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Abstract
We examined the relationship between neuropsychological performance and magnetic resonance
imaging (MRI) of the orbital frontal cortex (OFC) and diffusion tensor imaging (DTI) of the cingulum
bundle (CB) within groups of patients with schizophrenia and healthy participants. We analyzed data
from subjects, who had participated in prior MRI, DTI, and neuropsychological studies (Nakamura
et al., 2008; Nestor et al., 2008). In comparison to healthy participants, patients showed the expected
reductions across CB fractional anisotropy (white matter) and OFC gray matter volume as well as
lower neuropsychological scores. In addition, in comparison to healthy participants, patients showed
a very different pattern of functional-anatomical correlates. For patients, CB white matter but not
OFC gray matter correlated with various aspects of intelligence, including general abilities and
working memory. For controls, OFC gray matter but not CB white matter correlated with scores on
tests of intelligence and decision making. These results point to the potentially important role of CB
white matter in the neuropsychological disturbance in schizophrenia.
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Introduction
Schizophrenia is a heterogeneous disorder that is marked by considerable variation in both its
expression and pathophysiology. Central to the illness are widespread cognitive difficulties
with reasoning, perceiving, remembering, and concentration, all of which are often evident by
a general diminution of scores across neuropsychological tests of intelligence, memory,
executive function, and attention. These neuropsychological impairments have long been
presumed to reflect underlying neuropathology. But only relatively recently with the advent
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of high resolution brain imaging studies has the nature of the relationship between disease-
related changes in both brain anatomy and cognitive function begun to unfold. These combined
brain imaging and neuropsychological studies have helped to establish cognitive deficits as the
“primary expression of the schizophrenic brain” (p. 299), a conclusion Heinrichs (2005) offered
on the basis of his meta-analysis of the extant literature.

Schizophrenia lacks an established pathognomonic signature. Diverse brain areas are affected,
just as various domains of cognitive function are compromised. Moreover, neuropsychological
correlates of disease-related brain changes do not always comport with those that would be
predicted on the basis of either lesion (e.g., Swayze, & Andreasen, 1997; Szeszko et al.,
2002; Torres et al., 1997) or functional imaging (Weis & Heckers, 2002) studies. Indeed,
neuropsychological deficits in schizophrenia fit neither a localized nor a lateralized pattern of
cortical damage, but rather have been seen increasingly as reflecting underlying abnormalities
in widely distributed networks of brain regions (Andreasen et al., 1999; McGlashan &
Hoffman, 2000; Nestor et al., 1998; Nestor et al., 2004; Stephan, et al., 2006; Weinberger et
al., 1992; Winterer et al., 2003). From this perspective, schizophrenia compromises the neural
circuitry of anatomically and functionally distinct networks of brain regions, disrupting both
processing and transmission of informational signals across the wide expanse of the cortex.

Consider the findings of two recent brain structural imaging studies, both of which have been
cited as evidence of disease-related disturbance of neural networks (Csernansky & Cronenwett,
2008). In a meta-analysis of MRI schizophrenia studies, Ellison-Wright et. al. (2008) identified
gray matter volume loss across specific cortical-subcortical networks, originating with limbic
input to the striatum, traversing through the thalamus, and continuing to sites in the prefrontal
and cingulate cortex. In a related study using diffusion tensor imaging (DTI), Friedman et al.
(2008) traced widespread white matter changes in chronic schizophrenia spanning the left
inferior longitudinal fasiculus as well as the genu and splenium of the corpus callosum.
Unknown, however, is how these disease-related gray matter and white matter changes might
contribute to neuropsychological disturbance. To date, no neuropsychological study has yet to
compare the functional associates of these disease related changes in white and gray matter
within the same group of patients. Indeed, what is needed is to examine both MRI and DTI
brain changes within-groups of patients and healthy participants, such that associations can be
directly tested between imaged brain regions and neuropsychological functioning.

In two separate studies, we recently examined neuropsychological-DTI associations with the
cingulum bundle (CB) white matter (Nestor et al., 2008) and neuropsychological-MRI
associations of orbital frontal cortex (OFC) gray matter (Nakamura et al., 2008) in patients
with schizophrenia. Our findings suggested that structural abnormalities in each of these brain
regions may make differential contributions to distinct core features of the clinical
schizophrenia phenotype. That is, for patients with schizophrenia, reduced DTI CB white
matter uniquely and specifically accounted for a significant source of variance for measures
of intelligence and executive functioning, but not for tests of general memory for such items
as stories and word pairs (Nestor et al., 2004, 2008). Conversely, reduced MRI OFC gray matter
volume, particularly of the middle orbital gyrus, correlated with symptoms of formal thought
disorder and illness duration but not with neuropsychological measures of intelligence,
executive functioning, and decision making (Nakamura et al., 2008). In addition, in contrast
to the patient group, for healthy participants, OFC gray matter volume predicted performance
for tests of intelligence and decision making (Nakamura et al., 2008). When taken together,
these findings may be viewed as pointing to a hypothesis linking disease-related abnormalities
in CB white matter but not in OFC gray matter with reduced levels of intelligence and executive
functioning.
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In the current study, we continue to focus on these two brain regions, but we now examine the
contribution of each to neuropsychological functioning within the same group of patients with
schizophrenia. Our rationale is that both the OFC and CB represent two key sites that belong
to widely distributed, functionally diverse neural networks that are thought to be compromised
by schizophrenia (e.g., Andreasen et al., 1999; Csernansky & Cronenwett, 2008; McGlashan
& Hoffman, 2000; Nakamura et al., 2008; Nestor et al, 2004; Nestor et al., 2008). We focus
on the structural integrity of these two sites, comparing OFC MRI gray matter volume and DTI
CB white matter within- and between-groups. While each of these brain imaging modalities
offer different information, combining them in the same study provides a framework to
examine the extent to which these regions might enter into specific relationships with different
aspects of neuropsychological functioning in schizophrenia and in healthy participants.

Two aspects of neuropsychological functioning are addressed: intelligence and decision
making. First with respect to intelligence, Jung and Haier (2007) recently proposed that frontal
areas interact with parietal and temporal sites to form rich and complex cognitive systems that
support psychometric intelligence as measured by the Wechsler Adult Intelligence Scale-Third
Edition (WAIS-III, Wechsler 1997). Consistent with Jung and Haier (2007) theorizing, several
empirical studies have pointed to an important role of frontal lobe structures in intelligence
(e.g, Duncan, Emslie, Williams, Johnson, & Freer, 1996; Duncan et al., 2000; Gray, Chabris,
& Braver, 2003, Obonsawin, et al., 2002). For patients with schizophrenia, reduced levels of
intelligence represent a core aspect of the clinical phenotype (e.g., Koenen et al., 2009). For
example, in a recent meta-analysis, Woodberry, Giuliano, and Seidman (2008) demonstrated
a reliable, medium-sized impairment in premorbid IQ in schizophrenia samples. Similarly,
lower childhood IQ has been associated with both increased risk for developing schizophrenia
spectrum disorder (Koenen et al., 2009) as well as genetic susceptibility for the disease
(Zinkstok et al., 2007). And while we have recently demonstrated strong relationship between
reduced DTI CB white matter and lower levels of intelligence in schizophrenia (Nestor et al.
2008), it remains unknown as to whether for these same patients the role, if any, of MRI OFC
gray matter volume in their depressed levels of intelligence.

Second, in addition to their link to intelligence, the CB and OFC along with the temporoparietal
junction, the temporal sulcus and the temporal poles are thought to support the dynamic
interplay of informational, motivational, and neural processes from which decision making
about social matters emerges (Adolphs 2003; Amodio & Frith, 2006). Here representations of
internal bodily states, knowledge of self, perceptions of others, and interpersonal motivations
are carefully orchestrated to allow for healthy and adaptive social decision making (Amodio
& Frith, 2006; Bar-Oh et al., 2004; Bechara et al., 1994). Among these neural sites, OFC
circuitry has been ascribed an important role in sociability with damage linked to deleterious
effects in conduct, comportment, and personality. Recent studies have suggested a relatively
new neuropsychological measure of decision making, known as the Iowa Gambling Test (IGT)
to be a sensitive behavioral probe of OFC pathology, with performance depending heavily on
functions mediated by the OFC and medial prefrontal cortex, independently of dorsolateral
prefrontal cortex-mediated functions (Bechara et al., 1994; Bechara, Tranel, & Damasio,
2000; Bechara et al., 2001). We recently reported that for healthy participants, but not for
patients with schizophrenia, OFC gray matter predicted IGT performance and also intelligence
(Nakamura, 2008).

The current study aims to test further the role of disease-related abnormalities in CB in
neuropsychological disturbance of schizophrenia. To accomplish this aim we compare
neuropsychological associations with CB white matter and OFC gray matter within the same
group of patients. The research design allows for both critical within- and between-subject
analyses aims towards addressing two pivotal questions: First, will those particular
neuropsychological deficits in intellectual abilities that have been strongly linked to disease-
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related abnormalities in CB white matter also be related to OFC gray matter volume loss within
the same group of patients with schizophrenia? Second will the patient and healthy participant
groups show a different pattern of CB and OFC neuropsychological correlates?

To address these questions, we now combine, for this current investigation, samples from
Nestor et al (2008) and Nakamura (2008) including only those patients and healthy participants
who had available both prior DTI-CB and MRI-OFC studies. Two high-resolution structural
brain imaging techniques, DTI of the CB and MRI of OFC are compared within each group of
subjects in relation to two neuropsychological outcomes, WAIS-III and IGT. Thus, the design
of the current study provides a strong and direct test of the hypothesis that reduced CB white
matter but not reduced OFC gray matter contributes specifically to lower WAIS-III but not
IGT scores in patients with schizophrenia. By contrast, for healthy controls, OFC gray matter
but not CB white is expected to predict performance in both intelligence and decision making.

Method
Participants

All subjects were between the ages of 17 and 55 years, right-handed, native speakers of English,
without histories of ECT, neurological illness, and without alcohol or drug abuse in the past 5
years, as assessed by the Addiction Severity Index (McClellan et al., 1992). Subjects were
selected from samples used in two published studies that examined MRI gray matter volume
of the OFC (Nakamura et al, 2008) and DTI fractional anisotropy of the CB (Nestor et al.,
2008). From these two studies, 16 patients and 12 healthy participants had available a complete
set of measures across MRI, DTI and neuropsychological tests of intelligence (WAIS-III) and
decision making (IGT). For the patient group, diagnoses were ascertained by the Structured
Clinical Interview for DSM-IV Axis I Disorders-Patient Edition (SCID-P), along with chart
review. All patients were part of an ongoing comprehensive, longitudinal study of
schizophrenia, and all were receiving neuroleptic medication; the mean chlorpromazine (CPZ)
equivalent daily dose was 436.10 mg (SD=369.56). The mean duration of illness was 15.9
years (SD = 10.33). Healthy participants, who had been recruited from newspaper
advertisement, and had undergone the SCID-NP, were matched to patients on the basis of age,
sex, handedness, and parental SES. Mean age did not differ significantly (t = −0.71, df = 46,
p =. 484) between patient (39.1 years, SD = 9.11) and healthy participant (41.1 years, SD =
8.67) groups. Mean years of education did differ significantly (t = −4.01, <.001) between patient
(12.8 years, SD = 1.76) and healthy participant (15.0 years, SD = 1.98). After the study was
described to them, all subjects provided written informed consent.

Procedure
Neuropsychological Assessment—The neuropsychological assessment included the
complete Wechsler Adult Intelligence Test-Third Edition (WAIS-III; Wechsler, 1997) and the
Iowa Gambling Task (IGT; Bechara et al., 1994). The WAIS-III yielded composite measures
of intelligence (FSIQ, VIQ, PIQ), and index scores of verbal comprehension, perceptual
organization, working memory, and processing speed. The complete WAIS-III was available
for 22 patients and 23 healthy participants taken from Nakamura et al. (2008). The IGT was
administered using a computerized version (Rodriguez-Sanchez et al., 2005). Subject faced a
computer screen where four decks of cards were shown (A, B, C, D). Subjects were asked to
choose cards from the decks. When subjects clicked on a deck, the computer screen notified
the subjects of the amount of money gained or lost – the task goal is to win as much money as
possible. Subjects did not know that they would choose a total of 100 cards. Nor did subjects
know that there are two advantageous decks, C and D, for which little money is won on a single
choice but even less is lost (resulting in a net gain) and two disadvantageous decks, A and B,
for which a lot of money is won but even more is lost (resulting in a net loss). In other words,
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the absolute magnitude of the award is large in the A and B decks, but money loss (punishment)
occurs more frequently. In contrast, in the C and D decks, the absolute magnitude of the award
is small but money gain (reward) occurs more frequently. The key to success in this gambling
task is to eliminate the amount of money lost rather than to obtain a jackpot. The variable that
measures total performance on this task was the difference between choices in advantageous
decks minus choices in disadvantageous decks for the whole task [(C+D)−(A+B)]. The IGT
was available for 23 patients and 24 healthy participants taken from Nakamura et al. (2008).

Diffusion Tensor Imaging—As described elsewhere in detail (Kubicki et al., 2002, Kubicki
et al., 2003), we applied Line-Scan-Diffusion-Imaging (LSDI) to obtain fractional anisotropy
maps in order to measure the integrity of fibers within the CB. MR scans used a quadrature
head coil on a 1.5 Tesla GE Echospeed system (General Electric Medical Systems, Milwaukee,
WI), which permits maximum gradient amplitudes of 40 mT/m. A set of three orthogonal T1-
weighted images were used as localizers (sagittal, axial oblique aligned to the anterior
commissure (AC-PC) line and another sagittal oblique aligned to the inter-hemispheric fissure).
For each session, six images were collected with high (1000 s/mm2) diffusion weighting along
six non-collinear directions. For low (5 s/mm2) diffusion weighting, two images were
collected, an adequate sample in that diffusion related changes were minimal. Scan parameters
were: rectangular FOV (field of view) 220×165mm; 128×128 scan matrix (256×256 image
matrix); slice thickness 4 mm; inter-slice distance 1 mm; receiver bandwidth +/−4kHz; echo
time 64 ms; TR (repetition time) 81 ms; (effective TR 2592 ms); scan time 60 seconds/section.
The number of coronal slices acquired to cover the entire brain ranged from 31 to 35 slices
depending upon brain size. After reconstruction, the diffusion-weighted images were
transferred to a UNIX workstation for calculation of eigenvalue, eigenvector, and fractional
anisotropy maps of diffusion. Details of the CB extraction, including out-of-plane diffusion
maps and segmentation method can be found in our previous investigations (Kubicki et al.,
2002; Kubicki et al., 2003; Nestor et al., 2004), as can the method of definition of the ROI for
the CB. Figure 1 depicts image of right CB generated using fiber tractography and the region
of interest method overlayed on sagittal fractional anisotropy map.

MRI Processing—The MRI processing is described in detailed in Nakamura et al. (2008).
In brief, MR images were acquired with a 1.5-Tesla General Electric scanner (GE Medical
Systems, Milwaukee) at the Brigham and Women’s Hospital in Boston. A three-dimensional
Fourier transformed spoiled gradient-recalled (SPGR) acquisition sequence yielded a coronal
series of contiguous 1.5 mm images (TE=5 msec, TR=35 msec, repetition=1, nutation
angle=45°, field of view = 24 cm, acquisition matrix = 256×256×124, voxel dimension =
0.9375×0.9375×1.5 mm). Next, a double-echo spin-echo yielded 108 contiguous axial double-
echo (proton-density- and T2-weighted) slices, with 54 levels, throughout the brain (TE =30
and 80msec, TR =3000msec, field of view = 24 cm, an interleaved acquisition with 3-mm slice
thickness, voxel dimensions = 0.9375×0.9375×3.0 mm). The T2 information from the double-
echo spin-echo axial slices was registered to the SPGR images. An expectation-maximization
(EM) segmentation technique (Bioux et al., 2007; Pohl et al., 2007) was used to segment the
images into three major tissue classes: gray matter; white matter; and CSF, using both SPGR
and T2-weighted MR information as well as spatial priors. This technique was used to get Intra-
Cranial Contents (ICC) volume. Manual tracing of OFC ROI was performed on non-segmented
images to avoid segmentation errors due to susceptibility artifacts which are common in the
OFC region.

Images were realigned using the line between the anterior and posterior commissures and the
sagittal sulcus to correct head tilt, and re-sampled into isotropic voxels (0.9375 mm3). This
realignment procedure was essential for precise and consistent ROI delineation. Three-
dimensional information was used to provide reliable delineation of the OFC ROI with a
software package for medical image analysis [3D slicer, http://www.slicer.org] on a
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workstation. Definition and details of the method of region of interest for the OFC are provided
in Nakamura et al. (2008). Figure 2 depicts image of the OFC divided into three sub-regions
gyrus rectus, middle orbital gyri, and lateral orbital gyrus. These sub-regions are not used in
the analysis for this current study.

Results
Table 1 presents CB fractional anisotropy and OFC gray matter volumes measures (see Table
1.) Analysis of covariance (ANCOVA), controlling for parental SES, with one between-
subjects factor of group (patients/control) and two within-subjects factors of region (CB/OFC)
and side (left/right) revealed a significant group effect, F (1, 26) = 6.66, p = .016, partial eta
squared = .204. None of the interaction terms with group was significant. As Table 1 shows,
in relation to healthy controls, patients had both lower CB fractional anisotropy and OFC
volume. For the patient group, antipsychotic medication dosage did not correlate with any of
the anatomical measures.

Neuropsychological Tests
Table 2 presents neuropsychological summary scores for the WAIS-III, and IGT. We
performed mixed-model analyses of covariance to assess group differences in each test,
covarying for parental SES, with group (patient, control) as a between-subjects factor and index
measures for the WAIS-III and trial block for the IGT as the within-subjects factor. Table 2
shows lower full-scale, verbal, and performance IQ scores for patients (n=22) than for controls
(n=23). ANCOVA revealed a highly significant group effect, F (1, 42) = 8.34, p =. 006, partial
eta squared = .166, as well as a significant Group X WAIS-III IQ interaction, F (1, 42) = 6.83,
p = .012, partial eta squared = .140. As shown in Table 2, whereas the control group earned
similar IQ scores for both verbal and performance scales, the patient group did not, with
performance IQ disproportionately lower than verbal IQ. For the patient group, antipsychotic
medication correlated significantly with full scale (r = −.627, p = .003), verbal (r = −.566, p
= .009), and performance (r = −.621, p = .003) IQ scores.

Likewise, for the WAIS-III index measures, the patient had lower scores, as revealed by the
highly significant group effect, F (1, 42) = 11.34, p = .002, partial eta squared .213. A highly
significant Group X WAIS-III Index interaction also emerged, reflected by disproportionately
lower processing speed index score for the patients F (3, 126) = 6.82, p <.001, partial eta squared
= .140. For the patient group, antipsychotic medication dosage correlated significantly with
verbal comprehension (r = −.644, p = .002) and perceptual organization (r = −.628, p = .003)
but not with working memory or processing speed. For the IGT, covarying for parental SES,
patients had overall lower net scores across the five blocks of 20 trials, F (1, 44) = 5.36, p = .
02, partial eta squared = .109. Antipsychotic medication dosage did not correlate with IGT
performance for the patient group.

Neuropsychological and Brain Structure Correlates
Table 3 presents structural anatomical-neuropsychological correlates for the patient sample.
For the 16 patients who had both IQ and DTI measures, WAIS-III full-scale IQ correlated
significantly with left (r = .581, p = .018) and right (r = .771, p < .001) CB, as did performance
IQ with left (r=.701, p = .002) and right (r = .782, p <. 001) CB. Verbal IQ correlated
significantly with right CB (r = .701, p = .002). When controlling for antipsychotic medication
via partial correlation, right CB remained significantly associated with full-scale IQ (partial r
= .670, p = .006), performance IO (partial r = 687, p = .005) and verbal IQ (partial r = .573, p
= .026), whereas left CB remained significantly associated with performance IQ (partial r = .
675, p = .006) and nearly significantly associated with full-scale IQ (partial r = .496, p = .006),
but not with verbal IQ (p > .20). WAIS-III working memory also correlated significantly with
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left (r = .642, p = .007) and right (r = .740, p = .001) CB. IGT did not correlate with CB. IGT
also did not correlate with OFC volume for the 23 patients who had both these measures. In
addition, for the patient group, OFC volume measures did not correlate with any of the
neuropsychological measures. Figure 3 presents a scatter plot of WAIS-III full-scale IQ and
right CB for the patient group (see Panel A).

The healthy participant group showed a different pattern of correlations from that of the
patients. For the 23 healthy participants who had both MRI and IQ measures, WAIS-III full-
scale IQ correlated significantly with left (r = .435, p = .038) and right (r = .615, p = .002)
OFC. Verbal IQ correlated significantly with left (r = .461, p = .027) and right (r = .585, p = .
003) OFC, as did performance IQ with right OFC (r = .585, p = .003). For the healthy participant
sample, unlike the patient sample, right OFC correlated with overall earnings for the IGT (r
= .456, p = .022). In addition, for the healthy participant sample unlike the patient sample, CB
did not correlate with any of the neuropsychological measures. Figure 3 presents a scatter plot
of WAIS-III full-scale IQ and right OFC for the healthy participants group (see Panel B).

To compare the specific and joint contributions of CB and OFC to general intelligence and
decision making, both brain regions were entered as predictors into a hierarchical regression,
first with WAIS-III full-scale IQ, and then with IGT, as the dependent variable. To be included
in these analyses, subjects had to have available both MRI and DTI measures, which yielded
groups of 16 patients and 12 healthy participants. As predicted, in the patient group, for WAIS-
III full-scale IQ, right CB produced a highly significant R square change of .595 (F = 20.54,
df = 1, 14, p < .001) in contrast to the absence of any contribution attributable to right OFC (p
= .861). The right CB accounted for 59.14% and 58.52% of the variance in full-scale IQ of the
patient group, as reflected by partial and semi-partial correlation values of .769 and .765.
However, for the healthy participant group, right OFC, but not right CB, contributed
significantly to full-scale IQ, as reflected by a significant R square change of .351 (F = 5.41,
df = 1, 10, p=.04), in contrast to the absence of any significant contribution attributable to right
CB (p = .35). Right OFC accounted for 40.07% and 39.06% of the variance in full-scale IQ of
the healthy participant group in comparison to 9.67% and 6.3% of the variance attributable to
right CB.

For the IGT in the patient group, neither right CB (p > .90) nor right OFC (p > .50) accounted
for a significant portion of the variance in IGT scores. For the healthy participant group,
however, right OFC produced an R square change of. 264 (F = 3.58, df =1, 10, p=.09), which,
approached significance, accounting for 32.38% and 30.91% of variance in IGT scores, as
reflected by partial and semi-partial correlation values of .569 and .556. These trend findings
may reflect the restricted statistical power of the current study that was limited to multiple
regression analyses on those 12 control subjects who had both OFC and CB measures. By
comparison, right CB failed to account for a significant portion of variance in IGT scores in
the healthy participant group.

Discussion
The study compared within a group of patients with schizophrenia the contributions of disease-
related structural changes in CB white matter and OFC gray matter to performance on
neuropsychological tests of intelligence and decision making. The WAIS-III served as a
measure of general intelligence and the IGT measured motivated decision making. The
structural imaging data revealed reductions in both CB white matter and OFC gray matter for
the patients in comparison to healthy participants. These findings were consistent with
between-subject analyses that have focused on either one of these brain regions in samples of
patients with schizophrenia and healthy participants (Kubicki et al., 2003; Nakamura et al.,
2008). Likewise, the patient group showed, as expected, lower WAIS-III scores, as well as
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lower overall earnings on the IGT, and these test data conformed well to previous studies that
have emphasized generalized cognitive deficits in schizophrenia.

For the patients, reduced CB white matter integrity correlated significantly with poorer scores
in general intelligence as well as for the WAIS-III derived measure of working memory.
However, neither CB nor OFC measures correlated with IGT performance for the patient group.
By contrast, for the healthy participants, larger right and left OFC volume measures correlated
with higher verbal IQ, as did increased right OFC volume with higher performance IQ and
with overall greater earnings for the IGT. For the patient group, then, multiple regression
analysis indicated that reduced CB white matter but not reduced OFC gray matter predicted
lower scores for WAIS-III measures of general intellectual abilities. Surprisingly, even though
correlated with WAIS-III IQ, IGT failed to be linked with either reduced CB white matter or
with reduced OFC gray matter in the patient group. For healthy participants, OFC gray matter
correlated with both WAIS-III and IGT scores, whereas CB white matter did not.

The current results thus demonstrated that disease-related structural changes in CB white matter
and OFC gray matter may contribute differently to functional impairment in schizophrenia.
The data showed that within the same persons with schizophrenia, reductions in CB white
matter but not in OFC gray matter correlated with neuropsychological outcome of general
intelligence. As the most prominent white matter tract in the limbic system, the CB furnishes
both input and output to the dopaminergic-rich anterior cingulate cortex and lateral frontal
sites, as well as to the amygdala, nucleus accumbens, and medial dorsal thalamus (Goldman-
Rakic, Selemon, & Schwartz, 1984; Pandya & Seltzer, 1982; Vogt, Rosene, & Pandya,
1979). By virtue of these extensive white matter connections, the CB may very well be
intimately involved in supporting psychometric intelligence via a general executive process of
monitoring and evaluation of performance (Nestor et al., 2008). Schizophrenia may disrupt
these connections thereby leading to failures of executive functions of monitoring that in turn
contribute to reductions in general intelligence. Thus, these within-subject comparisons of the
functional significance of reductions in CB white matter and OFC gray matter pointed to an
especially important role for a disruption in CB connections in diminished general intellectual
abilities in this sample of patients with chronic schizophrenia.

Other research studies have offered evidence as to how the anterior cingulate cortex, including
its white matter tract, CB, may be compromised by schizophrenia. For example, functional
imaging studies have shown performance monitoring, especially in relation to sensitivity to
errors, to be supported by the anterior cingulate cortex (Carter et al., 1998; Kiehl, Liddle, &
Hopfinger, 2000). Event-related functional MRI studies involving patients with schizophrenia
have demonstrated reduced error-related activity in the anterior cingulate and less performance
adjustment after errors on a degraded continuous performance task (Carter, McDonald, Ross,
& Stenger, 2001). Likewise, event-related potential studies have shown that performance errors
on speeded response tasks elicit a specific brain wave, known as error-related negativity, which
typically peaks about 40–70 ms after the commission of an error (Taylor, Stern, & Gehring,
2007). Westlye, Walhovd, Bjornerud, Due-Tonnessen, and Fjell (2008) recently correlated
DTI fractional anisotropy values of anterior cingulate cortex regions with event-related brain
potential recordings while healthy middle aged adults performed a version of the Eriksen
flanker task. Their results pointed to the left posterior cingulate cortex as a principal neuronal
generator for event-related negativity (Westlye, et al. 2008).

In a similar vein, modeling studies have suggested that the functional neuroanatomy of the
anterior cingulate cortex to be ideally suited for implementation of a neural network that is
dynamically set and flexibly tuned to select among existing codes and pathways in the service
of processing dopaminergic “prediction error” signals that are ultimately used to modify
behavior in response to direct feedback (e.g., Dias, Robbins, & Roberts, 1996; Schultz, Dayan,
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& Montague, 1997). Taken together, these studies, along with the current findings, converge
upon the anterior cingulate cortex as a key pathophysiological site in schizophrenia. These
accumulating and converging findings provide an empirical foundation for the development
of a testable and falsifiable hypothesis for a disease-related disturbance in anterior cingulate
cortex circuitry that is evident, anatomically, by reduced CB white matter integrity,
neurophysiologically, by abnormalities in error-related negativity, and neuropsychologically,
by diminished general intelligence.

On the other hand, the current findings found no association between reduced OFC volume
and lower IGT performance in the patient sample. Early pioneering work revealed the IGT to
be associated with lesions to the ventromedial prefrontal cortex in patients who were described
as habitually making disadvantageous choices in their personal lives that negatively impacted
how they related with others (Bechara et al., 1994; Bechara, Tranel, & Damasio, 2000). Persons
with substance abuse problems, irrespective of substance, also perform poorly on the IGT, and
these decision making deficits can occur with or without concomitant problems with executive
functioning or working memory (e.g., see Paulus, 2007). In studies comparing IGT
performance of patients with schizophrenia and healthy controls, however, the results are
mixed (Sevy et al., 2007). Several studies have indeed shown impaired IGT performance in
patients although the extent to which other disease-related deficits in executive function and
working memory may have contributed to their impaired decision making is not entirely clear
(Sevy et al., 2007). Finding of other studies have raised the question as to whether co-occurring
substance abuse may be an important factor influencing IGT performance in patients with
schizophrenia (Bechara et al., 2001; Mazas, Finn, & Steinmetz, 2000; Sevy et al., 2007).

For the healthy participants, both IGT and IQ scores correlated strongly with OFC gray matter.
These data raised two important points. First, that IGT correlated significantly with OFC gray
matter volume is consistent with the growing body of research demonstrating that this brain
region plays a key role in the kind of decision making and reasoning assessed by this
neuropsychological measure (Bechara et al., 1994; Bechara, Tranel, & Damasio, 2000; Bechara
et al., 2001). Second, that OFC gray mater volume also correlated with IQ runs counter to
studies that have long emphasized IQ to be reduced by damage to posterior brain areas in
contrast to being generally spared by frontal lobe lesions (see Gray and Thompson, 2004).
More recently, though, studies have examined frontal lobe contributions to IQ in reference to
crystallized and fluid intelligences, with the former defined as over learned skills and static
knowledge, such as vocabulary, and the latter defined as reasoning and novel problem solving
ability, such as putting blocks together to make designs (Cattell, 1963). These studies have
suggested that fluid intelligence is compromised more by damage to the frontal lobes than to
posterior lobes (Duncan, 1996; Duncan, Burgess, & Emslie, 1995). We too found fluid
intelligence, as measured by WAIS-III Block Design subtest, to be correlated significantly with
right OFC gray matter volume (r=.536, p=.008). Moreover, we also found that unlike prior
studies, crystallized intelligence, as measured by the WAIS-III Vocabulary subtest, correlated
with right (r=.564, p=.006) and left OFC gray matter volumes (r=.502, p=.015). Whether this
latter finding reflects the increased sensitivity of individual differences in quantitative measures
derived from high resolution MRI awaits further research.

Overall, then, the healthy participants showed a strikingly different pattern of correlations from
that evident in the patient group. This suggested that schizophrenia may alter the normal
ordering and organization of brain-behavior relationships. The current findings further
suggested that these abnormalities are expressed as reduced white matter microstructural
integrity of the CB that disrupts long-range axonal communication among widespread
networks of brain regions that are vital to thinking and intelligence. For the healthy participants,
however, OFC but not CB correlated strongly with intelligence and decision making, and these
findings comported to growing line of evidence from functional brain imaging that has
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suggested general intelligence and decision making to be closely related to cognitive functions
that depend heavily on prefrontal lobe circuitry (e.g., Duncan, Emslie, Williams, Johnson, &
Freer, 1996; Duncan et al., 2000; Gray, Chabris, & Braver, 2003, Jung & Haier, 2007).

In summary, the current study demonstrated that variation in intelligence could be accounted
for only by variation in CB white matter but not OFC gray matter in this sample of patients
with chronic schizophrenia. These findings thus pointed to a rather specific relationship
between CB white matter and reduced intelligence. However, the current study relied on a
retrospective analysis that combined data from two separate studies (Nakamura et al., 2008;
Nestor et al., 2008), for the expressed purpose of providing a novel and rigorous quantitative
within- and between-group comparison of CB and OFC involvement in schizophrenia
neuropsychology. An additional limitation of the study is that these critical between-and within
group comparisons were based on modest sample sizes of 16 patients and 12 controls who had
complete CB, OFC, and neuropsychological measures. Replication of these findings is required
using a prospective study that combines DTI-CB and MRI-OFC with neuropsychological
measures. Future investigations are also needed in order to compare neuropsychological
correlates of CB white matter to those of other brain structures in addition to the OFC region
studied here. In this regard, gray matter volume of the anterior cingulate cortex might provide
an excellent comparison to CB white matter. Other important factors that require further
exploration include the roles of medication, disease duration, and family history in the
functional neuroanatomy of schizophrenia.
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Figure 1.
Results of fiber tractography for the left cingulum bundle. Figure represents the entire cingulum
bundle; only anterior third of cingulum bundle was measured in the current study.
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Figure 2.
MR Images of Three Orbitofrontal Subregions. 3D reconstruction of the three orbitofrontal
subregions of Gyrus Rectus (GR; left: blue, right: green), Middle Orbital Gyri (MiOG; left:
brown, right: red), and Lateral Orbital Gyrus (LOG; left: purple, right: light green),
superimposed on axial plane of SPGR image.
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Figure 3.
Scatter plots of IQ with fractional anisotropy values of right cingulum bundle for the patient
group (panel A) and gray matter volume of right orbital frontal cortex for healthy participant
group (panel B).
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Table 1

MRI Gray Matter Volume for the Orbital Frontal Cortex and DTI Fractional Anisotropy Values for the Cingulum
Bundle for Patient (n=17) and Control (n=12) Groups.

Patients Controls

Orbital Frontal Cortex

Left .6797 ± .0442 .7058 ± .0685

Right .6650 ± .0520 .7069 ± .0720

Cingulum Bundle

Left .4571 ± .0380 .4900 ± .0374

Right .4341 ± .0397 .4642 ± .0350

ote. Values are means plus or minus standard deviations
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Table 2

Neuropsychological scores for patients with schizophrenia for WAIS-III (n = 22) and IGT (n = 23) and for healthy
participants for WAIS-III (n = 23) and IGT (n = 24).

Demographic Information Patients Controls

 Age 38.78±9.90 41.5±7.35

 Education 12.83±1.99 15.00±1.98

 SES 3.75±1.22 2.42±1.06

 Parental SES 2.83±1.11 2.71±1.27

WAIS-III IQ

 Full Scale 91.83±13.74 105.22±16.24

 Verbal 95.35±14.78 104.22±14.16

 Performance 88.87±12.20 105.30±18.07

WAIS-III Index

 Verbal Comprehension 99.96±15.88 103.13±14.47

 Perceptual Organization 94.74±16.05 107.48±17.56

 Working Memory 91.91±13.54 105.75±15.68

 Processing Speed 81.04±10.1 101.87±14.48

IGT

 Block 1 −2.17±12.02 −1.17±10.87

 Block 2 −1.25±10.01 4.33±9.08

 Block 3 1.25±9.97 6.91±9.65

 Block 4 −1.58±9.55 3.83±10.30

 Block 5 −0.08±9.16 4.67±11.31

Note. Values are means plus or minus standard deviations. SES = socioeconomic status; WAIS-III = Wechsler Adult Intelligence Scale---Third Edition;
IGT= Iowa Gambling Test (IGT).
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