

segregation at anaphase I (Page and Hawley, 2003; Jones and

Franklin, 2006), and (2) they induce reciprocal exchanges of large

fragments of genetic material, leading to intrachromosomal

reshuffling of parental alleles in the gametes. CO frequencies

define the genetic distance unit (centimorgan [cM]), so a 100-cM

(= 1 morgan) segment experiences on average 1.0 CO per

gamete (which is equivalent to an average of two COs among the

four chromatids of each bivalent). The number of COs per

chromosome is highly regulated: typically at least one chiasma

occurs per bivalent (referred to as the obligate CO) in most

organisms (Jones, 1984; Jones and Franklin, 2006), and the size

range of genetic linkage maps is much more constrained than

physical genome sizes across different species.

The distribution of COs along chromosomes is clearly non-

random. Some regions of the physical chromosome are much

more prone to CO formation and recombination than others, and

some regions (for example, near centromeres) hardly ever

recombine (Jones, 1984; Anderson and Stack, 2002; Drouaud

et al., 2006). In addition, a phenomenon called CO interference

(Sturtevant, 1915; Muller, 1916) lowers the probability that two

COs occur close to each other in the same meiosis. Interference

has been reported in most organisms tested, with some excep-

tions, such as Schizosaccharomyces pombe and Aspergillus

nidulans (Zickler and Kleckner, 1999). Experimental results from

several organisms indicate that even thoughmost of theirmeiotic

COs are subject to interference, a small fraction of COs shows

little or no interference. These organisms include yeast (Saccha-

romyces cerevisiae; Hollingsworth and Brill, 2004; Stahl et al.,

2004), tomato (Solanum lycopersicum; Lhuissier et al., 2007),

Arabidopsis thaliana (Higgins et al., 2004; Mercier et al., 2005),

and mouse (Mus musculus; Guillon et al., 2005). The interfering

pathway (hereafter referred to as Pathway 1 or P1) depends on

genes from the ZMM family as well as Mlh1 and Mlh3, while

the noninterfering (or weakly interfering) pathway (Pathway 2 or

P2) partially depends on Mus81 and associated proteins

(Hollingsworth and Brill, 2004; Mézard et al., 2007). From these

studies, the proportion of P2 COs seems to be variable across

species with values from 0 to 23% in mouse (Froenicke et al.

2002; Broman et al. 2002; Falque et al. 2007) up to ;30% in

yeast (de los Santos et al. 2003; Hollingsworth and Brill 2004) and

tomato (Lhuissier et al., 2007). At the two extremes are Caeno-

rhabditis elegans that has only interfering COs and S. pombe that

has only noninterfering COs.
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CO positions may be experimentally determined by studying

recombination between genetic markers in high-density linkage

mapping experiments or by direct cytological observations. In

the latter case, one can measure CO positions by visualizing late

recombination nodules using electronmicroscopy (Sherman and

Stack, 1995; Anderson et al., 2003) or by immunofluorescence

using antibodies against different proteins that concentrate as

foci at the location of COs (Lawrie et al., 1995; Froenicke et al.,

2002; de Boer et al., 2006). Interestingly, P1 (interfering) COs can

be specifically detected using immunolocalization of MLH1, one

of the proteins involved in this pathway of CO formation. By

contrast, late recombination nodules (LNs) in tomato and maize

(Zea mays) are thought to mark all COs from both P1 and P2

pathways (Sherman and Stack, 1995; Anderson et al., 2003;

Lhuissier et al., 2007). Lhuissier et al. (2007) demonstrated that

;70% of the LNs in tomato were immunolabeled with MLH1,

indicating that P1 accounts for the majority of COs in tomato,

with the remaining 30%of COs thought to be associated with the

P2 pathway.

To analyze statistical features of CO formation, some empirical

indicators, such as the coefficient of coincidence (Ott, 1999),

may be used, but the most powerful approach is to fit mathe-

matical models to experimental data sets. The multiple models

proposed so far are based on very different approaches to

generate interference between COs, and they may be roughly

grouped into two classes: physically motivated models and

statistically oriented models. Physical models include one that

simulates the polymerization along the chromosome axis of a

complex that initiates at CO locations and inhibits nearby CO

formation (King and Mortimer, 1990). Another physical model

called “beam film model,” hereafter referred to as BF model,

simulates establishment and propagation of a mechanical stress

along the lateral element with COs being seen as cracks that

release the stress locally and thus forbid nearby COs (Kleckner

et al., 2004). Statistical models, on the other hand, are mainly

based on the statistics of genetic distances between successive

COs. These models use stationary renewal processes (SRPs;

McPeek and Speed, 1995; Zhao and Speed, 1996) that draw

useful mathematical properties from the hypothesis that inter-

CO distances are independent and identically distributed.

Among SRP-based models, one of the most studied is the

gamma model (McPeek and Speed, 1995), and we shall use it in

this work. The model’s name comes from the fact that inter-CO

distances follow a gamma distribution. Interestingly, when the

interference parameter of the gamma model takes integer

values, the model is equivalent to the counting or x2 model

(Foss et al., 1993). In the counting model, two adjacent COs are

separated by a given number of NCOs, leading to a fixed CO/

NCO ratio. This framework allows for a mechanistic interpreta-

tion of interference (Stahl et al., 2004). Note that in some cases,

the CO/NCO ratio varies between the wild type and mutants

(Martini et al., 2006), while in other cases, the CO/NCO ratio is

stable (Mehrotra and McKim, 2006; Stahl and Foss, 2009).

Finally, the Forced Initial Crossover model (Falque et al., 2007)

is a variant of the counting model that takes into account the

biological constraint of the obligate CO.

SRP-based models have been the preferred approach for

analyzing biological data sets because other models often

involve too many parameters and/or lack convenient inference

methods to fit data (e.g., maximum likelihood fitting). Moreover,

little is known about the biological basis of real interference

mechanisms (Zickler and Kleckner, 1999) so physical models

have little substance upon which to draw and have been kept out

of favor so far. By contrast, given the simplicity of the SRP-based

models, these have been extensively used to study CO position

data sets available for different organisms.

Incorporating two pathways (P1 and P2) of CO formation in

models is most simply achieved by sprinkling P2 COs over P1

COs. That is, P1 CO positions are generated using an interfer-

ence model first, and then P2 CO positions that are generated

through a Poisson model without interference are superim-

posed on the P1 distribution (Copenhaver et al., 2002). Such

two-pathway models assume that P1 and P2 COs are pro-

duced through independent processes. Using the gamma

model for P1 and adding P2 sprinkling has led to inferences

of the proportion of P2 COs ranging within 19 to 20% for

Arabidopsis chromosomes 1, 3, and 5 (Copenhaver et al., 2002),

3 to 5% for Arabidopsis chromosomes 2 and 4 (Lam et al., 2005),

0 to 21% (and mostly <10%) in humans (Housworth and Stahl,

2003), and around 10% for yeast chromosome 7 (Malkova et al.,

2004).

Here, we analyze LN positions inmaize (Anderson et al., 2003).

LNs are thought to mark all CO positions (Anderson and Stack,

2002; Anderson et al., 2003; Lhuissier et al., 2007), so we shall

simply refer to LNs as COs in the rest of this work. We include in

our modeling of interference both the gamma model (McPeek

and Speed, 1995), based on a statistical approach, and the BF

model (Kleckner et al., 2004), based on a physical approach.

This latter model has not been used for data analysis before

because of the numerous technical difficulties involved. Thanks

to the inference tools we developed, namely, to exploit the BF

model, we unravel here the contributions of each pathway and

their properties for each of the 10 chromosomes of maize. In

particular, we exhibit the presence of two CO formation path-

ways.

RESULTS

Correspondence between Single-Pathway

Interference Models

The frameworks assumed for the gamma and the BF models are

very different. Nevertheless, they both incorporate interference,

which leads to a rarefaction of nearbyCOs. It is thus conceptually

useful to introduce a correspondence between the two models

via the strength of the interference they produce. There is no

unique measure of this strength, but a convenient indicator of

interference strength is simply the relative width of the distribu-

tion of CO interval lengths. Explicitly, for any givenmodel, let r (D)

be the probability density of CO interval lengths D (where D is the

distance between two successive COs). For definiteness, as-

sume that this distribution is obtained for a chromosome of given

genetic length. Our indicator of interference strength is then the

coefficient of variation CV = s(D)/m(D), where m and s are the

mean and SD of the distribution of D. For instance, with an infinite
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chromosome, the gamma model, whose interference parameter

is n, leads to CVðnÞ51=
ffiffiffi
n

p
. As interference becomes strong, CV

goes to zero andCOs become regularly spaced. In the BFmodel,

whose interference parameter is l, CV(l) has to be determined

by simulation, which can be done to whatever accuracy is

needed.

Given the two functionsCV(n) andCV(l), we brought a value of

n in correspondence with that value of l, which gave the same

CV. This results in a map between n and l (see Supplemental

Figure 1 online for two choices of chromosome lengths, those of

chromosomes 1 and 10 inmaize). Themost distinctive featurewe

see in this figure is that the BF model does not produce inter-

ference strengths beyond a maximum value that depends on

chromosome size. In particular, CV in the BF model goes to a

limiting (strictly positive) value when l becomes arbitrarily large.

For example, for the size of maize chromosome 1, CV tends

to 0.27 as l goes to infinity, corresponding to themaximum value

n = 13.2 (see Supplemental Figure 1 online). By contrast, in the

gamma model, as n grows, CV goes to 0. What is the source of

this difference? TheBFmodel has precursors that are distributed

at random and thus can never generate perfectly regular interval

lengths. Going from the precursors to the COs in that model

introduces some regularity in the CO positions, but the fluctua-

tion in D is always comparable to the distance between two

precursors, so very strong interference is simply not possible in

the BF model as it stands.

Presence of Two Distinct Types of COs

The two models were fitted to the experimental data giving the

LN positions for;200meioses (seeMethods). For each of the 10

chromosomes, we estimated the proportion p of pathway 2 (P2)

COswhen using either the gammamodel or the beam filmmodel

for pathway 1 (P1), while P2 is applied by sprinkling noninterfer-

ing COs on top of those coming from P1. Hereafter, we refer to

these two cases as the GS and BFS models, respectively.

Results are given in Figure 1 for GS (see Supplemental Figure 2

online for BFS). We also determined the associated confidence

intervals of this parameter p as explained in Methods. Data for

each chromosome were incompatible at the 98% significance

level with the value p = 0 for both the GS and the BFS models.

Combining these intervals for all chromosomes, the cell-wide

single pathway case was excluded far beyond the 99.9% level.

The values estimated for p fell between 6 and 23%depending on

the chromosome and on themodel. At awhole-cell level, the total

contribution of P2 was estimated at 13% with the GS model and

18% with the BFS model.

To see whether our two models lead to compatible estimates

for p, we compared the corresponding pairs of inferred values

(see Supplemental Figure 3 online). In case of compatible esti-

mates, each point should be close to the x = y line. More

quantitatively, for each point, the rectangle built from the x and y

confidence intervals should cross that line.We see that this is the

case for nearly all chromosomes (chromosome 3 is the only

Figure 1. Interference Intensity and Proportion of Noninterfering COs Using the GS Model.

Estimated values of the interference intensity (n) in the pathway P1 and proportion of pathway P2 COs (p), obtained by maximum likelihood fitting the GS

model to maize LN data for each chromosome. Horizontal and vertical bars indicate 95% confidence intervals based on 1000 simulated data sets. For

chromosome 8, the upper bound of the CI on n is 14.1.
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exception), but we also see that the estimates in the BFS model

are systematically higher than those in the GS model.

Interference Strength Varies Little from Chromosome

to Chromosome

For each of the 10 chromosomes, we estimated the interference

strength of pathway 1 (n for theGSmodel and l for the BFSmodel)

aswell as its associated 95%confidence intervals. In theGSmodel

(Figure 1), we found 4.2 < n < 6.2 for the estimated values, except

for the outlier chromosome 8 for which n = 9.6. Removing that

chromosome, all others were compatible with n = 5, suggesting

that interference varies little from chromosome to chromosome.

However, includingchromosome8,we rejected thehypothesis of a

common value of n for all chromosomesusing the x2 test (P value =

0.016). Note that going from n = 4.2 to n = 6.2 corresponds to

reducing the inter-CO standard deviation merely by 18%.

In the BFSmodel (see Supplemental Figure 2 online), we found

0.08 < l < 0.16 except for the outlier chromosome 2. That chro-

mosome seems to have an interference strength higher than can

beparameterized in theBFmodel; thus, formally l is infinite there.

Little Power Is Lost with the PLS Fitting Score

It is appropriate to consider the dependence of the inferred

parameters on the fitting procedure. In the case of the GSmodel,

the fits shown in Figure 1 were performed using the maximum

likelihood method. For the BFS (see Supplemental Figure 2

online), the likelihood of a bivalent cannot be computed because

the CO positions in that model result from a complicated pro-

cess. We thus had to resort to fitting using a goodness-of-fit

approach based on the PLS score function of Equation 1 (see

Methods). Consider now whether the two fitting methods (like-

lihood and PLS score) give compatible estimates in practice. We

compared the inferred parameters p and n in the GS model of

Figure 1 to what was found for the same GS model when using

the PLS score (see Supplemental Figure 4 online). For the same

data and model, the two fitting methods gave rise to very similar

and compatible values. Furthermore, we see that the confidence

intervals of the fits based on PLS were just a bit larger than those

based on maximum likelihood. It is then fair to say that by

replacing the true likelihood by the PLS score, little accuracy and

power was lost. To make this statement more quantitative, we

have computed by simulation the confidence intervals for both of

these methods as a function of the number of bivalents in the

data set, using simulated data (see Supplemental Figure 5

online). When increasing the number N of bivalents, the bias

(as measured by the difference between the median simulated

value and the true value) decreased with a law compatible with

1/N, and similarly, the size of the confidence interval decreased

with a law compatible with 1=
ffiffiffiffi
N

p
. For these simulations, we used

the resimulation method described in Methods applied to chro-

mosome 1.

Agreement between Models and Experimental Data

Wesaw that the fits gave confidence intervals that excluded p=0

for both the GS and the BFS models. One thus suspects that the

single-pathway models must lead to poor adjustments to some

features of the experimental data, and so it is natural to ask what

in fact these features are. Not surprisingly, we found that the p=0

models provided good adjustments to the frequencies P(0), P(1),

P(2). . . of bivalents with 0, 1, 2. . . COs, confirming the claim that

these frequencies are not very discriminative of different models

(Broman and Weber, 2000). More likely, the single-pathway

models should have difficulty reproducing the shape of the inter-

CO distances (D). The reason is that if sprinkling is present at a

low level, most inter-CO distances will be due to two COs from

P1 for which essentially no small values of D can occur. Never-

theless, a small fraction (proportional to p) of such distances will

arise due to one CO from P1 and one from P2. Having no

sprinkling (i.e., using a single-pathway interfering model) ex-

cludes a non-zero density of inter-CO distances D as D ap-

proaches zero. In Figure 2, we show the distribution of D as

obtained from the experimental data (bars) and from the adjusted

models (lines) for chromosomes 1 and 10. The analogous data

for all chromosomes is provided in the supplemental data (see

Supplemental Figures 6 and 7 online). Clearly, the adjustments

for the single-pathway models (gamma or BF with p = 0) are

much less good than for the two-pathway models (GS and BFS).

This is quantified by the sum of squares of the differences

between experimental and adjusted model values as reported in

the figures. We also find that these sums of squares have lower

values for GS than for BFS, suggesting that the gamma-based

model gives better adjustments to the data. For completeness,

the No-Interferencemodel, which corresponds to p = 0 and n = 1,

is also represented in these figures. Finally, as expected, we see

that the single-pathway models that include interference tend to

give curves that rise too fast nearD =0 to compensate for the fact

that such models predict extremely few COs very close to each

other. The same conclusions hold for the other chromosomes

(see Supplemental Figures 6 and 7 online).

Correlations with Chromosome Length

How are p and interference strength correlated with the length of

the synaptonemal complex (SC)? The parameter n in the GS

model had no significant correlation with SC length measured in

micrometers (see Supplemental Figure 8 online, left panel). The

same conclusion held for the BFSmodel. In the previous section,

we saw that theGSmodel systematically gave better fits than the

BFS, so we focus here on the GS results. Considering now the

values of p as a function of SC length (see Supplemental Figure 8

online, right panel), there seems to be an association between

the two values, but it is not statistically significant (the P value

associated with the hypothesis of no association is 0.125). We

found two outliers (chromosomes 3 and 8), which might shed

some doubt on the relevance of such an association. We also

found that the data looked very similar when using the genetic

length instead of the SC length. The reason for this is simply that

these two lengths are very strongly tied as was previously shown

(Anderson et al., 2003). It seems possible that genetic and SC

lengths are smoothly related and that any visible deviations are

simply due to sampling effects (see Supplemental Figure 9

online). Considering now the numbers of P1 and P2 COs per

chromosome, in both cases there was a significant correlation

with SC length (see Supplemental Figure 10 online).
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DISCUSSION

The presence of two pathways for meiotic CO formation, one

with interference (P1) and the other with little or no interference

(P2), is found among such diverse organisms as budding yeast,

mammals, and plants (de los Santos et al., 2003; Hollingsworth

and Brill, 2004; Mézard et al., 2007). Among plants, the support-

ing data comes from two dicots, Arabidopsis and tomato. In

Arabidopsis, mathematical modeling of COdistribution in tetrads

from wild-type plants as well as analysis of mutants reveal the

presence of the two pathways (Copenhaver et al., 2002; Higgins

et al., 2004, 2008a; Mercier et al., 2005; Berchowitz et al., 2007).

In tomato, cytological MLH1 immunolabeling of a subset of LNs

in pachytene SC spreads similarly supports the presence of two

pathways of crossing-over (Lhuissier et al., 2007). Monocots

would be expected to have and use these two pathways of

crossing-over also, but no studies have examined this question,

largely because of a lack of appropriate tools to do so. Here, for

maize, using the gamma and BF models for crossing-over, we

examined the behavior of each pathway and inferred their

contributions by comparing to LN data (Anderson et al., 2003).

The high quality of the LN data set allowed us to exhibit the

presence of two different classes of COs in a monocot and to

unravel the separate features of each class for each of the 10

chromosomes of maize. In addition, we developed an innovative

method using the PLS score, by which one can fit any complex

Figure 2. Quality of the Fits Obtained with Single-Pathway or Two-Pathway Models.

Density distribution of distances between adjacent LNs in all SCs with at least two LNs for maize chromosomes 1 and 10. The x axis shows the relative

genetic distance. Bars indicate experimental observations. Lines indicate simulations with no interference (NI), single-pathway gamma model (G), two-

pathway gamma-sprinkling model (GS), single-pathway BF model (BF), or two-pathway BFS model (BFS). The sum of squares of differences between

experimental and simulated densities are in parentheses.
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model to experimental data even if no likelihood function can be

derived; this was crucial for using the BF model.

To our knowledge, this is the first time that LNs have been used

to explore these different models for CO pathways, and the

approach is based on evidence that LNs faithfully mark the

locations of COs (Zickler and Kleckner, 1999; Anderson and

Stack, 2002; Lhuissier et al., 2007). For example, the number and

distribution of LNs mirrors that of chiasmata in maize (Anderson

et al., 2003). It should be noted that the corresponding mean

number of COs deduced in maize is nevertheless smaller than

when using molecular linkage maps (Davis et al., 1999). Such

discrepancies between cytological and genetic maps have been

noted for several different organisms, and a large part of the

difference can be attributed to factors such as mapping errors

that lead to inflation of linkage maps (Anderson and Stack, 2002;

King et al., 2002; Lynn et al., 2004). We cannot exclude the

possibility that some LNsweremissed during construction of the

LN map in maize, although given the close correspondence

between LNs and chiasmata, this must not be a common

occurrence. This putative loss would mainly affect close-by

COs, which would underestimate the contribution of pathway 2

rather than introduce an artifactual noninterfering pathway.

Proportion of COs Attributable to a Noninterfering Pathway

in Maize

The results show that our models based on a single interfering

pathway for crossing-over are inadequate to describe the ob-

served distribution of LNs in maize. We found that p = 0 (i.e., no

P2 COs) is excluded for each chromosome at the 98% confi-

dence level. Note that this conclusion holds in two very different

kinds of models, and probably the most important cause for the

inadequacy of these single-pathways models is that they cannot

produce close-by COs. In essence, this means that two types of

COsmust coexist in maize, with one type allowing for small inter-

CO intervals. If, as is generally accepted, interference in P1

forbids such small intervals, then there must be a second

pathway in maize.

Going from one- to two-pathway models leads to much better

fits to the observed LN distribution data, as seen in Figure 2. For

both our two-pathwaymodels, the inferred valuesofp range from

6 to 23%. However, they are not far from being compatible with a

single value given the confidence intervals. Within the gamma

model, that fits closest to the data, all chromosomes except for

1 and 10 are compatible with the value p ;12%. However,

chromosomes 1 and 10, the largest and smallest chromosomes,

respectively, almost surely have distinct values for p as their

confidence intervals do not overlap; this conclusion holds in both

models (Figure 1; see Supplemental Figure 2 online).

How do these values compare with estimates of p for other

species? Three different approaches have been taken to esti-

mate the contribution of P2 to total CO number in different

organisms.

One approach is to fit CO data to the gamma with sprinkling

(GS) model, as is done in this work. Malkova et al. (2004)

estimated p to be between 8 and 12% for budding yeast

chromosome 7. Copenhaver et al. (2002) inferred p for each of

the five chromosomes of Arabidopsis using data sets of ;60

bivalents (from tetrads) and obtained values ranging from 0 to

20%.Using data sets of;90gametes (not bivalents), Housworth

and Stahl (2003) inferred values ranging from 0 to 21% for

different chromosomes in humans. Thus, the maize value (based

on 2080 SCs) of p;12% is within the ranges reported for these

organisms.

A second approach is to compare total map length (based on

LNs or genetic data) with the mean number of MLH1 foci on

bivalents. MLH1 foci are thought to label specifically the posi-

tions of COs fromP1and thus allowone to extract (1-p) LG, where

LG is the genetic length of the chromosome. Using this approach,

p was found to be;30% for tomato (Lhuissier et al., 2007). For

mouse chromosomes, using published data fromFroenicke et al.

(2002) and Broman et al. (2002), p can be estimated at 0 to 23%,

depending on the chromosome.

Finally, a third approach to estimate p is through analysis of

mutants that are thought to knock out one of the two CO

pathways. Naturally in such mutants, homeostasis effects may

arise, so there is no guarantee that the remaining COs provide

reliable values of p. Nevertheless, here again the range of values

of p is not substantially different from those found using the other

methods. For instance, in mouse, using mlh12/2 (Guillon et al.,

2005) and mlh32/2 (Holloway et al., 2008) mutants, the P2

pathway was estimated to account for 5 to 10% of all COs.

This is to be compared with a proportion of 11% in the wild-type

mouse as deduced fromMLH1data of Froenicke et al. (2002) and

genetic data of Broman et al. (2002). In Arabidopsis, several

works based on mutants lead to estimating p between 10 and

20%. For instance, the number of chiasmata is reduced to 15%

of the wild-type level inmsh4mutants (Higgins et al., 2004), to 11

to 18% in zip4mutants (Chelysheva et al., 2007), to 11 to 14% in

shoc1 mutants (Macaisne et al., 2008), and to 13% in msh5

mutants (Higgins et al., 2008b). On the other hand, 9 to 12%

reductions of recombination rate were observed in mus81 mu-

tants using large tetrad data sets (Berchowitz et al., 2007),

although no significant reduction of chiasmata counts could be

detected by Higgins et al. (2008a). Interestingly, all these results

are compatible with the value p = 14% that comes from the

modeling estimates of Copenhaver et al. (2002) using wild-type

plants.

Strength of Interference in P1

The interference strength parameter (n) estimated for P1 in our

study with the GS model is close to n = 6 for all chromosomes

(Figure 1), except chromosome 8, which gives a significantly

higher interference strength (n = 11). There seems to be no

association between n andSC length (see Supplemental Figure 8

online).

With the BFSmodel, interference strength is parameterized by

l, which is proportional to the characteristic distance over which

stress can propagate. We found l values compatible with l = 0.1

for six of the 10maize chromosomes (see Supplemental Figure 2

online). However, l estimates for chromosomes 7, 8, and 9 were

larger (l > 0.13). Furthermore, for chromosome 2, l is infinite; as

we demonstrated (see Supplemental Figure 1 online), the BF

model has an intrinsic limitation on interference strength, which is

responsible for this result.
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The other main outliers are chromosomes 7 and 8. Compared

with the other chromosomes, their histograms (see Supplemen-

tal Figures 6 and 7 online) have bimodal shapes. Clearly, the

models have difficulty reproducing the somewhat irregular struc-

ture of the experimental histograms for these chromosomes. In

particular, both experimental histograms have the bin at 0.55

with an anomalously large value, pushing the fitted interference

strength to be high.

Other authors have estimated interference strength in P1 by

fitting inter-CO distances to a gamma distribution. However, as

shown by Housworth and Stahl (2009), this is not equivalent to

using the gamma model because there are finite chromosome

size effects. If chromosome size is not considered properly when

applying the gamma model, artifactual interchromosome trends

can result. Values of n have been estimated for Arabidopsis to be

between 10 and 21 (Copenhaver et al., 2002). In humans, a first

study estimated n to be between 2.2 and 10 for most chromo-

somes (Housworth and Stahl, 2003). More recently, the same

authors (Housworth and Stahl, 2009) have shown that CO data

from human males are consistent with constant interference

levels among chromosomes of all sizes.

Another method to estimate interference strength in P1 is to

use single-pathway models on data sets reflecting the positions

of P1 COs only, such as MLH1 foci mapping along SCs. This

approach gave n = 7.9 and n = 6.9 for tomato chromosomes

1 and 2 (Lhuissier et al., 2007). In mouse, MLH1 foci data from

Froenicke et al. (2002) gave interference strengths correspond-

ing to n between 5 and infinity (Falque et al., 2007). Using the

gamma model on other mouse MLH1 data, de Boer et al. (2007)

estimated n = 7.5 and n = 10.1 for chromosomes 1 and 2, and

Barchi et al. (2008) estimated n values from 12 to 25. Estimates of

n were also obtained in dog (6.5; Basheva et al., 2008), cat (3.7;

Borodin et al., 2007), and shrew (11 to 16; Borodin et al., 2008).

Thus, the n values of 4.5 to 11.5 that we obtained for maize are

within the range of those observed for other plants and for

mammals. Finally, there have been estimates of n using the

counting or gamma model (single-pathway) on data that include

both P1 and P2 COs, although this approach obviously intro-

duces a bias in the inferred values. Not surprisingly, such an

approach underestimates the interference strength as clearly

shownbyCopenhaver et al. (2002). In support of this,mutants that

lack P2 COs show enhanced interference effects (Berchowitz

et al., 2007).

Comparison between the Gamma and Beam Film Models

Analyses of CO patterns have largely used the gamma model to

infer the level of CO interference (see previous section). Probably

the main reason for this choice is that the gamma model allows

for a tractable formula for the likelihood of any meiotic product.

Another choice for modeling CO interference is the BF model

(Kleckner et al., 2004), which postulates a mechanism respon-

sible for interference. However, the model lacks a computable

likelihood function, which makes it difficult to apply to data sets.

To overcome this technical difficulty, we have introduced an

approach using a score (PLS) to quantify the goodness of fit

between the BFS model’s predictions and experimental data.

Interestingly, very little inference power is lost in the GS model

when using the PLS score instead of the likelihood (see Supple-

mental Figure 5 online). With this inference tool, either model can

be used for fitting data, even though the two models have little in

common.

We used the coefficient of variation of inter-CO distances to

map one model onto the other. This mapping (see Supplemental

Figure 1 online) revealed that, in contrast with the gammamodel,

Figure 4. Landscape of the PLS Score to Be Maximized for Two-

Dimensional Parameter Inference.

Projected likelihood score (PLS; based on inter-CO distances; see text)

as a function of the two parameters of the BFS model. l, interference

intensity in the interfering pathway; p, proportion of COs formed through

the noninterfering pathway (P2).

Figure 3. Electron Micrograph Showing Late Nodules on SCs.

Electron micrograph of a portion of a spread of SCs from maize primary

microsporocytes in pachytene showing bivalents 4, 8, and part of 5 (left)

and higher magnification views (right) of SC segments with RNs (labeled

with arrowheads and the same lowercase letters at the two magnifica-

tions). Each SC has been identified based on its relative length and arm

ratio, and in this set, the kinetochores (K) of bivalents 4 and 8 are fused

together. A halo of dispersed chromatin is visible around each SC. Bar =

5 mm (left). Magnification for the right column is 2.5 times higher.
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the BF model does not allow inter-CO distances to be too

narrowly distributed. In effect, the BF model has a maximum

interference strength when it is mapped onto the gammamodel,

and we find this maximum to be generally higher for shorter

chromosomes (see Supplemental Figure 1 online). Maize chro-

mosome 2 seems to be very close to this maximum interference

strength reachable by the BFmodel.When performing fits on this

chromosome, we were led to very large values for l and huge

confidence intervals (see Supplemental Figure 2 online). In this

situation, the BFS may not allow us to infer a finite value of l,

which is a weakness of the model.

Although the results for interference strength using statistical

and physical models are only approximately comparable, an

unambiguous comparison of the proportion of COs due to P2 (p)

using the GS and the BFS models is possible since the meaning

of p is defined outside of any model. We find that the BFS model

gives rise to slightly larger estimates of p than the GSmodel (see

Supplemental Figure 3 online). Generally speaking, when a

parameter has significantly different estimates using two differ-

ent methods, the values inferred should be considered with

caution. In this precise case, we also found that the goodness of

fit provided by the GS model was systematically better than that

provided by the BFS (see Supplemental Figures 6 and 7 online).

Thus, it seems justified to give greater credence to the estimates

ofp coming from theGSmodel, and for the rest of the discussion,

we will focus on the gamma model only.

Correlations between SC Length and Individual

Pathway Contributions

Several studies in different organisms have shown that genetic

length (LG) is positively correlated with SC length (LSC); presum-

ably this correlation arises from a coordinated regulation, al-

though the possible mechanisms are still unknown (reviewed in

Kleckner et al., 2003). At a more quantitative level, Housworth

and Stahl (2003, 2009) proposed that a general formula relating

genetic length to physical length LP, such as LG = a LP + bmight

hold qualitatively for all the chromosomes in a given organism. In

their framework, the term “a LP” is the mean number of COs

coming from pathway P1. Similarly, “b” is the mean number of

COs coming from pathway P2. Since in this formula, “b” is

chromosome independent, all chromosomes have the same

mean number of P2 COs. Furthermore, taking “A” to be

the density of precursors on the chromosome per base pair,

Housworth and Stahl (2003) obtain for the gamma model the

relation a = A/n; since “a” is taken to be chromosome indepen-

dent, this means that all chromosomes are subject to the same

intensity of interference.

Most organisms have strongly correlated LP and LSC (Anderson

et al., 1985). Thus, the formula of Housworth and Stahl motivates

testing a similar linear relation between LG and LSC, namely,

LG = a LSC + b. This formula is in good agreement with our data

(see Supplemental Figure 9 online). The regression also shows

that there is clearly a very significant association between these

two lengths. Extrapolating this regression line to LSC = 0, we

obtained the intercept LG = 32.4 cM. However, for very short

chromosomes, one expects LG=50 cMaccording to the obligate

CO rule. This means that the linear relation LG = a LSC + b has to

be corrected for small SC sizes, unless the obligate CO rule

suffers some exceptions in maize.

Consider now the parameters “a” and “b” successively. As

shown in Figure 1, all chromosomes, except for number 8, are

compatible with a constant interference strength (n = 5). In

analogy with the framework used by Housworth and Stahl, this

would be expected if the parameter “a” was constant. To give

further credence to this hypothesis, we show that there is no

trend between n and LSC (see Supplemental Figure 8 online, left

panel). A similar analysis was performed for the parameter “b.”

We determined the mean number of P2 COs versus LSC (see

Supplemental Figure 10 online, right panel). The regression line

seems to exclude the hypothesis of constant “b” (P value =

0.008), although it can be noted that essentially all the correlation

comes from chromosomes 1 and 10. If “b” were constant, the

proportion p of P2 COs would be a decreasing function of LSC,

which seems incompatible with the data (see Supplemental

Figure 8 online, right panel). In view of these data, there is an

alternative hypothesis to having a constant “b”: the mean num-

ber of P2 COsmay be roughly proportional to LSC. While our data

do not contradict this alternative hypothesis, there is much

scatter in the cloud of points (see Supplemental Figure 10 online).

Providing more convincing evidence would require significantly

more bivalents than in this study.

Tomake further progress and unveil in greater detail additional

properties of the two pathways, larger data sets would be useful.

More generally, as the quality of experimental data improves, it

will become worthwhile to conceive more realistic and complex

models of CO formation. The exploitation of any such models for

data fitting will be possible with the inference techniques we

developed here for the BFS, whereby we overcame the problem

of having no computable likelihood function. On the experimental

side, new insights would be obtained if one could identify the

pathway giving rise to each individual CO or its cytological

counterpart (LNs, MLH1, etc.). Such data would allow direct

measurements of p that could be compared with estimates

coming from different models. Even more interestingly, such

explicit information on P1 and P2COswould allow one to test the

hypothesis that these two pathways are independent.

METHODS

Maize (Zea mays) LN Distributions

All of the LN data used in the analyses here are from Anderson et al.

(2003). Male microsporocytes from the inbred maize line KYS were used

for preparing the LN distributions from spreads of SCs (see picture in

Figure 3). Individual SCs were identified from sets of spread SCs, based

on relative length and arm ratio. The positions of 4267 LNs on a total of

2080 SCs were mapped by electron microscopy. The plants were

maintained in a temperature-controlled greenhouse to minimize environ-

mental variation.

Interference Models

For modeling interference in the P1 pathway, we use the gamma model

(McPeek and Speed, 1995), which is the most frequently used SRP-

based statistical model, and the BFmodel (Kleckner et al., 2004), which is

a very mechanistic physical model. To include a second pathway, we use
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the sprinkling procedure (Copenhaver et al., 2002) whereby noninterfer-

ing P2 COs are simply added to those of P1.

Estimation of Parameters and Confidence Intervals

Our goal is to determine the proportion of P2 COs and the interference

strength of P1 in maize. We estimate these values by searching for the

parameters of our models that give the best fit to the experimental data.

For the gamma andGSmodels, we do this bymaximizing the likelihood of

the data set as a function of these parameters. The formulas for the

likelihoods have been previously published by Broman and Weber (2000)

for the gamma model and by Copenhaver et al. (2002) for the GS model.

Unfortunately, for complex models such as the BF, it is not possible to

compute the likelihood of having a given list of CO positions on a bivalent.

We have thus developed a scoringmethod tomeasure the goodness of fit

as follows. Let P(0), P(1), P(2), . . . be the probability in the model of

obtaining 0, 1, 2, . . . COs on a bivalent and let rk be the probability density

of inter-CO distances for bivalents with exactly k COs. Our projected

likelihood score (PLS) is then defined by:

PLS ¼ Pð0Þ ½respectively Pð1Þ� for bivalents with 0 ðrespectively 1ÞCO

PLS ¼ PðkÞ
Xk2 1

i¼1

rkðDiÞ for bivalentswith k > 1COs; ð1Þ

where Di is the i’th interval length (between CO i and CO i+1). Fitting the

model then consists in finding the parameters p and l that maximize the

PLS. For both the likelihood (GS model) and the PLS (BFS model), we

have designed an efficient hill-climbing algorithm that renders the two-

dimensional search computationally feasible. An illustration of the shape

of the hill to climb is given in Figure 4 for the PLS.

Given the optimal parameters, we follow Viswanath and Housworth

(2005) to obtain their confidence intervals. This is done by fitting 1000

simulated data sets, which provides an approximation to the distribution

of each inferred parameter. Extracting the associated 95% confidence

interval is then straightforward; one just has to find the tails containing

2.5% of the distribution.
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Mézard, C., Vignard, J., Drouaud, J., and Mercier, R. (2007). The road

to crossovers: Plants have their say. Trends Genet. 23: 91–99.

Muller, H.J. (1916). The mechanism of crossing-over. Am. Nat. 50:

193–221.

Ott, J. (1999). Analysis of Human Genetic Linkage, 3rd ed. (Baltimore,

MD: Johns Hopkins University Press).

Page, S.L., and Hawley, R.S. (2003). Chromosome choreography: The

meiotic ballet. Science 301: 785–789.

3924 The Plant Cell



Sherman, J.D., and Stack, S.M. (1995). Two-dimensional spreads of

synaptonemal complexes from Solanaceous plants. VI. High-resolution

recombination nodule map for tomato (Lycopersicon esculentum).

Genetics 141: 683–708.

Stahl, F.W., and Foss, H.M. (2009). On Spo16 and the coefficient of

coincidence. Genetics 181: 327–330.

Stahl, F.W., Foss, H.M., Young, L.S., Borts, R.H., Abdullah, M.F.F.,

and Copenhaver, G.P. (2004). Does crossover interference count in

Saccharomyces cerevisiae? Genetics 168: 35–48.

Sturtevant, A.H. (1915). The behavior of the chromosomes as studied

through linkage. Mol. Gen. Genet. 13: 234–287.

Viswanath, L., and Housworth, E.A. (2005). InterferenceAnalyzer:

Tools for the analysis and simulation of multi-locus genetic data.

BMC Bioinformatics 6: 297.

Zhao, H., and Speed, T.P. (1996). On genetic map functions. Genetics

142: 1369–1377.

Zickler, D., and Kleckner, N. (1999). Meiotic chromosomes: Integrating

structure and function. Annu. Rev. Genet. 33: 603–754.

Two Types of Crossovers in Maize 3925


