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† Background and Aims The cellular structure of fleshy fruits is of interest to study fruit shape, size, mechanical
behaviour or sensory texture. The cellular structure is usually not observed in the whole fruit but, instead, in a
sample of limited size and volume. It is therefore difficult to extend measurements to the whole fruit and/or
to a specific genotype, or to describe the cellular structure heterogeneity within the fruit.
† Methods An integrated method is presented to describe the cellular structure of the whole fruit from partial
three-dimensional (3D) observations, involving the following steps: (1) fruit sampling, (2) 3D image acquisition
and processing and (3) measurement and estimation of relevant 3D morphological parameters. This method was
applied to characterize DR12 mutant and wild-type tomatoes (Solanum lycopersicum).
† Key Results The cellular structure was described using the total volume of the pericarp, the surface area of the
cell walls and the ratio of cell-wall surface area to pericarp volume, referred to as the cell-wall surface density.
The heterogeneity of cellular structure within the fruit was investigated by estimating variations in the cell-wall
surface density with distance to the epidermis.
† Conclusions The DR12 mutant presents a greater pericarp volume and an increase of cell-wall surface density
under the epidermis.

Key words: Stereology, 3D morphology estimation, tomato fruit, cellular structure, image analysis, confocal
microscopy.

INTRODUCTION

The cellular structure of fleshy fruit is generally investigated to
relate it to fruit shape and size, mechanical properties or
sensory texture.

Studies have shown that the final size of the fruit depends on
both the number and the size of cells (Coombe, 1976; Esau,
1977). This has been demonstrated in many fruits, such as
cherry (Olmstead and Iezzoni, 2007), tomato (Bünger-Kibler
and Bangerth, 1983; Bertin et al., 2003), peach (Zanchin et al.,
1994), blueberry (Cano-Medrano and Darnell, 1997), apple
(Harada et al., 2005) and Japanese pear (Zhang et al., 2006).

The cellular structure is also thought to be involved in the
mechanical properties of fruits, such as firmness or resistance
to injury (Redgwell et al., 1997; Knee, 2002; Allende et al.,
2004). This assumption is the basis for modelling the mech-
anics of cellular tissue (Bruce, 2003; Mebatsion et al., 2006,
2008). Cellular structure may also play a role in the sensory
texture of fleshy fruits (Jackman and Stanley, 1995;
Allan-Wojtas et al., 2003). Diffusion properties of gas within
tissues that affect the ripening of the fruit are also strongly
affected by the cellular structure (Mendoza et al., 2007;
Verboven et al., 2008).

Cellular structure and its variations within the fruit

Cellular structure can be described by the size, shape and
spatial organization of cells within tissues. In fleshy fruits,

the cellular structure may vary with the type of tissue and
location within the tissue, e.g. distance from the epidermis,
pedicel or vascular bundles (Cheniclet et al., 2005; Devaux
et al., 2008; Legland et al., 2008; Mebatsion et al., 2008).

Large variations in cellular structure are induced by the
variability inherent to most biological materials. For
example, the cells in a small region may exhibit various
sizes or shapes (Guines et al., 2003; Harada et al., 2005;
Legland et al., 2008). The variability itself can be instructive.
In the field of material sciences, it has been demonstrated that
the homogeneity of pore sizes has an effect on mechanical be-
haviour (Fazekas et al., 2002; Zhu, 2002; Ramamurty and
Paul, 2004).

In order to improve comprehension of the mechanical prop-
erties or the sensory texture of fruit, it is necessary to quantify
not only the average cellular structure in the whole fruit but
also its variations within the fruit, by taking the biological
variability of the fruit into account.

Imaging the cellular structure of fleshy fruits

Observations of fleshy fruit cellular structure are often
restricted to a region that is easy to isolate and to recognize
(usually the equatorial region). In most studies, the heterogen-
eity of cellular structure within fruit is not taken into account.
As a result, the conclusions made on samples can rarely be
extrapolated to the whole fruit. Moreover, the variations of
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cellular structure within the fruit cannot be assessed. To
overcome this problem, samples must be taken within the
whole fruit, without being restricted to a particular region.

The cellular structure of plant tissues is usually investigated
using microscopy with the objective of quantifying cell size
and shape (Konstankiewicz et al., 2001; Guillemin et al.,
2004; Horiguchi et al., 2006). For fleshy fruits, this approach
leads to several problems. Compared with the size of the
field of view in microscopic acquisition (at most 1 mm),
fruit cells are relatively large. They may range from several
hundred micrometres (Cano-Medrano and Darnell, 1997;
Higashi et al., 1999; McAtee et al., 2009) to 1 mm in the
case of tomato (Devaux et al., 2008). Only a few cells are
visible in a single image. As a result, several images are com-
bined to form a mosaic image to obtain a representative
observed area (Fromont et al., 2005). Moreover, the size of
the observed sample is small compared with the size of the
tissue; the diameter of fleshy fruits can reach several tens of
centimetres (Higashi et al., 1999).

Microscopic observations are usually two-dimensional,
whereas the cellular structure is three-dimensional (3D). To
assess actual 3D morphology, it is necessary either to use
3D image acquisition procedures or to estimate 3D parameters
from planar observations using stereological methods
(Baddeley and Jensen, 2005). 3D confocal microscopy offers
an adapted resolution for imaging cellular tissues (Ancin
et al., 1996; Gray et al., 1999). However, the observable
depth is limited to 200 mm, which makes most of the cells
not fully visible in three dimensions as they are truncated by
the field of view (Legland et al., 2008).

Quantification of the cellular structure

The cellular structure of fruits is quantified by image analy-
sis. The most common approach in quantitative histology is to
consider the tissue as a collection of disjoint cells and to
describe each cell by a set of geometric features such as
area, perimeter, convexity, shape factor and number of neigh-
bours (Bengough et al., 2001; Konstankiewicz et al., 2001;
Guillemin et al., 2004; Mebatsion et al., 2006). Tissues can
be described by the histogram of cell features (Ancin et al.,
1996; Carpenter et al., 2006). This approach is flawed owing
to several problems: (1) cells touching the window border
induce bias in statistics, (2) most features are only available
for 2D images and (3) it is not easy to extrapolate a histogram
measured in an image to the histogram in the whole fruit.

An alternative to classical image processing is to consider
all the cells of the tissue as a unique 3D geometric structure.
This structure can be described using morphological par-
ameters such as volume, surface area or number of connected
components. In order to facilitate comparisons, these morpho-
logical parameters are often divided by a reference volume
(such as the volume of the fruit or the tissue) to produce quan-
tities referred to as ‘densities’.

Nevertheless, the structure formed by the set of cells is
usually not fully observed. Observations are made on a
reduced number of ‘probes’, e.g. 2D sections or 3D slabs,
which contain only a part of the structure. The aim of stereol-
ogy is to estimate morphological parameters of the whole
structure from observations made on probes. Many powerful

estimators have been developed to describe systems of
particles or more complicated structures such as foam
materials or biological structures (Gundersen, 1985, 1986;
Jensen and Gundersen, 1985).

The quality of the morphology estimators depends on the
sampling procedure that determines the location of the
probes with respect to the whole fruit. The sampling procedure
must allow the unbiased estimation of morphological par-
ameters and should not be too complicated to implement. A
typical sampling procedure is to cut the structure into parallel,
equally spaced slices by choosing the orientation and position
of the first slice at random, without favouring any orientation
or position.

It is often practical to sample the fruit in relation to its shape.
This type of sampling procedure rarely permits unbiased esti-
mation of morphological parameters. Legland et al. (2008)
have recently shown that volume and surface area can be esti-
mated without bias from 3D slabs perpendicular to a reference
surface. For a fruit, the external epidermis is an appropriate refer-
ence surface. The proposed sampling procedure induces over- or
under-sampling of points as their distance to the external epider-
mis increases. Unbiased estimations from 3D measurements in
the slabs are possible but this requires the computation of the
sampling probability of each point.

To quantify heterogeneity, an easy-to-use approach is to
measure or estimate parameters at different locations within
the organ. Locations can be with reference to the epidermis,
the closest vascular bundle, the stem, etc. By using appropriate
averaging, it is possible to draw profiles of morphological vari-
ations within the organ (Legland et al., 2008).

Quantification of the morphological variation within the
AS-DR12 mutant

Among fleshy fruits, tomato (Solanum lycopersicum) has
emerged as an effective model for the study of organoleptic,
genetic or molecular biology properties (Giovannoni, 2004;
Shibata, 2005; Cheniclet et al., 2005). In order to identify
genes responsible for given traits, genetic screening and
tomato mutant selection have been investigated (Giovannoni
et al., 1999; Causse et al., 2002, 2004), leading to a better
understanding of fruit development (Tanksley, 2004), ethylene
biosynthesis (Lelièvre et al., 1997), relationships between mor-
phology and sensory traits (Chaı̈b et al., 2007), regulation of
ripening (Giovannoni, 2004) and fruit coloration (Thompson
et al., 1999).

Down-regulation of the DR12 gene encoding an auxin
response factor was shown to have an effect on fruit firmness
at the red-ripe stage (Jones et al., 2002). The significant differ-
ences in texture could not be explained by cell-wall compo-
sition (Guillon et al., 2008). An increase of cellular division
was observed under the external epidermis but not precisely
quantified (Jones et al., 2002).

The aim of the present study was to apply fully automated
image processing tools and stereological methods to estimate
the actual 3D cellular structure of tomato pericarp in order
to reveal morphological differences between down-regulated
auxin response factor tomatoes and wild-type tomatoes. In
the sampling procedure, the whole tomato fruit was con-
sidered, taking the shape of the fruit into account. Cells were
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observed using 3D confocal microscopy, and mosaic images
were built to observe the full thickness of the pericarp. The
cellular structure was described by the volume of pericarp,
the surface area of cell walls and the surface-area-to-volume
ratio. These parameters were measured in the 3D images.
Average values for each tomato were estimated by taking the
sampling probability of each voxel into account. Profiles of
variations depending on the distance to the epidermis were
built by estimating parameters for different distance classes
within the pericarp.

MATERIALS AND METHODS

Cell-wall surface densities in the whole fruit were estimated
using the following methods: (1) sampling design taking the
whole fruit into account, (2) acquisition of 3D images using
confocal microscopy, (3) segmentation of 3D images, (4)
global estimation of the cell-wall density in the whole fruit
and (5) estimation of cellular structure heterogeneity by estab-
lishing density profiles of cell-wall density.

Sampling of tomatoes

Wild-type and DR12 antisense lines from the ‘Kemer’ cul-
tivar (Jones et al., 2002) were studied. Seeds were provided by
INRA Bordeaux and tomato plants were grown in greenhouses
at INRA Avignon and stored at 20 8C in a dark room. Fruits of
approximately the same size (visual inspection) were sampled
at the red-ripe stage. Twelve fruits from each genotype were
analysed. As some images were discarded due to their poor
quality, only nine fruits of the wild-type and ten fruits of
AS-DR12 remained for further analyses.

The meridian length of each tomato was measured using a
measuring tape, starting from the pedicel scar and finishing
at the tomato apex. Four sampling regions were considered
in relation to the pedicel scar: near the pedicel scar, each
side of the tomato equator, and the apical region of the
tomato (Fig. 1). The limit of each region was established by
dividing 90 % of the meridian length into four equal lengths,
leaving a 5 % margin around the pedicel scar and around the
apex to facilitate sampling.

The sampling points were referenced in relation to their
geodesic distances to the pedicel scar (i.e. the shortest distance
between the pedicel scar and the point on the surface of the
pericarp). The origin of the first point was chosen uniformly
within the limits of the first region. The positions of the
three other points were obtained by adding one, two or three
times the geodesic length of a sampling region. The longitude
of each point was uniformly chosen between 08 and 3608,
without trying to avoid the radial pericarp.

For each sampling region, a pericarp cylinder was extracted
perpendicular to the surface, using a core-borer (diameter:
15 mm). When radial pericarp was encountered, it was
removed. Slices were taken in the middle of the cylinders,
with a random orientation around the cylinder axis (Legland
et al., 2008). Slices (300 mm thick) were cut using a vibrating
blade microtome (HM 650 V; Thermo Fisher Scientific,
Walldorf, Germany).

Image acquisition

Pericarp slices were stained using acridin orange. Images
were acquired with a Zeiss LSM410 confocal laser scanning
microscope, using a �10 air-immersion lens with a numerical
aperture of 0.5. Under these conditions, the optical section
thickness was approximately 7.5 mm and the z-scanning step
was set accordingly at 7.5 mm. The excitation wavelength
was 488 nm and the light emitted over 515 nm was collected
using a long-pass filter. Each image was digitized as a
512 � 512-pixel matrix with grey levels coded between
0 (black) and 255 (white).

3D image stacks were reconstructed from optical slices,
resulting in a 512 � 512 � Nz voxel matrix, where Nz is the
number of optical slices. The resolution of images was
2.5 mm in the x and y direction, resulting in a 1.275-mm
field of view. In order to have uniform resolution for each
dimension, the z-resolution of the image was transformed
from 7.5 to 2.5 mm by tripling each planar image.

Because the whole pericarp thickness could not be observed
in a single 3D image, several adjacent 3D images were
acquired to form 3D mosaic images (Fig. 2). Due to variations
in the width of the pericarp slice, the z-origin of each stack also
varied. The 3D translation vector between two consecutive
stacks was estimated by minimizing the squared difference
between the overlapping regions. To reduce the computation
time, a pyramidal approach was used. Coarse estimation of
translation was first performed on a filtered version of the
image and the estimation was then refined using less filtered
images (Fromont et al., 2005).

Image processing

The aim of image processing was to automatically measure
the surface area of the cell walls, the volume of pericarp and

Vascular bundle

External
epidermis

Pericarp

Pedicel scar1

2

3

4

FI G. 1 Schematic description of a tomato fruit showing the four regions used
for sampling the pericarp. FI G. 2 Reconstruction of a 3D mosaic image from several adjacent 3D stacks.
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the pericarp thickness from 3D images. Several steps were
required: image enhancement to reduce acquisition noise,
image segmentation to obtain a binary image, and the
measurement of geometrical parameters from a set of voxels.
As the automatic segmentation of cells can generate errors, a
semi-automated segmentation procedure was carried out on a
reduced set of images and the measurements of the cell-wall
surface area obtained by the two methods were compared.

Image enhancement

Confocal microscopy induces intensity decay with depth.
Several methods have been proposed to correct decay, by mod-
elling the loss of intensity as a function of depth. In the present
work, an exponential modelling decay was applied that uses
robust estimation, which ignores pixels far from the decay
model (Kervrann et al., 2004).

Images are filtered in order to enhance the cell walls and to
remove intensity fluctuations caused by acquisition. A typical
image filter consists of computing the average or the median
value of the voxels located in a surrounding cubic neighbour-
hood for each voxel. This eliminates noise and does not
modify large structures. Because cell walls appear as thin sur-
faces, this type of filtering makes them disappear (Legland and
Devaux, 2009). Directional median filtering was used instead.
Several median filters were applied using line segments with
different orientations as structuring elements. For each direc-
tion, only the portions of cell walls parallel to the current
direction were enhanced. The maximum intensity over all
directions was maintained for each pixel, reconstructing an
enhanced image of cell walls with less noise within the cells
(Fig. 3B). Images were processed using 16 line segments
with a length of 25 pixels, according to the visible mean cell-
wall thickness.

Automatic segmentation

The objective of segmentation is to transform a greyscale
image into either a binary or a labelled image. The watershed
is a powerful algorithm that considers images as a landscape,
with altitude given by grey values (Soille, 2003). The result of
the algorithm is a set of catchment basins corresponding to

dark regions, separated by a watershed following the light
voxels. In the present case, catchment basins correspond to
the interior of cells or intercellular spaces, whereas the water-
shed represents cell walls.

When watershed transformation is applied directly to a grey-
scale image, many catchment basins are detected, resulting in
over-segmentation. This is caused by the fact that each local
minimum in the image produces a catchment basin.
Common solutions are to filter the image before processing
and/or to use a binary image of markers that imposes the
minima of the watershed. Extended-minima transform is one
of the various solutions that can be applied in order to
control this over-segmentation (Soille, 2003; Legland and
Devaux, 2009).

Extended minima were detected using a threshold equal to
10. Additional directional morphological filters were applied
on each slice to remove markers located inside cells and to
divide markers corresponding to a unique cell (Fig. 3C). The
3D watershed algorithm was applied using the six-adjacency
(i.e. using the nearest neighbour in each one of the x, y, and
z directions) for regions. After elimination of voxels located
outside of the pericarp, the segmented regions corresponded
to pericarp cells and to pericarp intercellular spaces (Fig. 3D).

It was not possible to discriminate cells and intercellular
spaces automatically. Moreover, some cells were either over-
or under-segmented. The impact of segmentation errors is
evaluated in a validation procedure.

Measurements of morphological features

Local measurements of pericarp volume and of cell-wall
surface area were needed both to build the estimation pro-
cedure and to assess morphological profiles according to the
location in the pericarp.

Pericarp volume in 3D images was measured as the sum of
voxels belonging to the pericarp multiplied by the voxel resol-
ution. Voxels belonging to the pericarp were identified from
the segmented images as the union of watershed regions
with their boundaries. The pericarp image was obtained by
using a morphological closing with a 3 � 3 � 3 cube as the
structuring element.

The thickness of the pericarp in the radial direction was
measured in each reconstructed 3D image by considering the
centre line with middle y position and middle z position, and
by counting the number of voxels belonging to the pericarp,
multiplied by the image resolution.

The measurement of cell-wall surface area is not straightfor-
ward due to the discrete nature of digital images (Serra, 1982;
Ohser et al., 1998; Lang et al., 2001). Legland et al. (2007)
have shown that local area could be obtained from local
voxel configuration counts. In addition, the method allows
for the local measurement of parameters. Surface area was
measured globally for both cells and intercellular spaces.
The induced measurement bias is evaluated in the validation
procedure.

The results of cell-wall surface area and pericarp volume
measurements for each image are 3D maps containing the con-
tribution of each voxel. The measurement of pericarp volume
or cell-wall surface area for one image is obtained by summing
all the values of the map.

A

B

C

D

FI G. 3 The different steps of image processing for 3D mosaic images: (A)
original greyscale mosaic; (B) result of enhancement by directional median fil-
tering; (C) detection of extended minima; and (D) result of labelling from the

3D watershed, showing cells and intercellular spaces.
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Image processing validation

Semi-automatic segmentation was performed following a
two-step procedure, first by a manual control of the markers
imposed in the watershed procedure and second by selecting
which segmented regions were actually cells. A set of 25 3D
sub-images were randomly selected in the 3D mosaic
images. Each sub-image was a 100 � 100-pixel region,
keeping all slices of the original image.

Multiple minima corresponding to single regions were
removed and minima were added when detected regions corre-
sponded to several regions. The decision for regions touching
the border of the image was taken by considering voxels
outside the sub-image. By carefully adding and removing
minima and applying the watershed as explained before, a seg-
mentation considered as valid was obtained for each
sub-image.

The surface area of cell walls was measured. The segmenta-
tion step resulted in regions corresponding both to cells and to
intercellular spaces that were not distinguished. By measuring
the cell-wall surface for segmented regions, intercellular
spaces were treated as cells, inducing an over-estimation of
cell-wall surface area. A manual classification was made for
each region of the sub-images. By retaining only the regions
corresponding to pericarp cells and measuring their surface,
a reference value for the cell-wall surface area was obtained
for each sub-image, which was then compared with the
surface measurement for sub-images without correction.

Estimation of morphological features

Sampling pericarp by 3D rectangular probes induces a
sampling bias: pericarp regions near the centre are over-
represented in 3D images. However, the sampling bias can
be corrected when sampling probability is available. In a pre-
vious study, Legland et al. (2008) calculated the sampling
probability for every location in the tomato pericarp. The
sampling probability depends on the main curvatures of the
tomato surface, the density of sampling points on
the surface, the distance of the voxel to the epidermis and
the size of the 3D image.

The distance to the pericarp surface was measured in
images. The main curvatures and the sampling point density
were computed by modelling the tomato surface with a revolu-
tion surface. The generating curve of the revolution surface
was computed by fitting a polynomial curve to the contour
of several tomato quarters, as described in Legland et al.
(2008). The generating curve was also used to calculate a pos-
teriori the length of the meridian. Values were compared with
those measured manually on the fruit.

Pericarp volume and cell-wall surface area in the whole fruit
were estimated by summing the local values measured in the
3D images, weighted by their sampling probabilities. Each
image was taken in one of the four sampling regions of the
whole fruit (Fig. 1). The estimation from each image therefore
corresponded to the estimation of the parameter for the
corresponding sampling region. Estimates per tomato fruit
were obtained by summing the estimates made for its four
sampling regions. Estimates of cell-wall surface density for

each sampling region and tomato were obtained by dividing
cell-wall surface area estimates by pericarp volume estimates.

In order to assess the variations of morphology within the
pericarp, profiles of cell-wall surface area and pericarp
volume were constructed. The contribution of voxels located
at the same distance to the external epidermis was summed
to obtain estimates for a given distance from the external epi-
dermis. Results are profiles of estimated parameters with a
number of points proportional to the thickness of the pericarp.
In order to reduce the size of the profiles and to make their
comparison possible, synthetic profiles with identical
numbers of points were created. Normalized profiles were
built by dividing each profile into 40 classes equally spaced
along the radial direction, each class representing 2.5 % of
the total pericarp thickness. Truncated profiles were built by
dividing the first 2.5 mm of the pericarp into ten classes,
each class representing 250 mm. Profiles of cell-wall surface
density were computed by dividing the profile of the surface
area for each tomato by the corresponding profile of pericarp
volume.

Statistical analysis

Data tables were built from morphological profiles using
estimates for either tomatoes or sampling regions as obser-
vations, and classes of distance to the epidermis as variables.
Principal component analyses (PCAs) were performed on the
data tables to reveal similarities between observations.
Applied to ordered signals such as morphological profiles, pat-
terns are drawn from principal component loadings. The pat-
terns highlight changes in the original profiles. PCAs were
performed within the Matlab environment (The Mathworks,
Natick, MA, USA).

Analyses of variance were applied to pericarp thickness to
investigate the effect of genotype, of the sampling region
and of their interaction, by using the tomato as a random
effect. For estimates of whole tomato morphology, only the
effect of the genotype was tested. Analyses of estimated pro-
files were performed on the first five principal components
of morphological profiles, testing only the effect of the geno-
type. The linear models were fitted using the R software
version 2.6.2 (R Foundation for Statistical Computing, 2009).

RESULTS

Image acquisition

A 3D image of reconstructed acquisition is represented using
volume rendering in Fig. 3A. Because the longest cells were
larger than 500 mm, the visualization of entire cells was not
possible. The number of optical slices in each stack was vari-
able and the dimensions of the stack were therefore not con-
stant, the number of optical slices ranging from three
(22.5 mm) to 11 (82.5 mm). For some tomatoes, it was imposs-
ible to acquire 3D images of pericarp (cells were dislocating)
or to scan the pericarp outlines (too many holes in the tomato).
Images that could not be processed were removed, keeping
images from nine fruits of the wild-type and ten fruits of
AS-DR12 for further analyses.
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A selection of mosaic images is shown in Fig. 4. Cells
exhibited different morphologies depending on their position
in the pericarp. Cells located close to the external epidermis
are small and orientated in a direction parallel to the epidermis,
whereas cells in the median part of the pericarp are large and
orientated in a radial direction. In some images, vascular
bundles are visible (WT5-2, for example), inducing the pres-
ence of a large number of small cells in the middle of the peri-
carp. Cells near the internal epidermis were often elongated
and orientated perpendicular to the epidermis.

Pericarp thickness was variable, and ranged from 6.5 to
13.5 mm. The internal epidermis was not always observed as
it was necessary to cut the samples when radial pericarp was
encountered.

Validation of image segmentation

The segmented images corresponding to Fig. 4 are shown in
Fig. 5. Cells appeared to be correctly segmented, except in
regions containing many small cells. In addition, a large
number of intercellular spaces were segmented and appear as
cells.

The comparison of 3D cell-wall surface area measurements
in binary sub-images and in manually segmented images gen-
erally showed a reduction of the measured cell-wall surface
area after manual segmentation (Fig. 6). The reduction corre-
sponded on average to 20 % of the cell-wall surface area
obtained from automatically segmented images. The differ-
ences did not appear to depend on the genotype; it was
assumed that they would not interfere with genotype
comparison.

Fruit size and pericarp thickness

Figure 7 shows examples of quarters from each genotype,
illustrating the variability in shape and size of the tomatoes.
Tomato meridian lengths measured with a measuring tape
were 10.46 cm (s.e. 0.23 cm) for AS-DR12 and 10.18 cm
(s.e. 0.26 cm) for the wild-type. They were not found to be sig-
nificantly different (P ¼ 0.42). When modelling the shape of
the tomatoes, meridian lengths were found to be 10.06 cm
(s.e. 0.23 cm) for AS-DR12 and 9.41 cm (s.e. 0.13 cm) for
the wild-type. The mean values were significantly different
(P ¼ 0.031).

The measures of tomato meridians of the two genotypes did
not present significant differences but meridian lengths
obtained by modelling showed a difference. This surprising
result can be interpreted by considering that modelling used
between two and four quarters, whereas the measurement
was made only once per tomato. The repetition may have
reduced the variability and therefore improved the discrimina-
tory power of the test.

The mean pericarp thickness measured in microscopic
images was 8.11 mm (s.e. 0.26 mm) for the wild-type and
9.56 mm (s.e. 0.26 mm) for AS-DR12. This difference was
found to be significant (P ¼ 0.0002).

Variations in pericarp thickness depending on the sampling
region were investigated (Fig. 8). For the two genotypes, peri-
carp was found to be thicker for the sampling region close to

AS1-1

AS1-2

AS1-3

AS1-4

WT5-1

WT5-2

WT5-3

WT5-4 1 mm

FI G. 4 Example of mosaic images for each sampling region (numbered from
1 to 4) of the wild-type tomato number 5 (WT5) and AS-DR12 tomato number
1 (AS1). External epidermises are on the left. Only the middle slice of the 3D

images is shown.
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AS1-3

AS1-4

WT5-1

WT5-2

WT5-3

WT5-4 1 mm

FI G. 5 Result of the segmentation procedure on the 3D stack images. Same
images as in Fig. 4. Only the middle slice of each stack is shown.
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the pedicel scar. The other sampling regions were not signifi-
cantly different, although the pericarps of AS-DR12 were
thicker than those of the wild-type in all regions.

Estimation for the whole fruit

The mean values and the results of variance analyses for the
estimations of total pericarp volume and cell-wall surface area
are shown on Table 1. Pericarp volume and cell-wall surface
area correspond to the true absolute value estimated for one
fruit.

The estimated pericarp volume was greater for the AS-DR12
genotype (P ¼ 0.0032), which is in accordance with the results

for pericarp thickness. The estimated pericarp volume can be
compared with that of a hollow sphere with the same outer
diameter. Tomato meridian lengths were 10.06 cm for
AS-DR12 and 9.41 cm for the wild-type, which corresponds
to outer sphere radii of 3.2 and 3.0 cm, respectively. From
the estimations of pericarp volume, pericarp thicknesses for
spherical tomatoes would be 10.1 mm for AS-DR12 and
8.1 mm for the wild-type, which is consistent with measured
thicknesses.

The surface area estimates of cell walls were found to be
2.64 m2 (s.e. 0.15 m2) for the wild type and 3.51 m2 (s.e.
0.15 m2) for AS-DR12. These values are high because they
refer to the cell-wall surface area of all cells in the pericarp.
If the tomato pericarp is assumed to contain 10 millions
cells of equal diameter (Bertin et al., 2002), the surface area
of an individual cell is about 0.35 mm2 for AS-DR12 and
0.27 mm2 for the wild-type. In the case of a spherical cell,
this corresponds to diameters of 334 and 290 mm, respectively,
which is consistent with the apparent cell size.

The estimated cell-wall surface area of the two genotypes
was significantly different (P ¼ 0.0074). This difference may
relate to the differences either in pericarp volume or in cell
morphology. Cell-wall surface area density assessed as the
ratio of cell-wall surface area estimates over pericarp volume
estimates were not significantly differences (P ¼ 0.7342).
There was no difference in the global cellular morphology of
the two genotypes.

This similarity in global cell-wall density is helpful to inves-
tigate differences in pericarp volume. The increase in volume
may be due to an increase in the number of cells or to a greater
mean cell size. As the ratio of estimated cell-wall surface area
by estimated pericarp volume did not show significant differ-
ences, the cells were assumed to have the same mean size
and the increase in the pericarp volume of AS-DR12 was inter-
preted as being caused by an increase in the number of cells.

Profiles of cell-wall density in pericarp

Figure 9 shows profiles of estimated pericarp volume for the
tomato WT5. The estimated pericarp volume decreased with
the distance to the epidermis. This effect is consistent if one
considers the tomato as a ball: the volume of pericarp
located at a given distance from the epidermis decreases as
the distance to the epidermis grows. The theoretical profile is
a quadratic function but appears to be linear due to the
limited range of observation (10 mm) compared with the
typical radius of a tomato (50 mm).
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TABLE 1. Estimates of pericarp volume, cell-wall surface area
and cell-wall surface density

Sample
Volume
(cm3)

Surface area
(m2)

Surface area density
(mm2 mm23)

Wild-type 69.18 2.64 38.44
s.e. 4.01 0.15 1.34
AS-DR12 93.25 3.51 37.80
s.e. 3.81 0.15 1.27
P 0.003 0.007 0.734
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The profile of pericarp volume for the whole tomato was
obtained by summing the profiles for each sampling region.
The estimated pericarp volume was greater for equatorial
regions (WT5-2 and WT5-3). Again, this difference could be
explained by the shape of the tomato: just as Earth parallels
are longer closer to the equator than to the pole, there is
more pericarp close to the equator than to the revolution axis
of the fruit.

The profile of the cell-wall surface area for the whole tomato
was obtained by summing profiles of the surface for each
sampling region (Fig. 9B). Variations in the profile can be
explained by comparing them with the corresponding 3D
images. High values of cell-wall surface area correspond to
regions where cells were small, for example close to the epi-
dermises, or when a vascular bundle was encountered (for
example, in images WT5-2).

Because the pericarp volume decreases with the distance to
the external epidermis, there is also a decrease in the cell-wall
surface area profile. To interpret the global variations, profiles
of cell-wall surface area were normalized by the profile of

pericarp volume. Figure 10 shows the estimated cell-wall
surface density profile for the WT5 tomato. Differences
between small cells located close to the epidermis and the
rest of the pericarp can be seen. A higher cell-wall density is
visible in the middle of the pericarp, which corresponds to
the vascular bundle for image WT5-2.

Figure 11 shows mean profiles of estimated cell-wall surface
density for each genotype, obtained after averaging over toma-
toes and computing a 95 % confidence interval for the mean
for each class of distance to the external epidermis. The varia-
bility between tomatoes was integrated, revealing different
cell-wall surface densities depending on region. The estimated
surface area density is maximal close to the external epider-
mis. It is higher close to the internal epidermis than in the
middle of the pericarp. The small cells located close to the epi-
dermis are highlighted from the profiles. A small increase in0
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surface area density is observed in the middle of the profiles,
caused by the presence of vascular bundles in some images.

Mean profiles for each genotype do not show large differ-
ences. The largest differences are located in the beginning
and in the middle of the pericarp. Differences in genotypes
that take the whole profiles into account were analysed using
PCA. The first two components described 45 and 17 % of
inertia, respectively. In Fig. 12A, tomato scores are plotted
for the first two principal components. Figure 12B shows the
corresponding loadings that allow us to interpret differences
between tomatoes. The first component described a general
intensity effect: tomatoes located on the left had a lower cell-
wall surface density than tomatoes on the right. Analyses of
variance did not show any genotype effect.

The second component revealed differences in two regions of
the pericarp, corresponding to distances between 5 and 20 %
and between 35 and 65 % of the pericarp, respectively.
Analysis of variance revealed an effect of genotype (P ¼
0.0066) for this component: AS-DR12 had a greater cell-wall
surface density under the epidermis and a lower cell-wall
surface density in the middle of the pericarp than the wild-
type. The increase in cell-wall surface density was interpreted
as being due to the presence of a greater quantity of small cells
under the epidermis.

Normalized profiles of cell-wall surface density are well
adapted for comparisons of the whole pericarp, but the actual
distance to the epidermis and the pericarp thickness was lost
during this processing. As the region located beneath the epider-
mis showed differences, truncated profiles of cell-wall surface
density were used to study the first 2.5 mm of the pericarp
more precisely. Mean truncated profiles are shown in Fig. 13.
Analysis of variance for each depth class revealed differences
between the genotypes for the depth classes between 0.75 and
1.75 mm under the epidermis: AS-DR12 showed an increase
in cell-wall surface density under the epidermis.

Both the normalized profiles and the first 2.5 mm of the
truncated profiles showed an increase in cell-wall surface

density under the external epidermis for AS-DR12.
The increase was observed between 0.5 and 2 mm under the
epidermis. As this region is known to be the location of
cell division (Jones et al., 2002), the difference in the
cell-wall surface density may be related to an increase
in cell division.

An increase in cell-wall surface density in the middle of the
pericarp was observed for the wild-type but the reason for this
is not clear. Because the number of images containing vascular
bundles was the same for AS-DR12 and the wild-type, this
cannot explain the differences. One hypothesis is that cells
in the middle of the pericarp that do not belong to vascular
bundles are larger in AS-DR12. Another possibility is that vas-
cular bundles are larger in the wild-type, resulting in a greater
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number of small cells. Regardless, confirmation would require
additional data.

DISCUSSION

The present study proposes a quantification method of the 3D
cellular morphology of fresh tissue from 3D images. The key
points of this method are: (1) the automated image processing
procedure, which measures the actual 3D morphology of the
cellular structure; (2) integration of the biological variability
to quantify the morphology at the fruit scale; and (3) the local-
ization of morphological measurements that could reveal mor-
phological differences in a specific region.

Measurement of 3D morphology

As the aim of the study was to describe 3D morphology, a
3D acquisition device was chosen. An alternative was to use
more classical stereological methods, which allow estimation
of surface area or volume from measurements on planar
slices with random orientation and position. 3D measurements
coupled with the appropriate estimation procedure made it
possible: (1) to use a sampling design adapted to the shape
of the fruit that is more practical, and (2) to determine
depths within images and to estimate profiles of surface
density with respect to the distance to the epidermis.

An advantage of 3D confocal microscopy is the limited
preparation of the sample, making it possible to access the
real 3D structure without deformation due to fixation or freez-
ing. Acquisition of 3D images is a time-consuming task com-
pared with 2D acquisition. The complete acquisition of
approximately 100 3D images (four images on 24 tomatoes)
required 2 weeks of work.

The image segmentation procedure can be easily adapted to
other images of 2D or 3D cellular structures. It was applied
with few modifications to 2D mosaic images of apple parench-
yma. The complete procedure depends on a reduced set of par-
ameters, which can be set up depending on the visible
cell-wall width and on image quality.

Image segmentation was a critical step in the quantification
procedure because all measurements are based on binary
images. Validation of the segmentation procedure was a diffi-
cult and time-consuming task. The comparison of automated
and semi-automated segmentation gave an estimate of the
error in measurements due to the segmentation. The over-
measurement of the cell-wall surface area was quite large
but the segmentation procedure was difficult to improve any
further.

Two morphological parameters were measured and esti-
mated for the whole fruit: the pericarp volume and the cell-
wall surface area. Extension to additional parameters is not
straightforward as the estimation procedure with a non-uniform
sampling probability requires the parameters to have property
of convergence in measure after digitization. Parameters
such as orientation could possibly be estimated.

The quantification of local 3D heterogeneity would help to
describe the global cellular structure of fleshy fruit.
Higher-order statistics such as standard deviation could be
used but their practical estimation from microscopic images
requires further development.

Estimation for the whole fruit

The use of an appropriate sampling procedure, coupled with
an adequate estimation method, led to the estimation of geo-
metrical characteristics of the whole pericarp. The differences
in sampling probabilities induced by the sampling procedure
were taken into account to obtain unbiased estimates of the
morphology for each tomato.

The estimation of the 3D morphology of the whole structure
is a real advantage compared with the measurement of par-
ameters on planar sections. It allows the comparison of the
results obtained with physical measurements, such as cell
counting. Moreover, it is crucial to have access to the actual
3D morphological description in order to model cellular
structure.

The estimation procedure required computation of the
sampling probability for each voxel in the images. This com-
putation was possible for tomato by modelling it with a revo-
lution surface. Practical procedures for other types of surfaces
are lacking. Moreover, computation is limited to points located
within a small distance (less than the radius of curvature) from
the reference surface, making the method most effective for
studying the outer layers of smooth organs.

Wide variability in the measurement of the cell-wall surface
area was encountered due to the large size of the cells com-
pared with that of the field of view. In order to deal with
this variability, several acquisitions were required, making it
possible to estimate global morphology together with confi-
dence intervals.

The comparison of estimates obtained with other methods
would be of interest. The development of 3D imaging
systems allows measurements of 3D morphology (Mebatsion
et al., 2009) whose resolution has increased over the years.
However, the estimation at the fruit scale is rarely undertaken
and, to our knowledge, except for the number of cells in the
tomato fruit (Bertin et al., 2002), no reference value for 3D
morphological parameters in fruit exist at this time.

Localization of measurements

The use of 3D measurements made it possible to estimate
profiles of variation at the fruit scale. Such profiles are valu-
able tools for describing morphology variations. Hahn et al.
(1999) also estimated surface density profiles of gradient struc-
tures on planar sections. Their method, however, assumed a
horizontal reference surface, and produces biased estimates
on curved fruit surfaces. Unbiased profiles obtained from 3D
microscopy and biased profiles obtained from Hahn’s
method were compared in Legland (2005). The global shape
of the profiles is similar, but genotypes could be better discri-
minated when using 3D profiles.

The AS-DR12 genotype was chosen for this study because it
exhibited a difference in firmness of the mature fruit compared
with the wild-type (Jones et al., 2002). Guillon et al. (2008)
investigated the 2D cellular structure on the basis of cell mor-
phological features. The present study investigated the cellular
structure of the two genotypes in more depth by estimating the
3D pericarp cellular morphology. The localization of mor-
phology measurements made it possible to identify regions
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in the pericarp where the cellular density varies, as well as
quantifying differences between the genotypes.

The extraction of profiles from 3D images relies on adequate
averaging of localized measurements in 3D images. In this
study, profiles were normalized with respect to the internal
and the external epidermis of the pericarp. An alternative
was to consider the absolute distance to one of these. The
localization with respect to another reference structure such
as the nearest vascular bundle could also be of interest as it
clearly induces variation in cell shape, size and organization.
The only problem is to be able to locate each pixel with
respect to this reference structure.

Four sampling regions were used for each tomato. Because
the sampling regions presented both different thicknesses and
different cellular morphologies, it would be of interest to
produce profiles of variation with the distance to the pedicel
scar by using an increased number of sampling regions. If
the number of sampling regions is sufficient, it would be poss-
ible to develop morphological cartography of the cellular
structure that estimates a given morphological parameter as a
function both of the distance to the pedicel and of the distance
to the pedicel scar.

Additional perspectives

The estimated morphological parameters could be used to
generate geometrical models of cellular structure. Coupling
such models with mechanical simulations would improve our
understanding of the mechanical behaviour of tissues or the
fruit as a whole.

The parameters could also be used to study the variations of
3D morphology for different fruit development stages. This
approach would help us to better understand fruit
development.
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