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Abstract
We formulate a technique for the detection of functional clusters in discrete event data. The advantage
of this algorithm is that no prior knowledge of the number of functional groups is needed, as our
procedure progressively combines data traces and derives the optimal clustering cutoff in a simple
and intuitive manner through the use of surrogate data sets. In order to demonstrate the power of this
algorithm to detect changes in network dynamics and connectivity, we apply it to both simulated
neural spike train data and real neural data obtained from the mouse hippocampus during exploration
and slow-wave sleep. Using the simulated data, we show that our algorithm performs better than
existing methods. In the experimental data, we observe state-dependent clustering patterns consistent
with known neurophysiological processes involved in memory consolidation.

I. INTRODUCTION
The detection of structural network properties has been recently recognized to be of great
importance in aiding understanding of the properties of a variety of man-made and natural
networks [1–4]. Here, however, two significantly different notions of network structure have
to be identified. One is the physical (or anatomical) structure of the network. In this case,
community structure refers to groups of nodes within a network which are more highly
connected to other nodes in the group than to the rest of the network. Here, multiple techniques
exist which utilize a knowledge of the network topology (adjacency matrix) to extract this
hidden structure [5–8].

The other type of structure is functional structure, which refers to a commonality of function
of subsets of units within the network, generally observed by monitoring the similarities in the
dynamics of nodes [9,10]. Thus the structural proximity (i.e existence of physical connection
between the network elements) is replaced with the notion of functional commonality (or
proximity), which can rapidly evolve based on the observed dynamics. The concept of
identifying functional relationships between nodes has been gaining popularity [11–13] as
many networks with dynamic nodes (e.g., genetic, internet, neuronal, etc.) exist with the goal
of uniting to perform a specific task or function.
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In order to successfully capture the (physical or functional) community structure of a network,
a clustering algorithm should have two important properties: the ability to detect relationships
between nodes in order to form clusters and the ability to determine the specific set of clusters
which optimally characterize the network structure. While some clustering methods have been
designed to extract the structure directly from the dynamics of the neurons [11,14–18], most
methods rely on using a similarity measure to compute distances in similarity space between
neurons and then use structural clustering methods to determine the functional groupings
[13,19–23]. However, a major problem becomes identifying statistically significant
community structures from spurious ones. To achieve this goal, current structural clustering
techniques involve an optimization of the network modularity [24,25] or require a prior
knowledge of the number of communities [3,5,26–29].

In this paper, we develop a clustering method that does not depend on structural network
information but instead derives the functional network structure from the temporal
interdependencies of its elements. We refer to this method as the functional clustering algorithm
(FCA). The key advantage of this algorithm is that it incorporates a natural cutoff point to cease
clustering and obtain the functional groupings without an a priori knowledge of the number
of groups. Additionally, the algorithm can be used with a variety of different similarity
measures, allowing it to detect functional groupings based on multiple features of the data.
While the algorithm is generic and applies to any type of discrete event data, we introduce the
algorithm in the context of an application to spike train data as the inspiration for the algorithm
comes from neuroscience and spike trains are a simple example of discrete event data.

The brain is a prime example of a system where the physical (anatomical) structure cannot be
obtained. The cortex alone contains around 1.5×1014 tightly packed connections (synapses)
and it is clearly impossible to derive any detailed properties of its connectivity. It is not even
completely clear that having such a detailed knowledge of the connectivity would be
particularly useful in understanding brain function, as it significantly evolves during the
lifetime of an individual through such processes as neuronal loss, adult neurogenesis, and
constant rewiring (i.e., creation, annihilation, and modulation of synapses). Also, since it is
known that brain function is distributed over large neuronal ensembles, or even more globally,
between different brain modalities, it becomes imperative to understand how these ensembles
self-organize to generate desired functions (movement, memory storage/recall, etc.) [11,30–
32]. The advent of techniques that allow the activity of many cells to be simultaneously
monitored provides hope for a clearer understanding of these neural codes but also demands
novel tools for the detection and characterization of spatiotemporal patterning of this activity.

While it is assumed that these ensembles are formed dynamically [33–36] through
spatiotemporal interactions of activity patterns of many individual neurons, the neural
correlates of cognition are not well understood. One of the most prominent hypothesis
addressing this issue is the temporal correlation hypothesis [37–40]. Namely, it is assumed that
correlations between activity pattern of neurons mediate feature binding and thus formation of
intermittent functional ensembles in the brain. Thus, functional clustering can potentially be
reduced to the identification of temporally correlated groups of neurons.

The paper is organized as follows. We first introduce the functional clustering algorithm, along
with a similarity metric designed to detect cofiring events in neural data. We then compare the
performance of the algorithm to two existing methods using simulated data and show that it
performs better than existing measures. Finally, we demonstrate the application of our
algorithm to experimental data exploring progressive memory consolidation in the
hippocampus.
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II. FUNCTIONAL CLUSTERING ALGORITHM
Here we introduce the FCA which is tailored to detect functional clusters of network elements.
The algorithm can be applied to any type of discrete event data, however, this paper will focus
only on the application of the algorithm to neural spike train data.

The FCA dynamically groups pairs of spike trains based on a chosen similarity metric, forming
progressively more complex spike patterns. We will introduce a similarity measure which is
used for the data analyzed in this paper, but any pairwise similarity measure can be chosen.
The specific choice of the metric should depend on the nature of the data being analyzed and
the type of functional relationships which one chooses to detect.

A general description of the FCA is as follows (see the subsequent sections for detailed
descriptions and Fig. 1 for a schematic of the algorithm).

1. We first create a matrix of pairwise similarity values between all spike trains.

2. We then use surrogate data sets to calculate 95% confidence intervals for each
pairwise similarity. These significance levels are used to calculate the scaled
significance between each pair of similarity values (see Sec. II C for the definition of
scaled significance).

3. The pair of trains with the highest significance is then chosen to be grouped together,
and the scaled significance of this pair is recorded. A unique element of the FCA is
that the two spike trains which are grouped together are then merged by joining the
spikes into a single new train [see Fig. 1(a)]. This allows for a cumulative assessment
of similarity between the existing complex cluster and the other trains.

4. The trains which are being joined are then removed, the similarity matrix is
recalculated for the new set of trains, new surrogate data sets are created, and a new
scaled significance matrix is calculated.

5. We repeat the joining steps [(3) and (4)], recording the scaled significance value used
in each step of the algorithm until the point at which no pairwise similarity is
statistically significant, indicating that the next joining step is not statistically
meaningful. We refer to this step as the clustering cutoff (dashed red line in Fig. 1).
At this point, the functional groupings are determined by observing which spike trains
have been combined during the clustering algorithm.

A key advantage of this algorithm is that the ongoing comparison of the similarity metric
obtained from the data with that from the surrogates causes the algorithm to have a natural
stopping point, meaning that one does not need an a priori knowledge of the number of
functional groups embedded in the data. Gerstein et al. [11] also developed an aggregation
method based on grouping neurons with significant coincident firings, but this method results
in the formation of strings of related neurons which must be further parsed to determine
functional groupings. We now discuss the details of the implementation of the FCA in the
following sections.

A. Average minimum distance
For the data presented in this paper, we use a similarity metric which we call the average
minimum distance (AMD) denoted by Θ to determine functional groupings. The AMD is useful
in capturing similarities due to coincident firing between neurons. Note that other metrics could
be chosen, depending upon the nature of the recorded data. To compute the AMD between two
spike trains Si and Sj, we calculate the distance  from each spike in Si to the closest spike in
Sj as shown in Fig. 1(d). We then define
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(1)

where Ni/j is the total number of spikes in Si or Sj, respectively. Finally, we define the AMD
between spike trains Si and Sj to be

(2)

B. Adjusted average minimum distance
One feature of the FCA is that the similarity associated with each joining step of the algorithm
can be compared between different applications of the algorithm. When using the AMD as the
chosen similarity measure, we must first introduce a frequency correction during the
calculation of the Dij values as this measure scales with the number of spikes in the trains
otherwise. (Note that the effect of spiking frequency in the measure is accounted for in the
algorithm through the comparison to surrogate data.)

Here, we normalize these distances by the average expected distance obtained from uniformly

distributed spike trains having the same spike frequency:  , where ΔT is
the train length. Thus,

(3)

We then define Θ̃, the adjusted average minimum distance ( ) between trains Si and Sj to
be

(4)

Lower values of the  indicate tighter functional clustering between the cells.

In Fig. 2 we show the average AMD and  values calculated between two random Poisson
trains as a function of the total number of spikes within the trains averaged over 100 trials. In
this case, one spike train has a constant value of 50 spikes and the other train is varied from 2–
200 spikes over a constant window of time. In Fig. 2(a), we show the original AMD calculation
between the trains. As expected, the AMD scales approximately as 1/N where N is the total
number of spikes. In Fig. 2(b) we show the  calculated for the same spike trains. One can
see that this first-order correction effectively eliminates the dependence on spiking frequency
as the measure is approximately constant over all frequencies.

C. Calculation of significance
In order to determine the significance between two trains, we create 5000–10000 surrogate
data sets and calculate pair-wise similarities for each surrogate set. The surrogate spike trains
are created by adding a jitter to each spike in the train. This jitter is drawn from a normal
distribution [41], similar to the technique developed by Date et al. [42]. The method of adding
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jitter to spikes (also known as dithering or teetering) to create surrogate data sets is commonly
used when analyzing neural data and has been shown to eliminate correlations between spike
timings [43,44]. Creating the surrogate trains in this manner preserves the frequency of each
train while keeping the gross properties of the interspike-interval distribution.

We examine the distribution of similarity values and create the cumulative distribution function
(CDF) to determine the 95% level of significance. The scaled significance (Fig. 3 and Fig 8)
is measured in units defined as the distance from the midpoint of the CDF to the 95%
significance cutoff. Thus, a scaled significance value equal to one denotes the 95% significance
level, and values higher than one are significant while values lower than one are deemed
insignificant.

III. COMPARISON TO OTHER ALGORITHMS
In order to verify the performance of the FCA and compare it to that of existing clustering
methods, we created simulated spike trains with a known correlation structure. Specifically,
we created a set of 100 spike trains derived from a Poisson distribution that consist of four
independent groups, 20 spike trains each, and 20 uncorrelated spike trains. The spike trains
within these four groups are correlated [see Fig. 3(a)]. To create the correlated groups, we first
created a master spike train and used this train to create new trains by randomly deleting spikes
from the master train with a certain probability. Thus, the resulting train was also a Poisson
process with a firing rate dependent upon the deletion probability. The master train was 5000
time steps long, with each neuron spiking an average of 250 times during the duration of the
train. To further randomize the timings of the spikes copied from the master train, we added
jitter (drawn from a normal distribution with a standard deviation of 1) to the spike times. Each
correlated group was composed of 20 trains from the same master. The average correlation
within the group was computed by first calculating the pairwise cross correlations between all
trains and then averaging over the group. The firing rate of the independent trains was set to
match that of the correlated trains.

We first applied the FCA to the simulated data described above [Fig. 3(b) and Fig. 3(c)] using
a jitter drawn from a normal distribution with a standard deviation of 10 to create the surrogate
data. In Fig. 3(b), we show the scaled significance at each joining step in the algorithm. The
dashed red line marks the significance cutoff (single 95% confidence interval); points above
this line are statistically significant and the clustering cutoff is given by the point where the
curve drops below this line. Figure 3(c) shows the resulting dendrogram with the dashed red
line denoting the clustering cutoff. The algorithm correctly identifies the four groups of neurons
as well as the 20 independent neurons.

A. Comparison to the gravitational method
We then compared the performance of the FCA to that of the gravitational method [14–17].
This method performs clustering based on the spike times of neuronal firings by mapping the
neurons as particles in N-dimensional space and allowing their positions to aggregate in time
as a function of their firing patterns. Particles are initially located along the trace of the N-
dimensional space and given a “charge” which is a function of the firing pattern on the neuron.
The charge qi on a particle is given by

(5)
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where K(t)=exp(−t /τ) for t>0 and K=0; otherwise, Tk are the firing times of the neuron, and
λi is the firing rate of the neuron normalized so that the mean charge on a particle is zero. The
position vector x of the particle is then allowed to evolve based upon the following rule:

(6)

where κ is a user defined parameter that controls the speed of aggregation. One then calculates
the Euclidean distance between particles as a function of time and looks for particles which
cluster in the N-dimensional space (i.e., the distance between the particles becomes small).

Figure 4 depicts the results of applying the gravitational method to the simulated data described
above for cases of high correlation (C ≈ 0.63) within groups [Figs. 4(a) and 4(c)] and also for
low correlation (C≈0.13) within clusters [Figs. 4(b) and 4(d)]. In Figs. 4(a) and 4(b) we plot
the pairwise distances between particles as a function of time in the algorithm. Blue traces
denote distances between intracluster trains, green between intercluster ones, and red between
any train and an independent train. To visualize the results of the method, we have sliced these
plots as indicated by the dashed vertical line and represent the distances at this point in time
as matrices in Figs. 4(c) and 4(d). While, for the case of high correlation between the spike
trains, the algorithm separates the four groups correctly [black squares in Fig. 4(c)], one is
unable to distinguish between intercluster and intracluster trains for the low correlation case.
Further-more, these plots must be visually inspected for the cutoff (i.e., time point at which
they stabilize) and the clustering results may significantly depend on its position, as the
algorithm has no inherent stopping point and the rate of aggregation is parameter dependent.
Even then, the detection of the formed clusters may require the application of an additional
N-dimensional clustering algorithm to detect the clusters formed in the N-dimensional space.
Another drawback of this method is that as the particles aggregate into clusters, the clusters
start interacting due to the nature of the algorithm, causing intercluster distances to become
significantly lower than those with random trains, which does not match the correlation
structure of the data. The FCA performed the correct clustering of the data for the case of the
high correlation and only made an occasional error for data with the low correlation.

B. Comparison to complete linkage and modularity
We next compare the performance of the FCA to a method which maps spiking dynamics onto
a structural space and then uses a structural clustering method to determine functional
groupings. The structural clustering method used is a standard hierarchical clustering technique
called complete linkage. Since this algorithm has no inherent cutoff point at which clustering
is stopped, we combine it with a calculation of the weighted modularity [25], which is a
commonly used measure to determine the best set of groupings when dealing with hierarchical
clustering methods. We have also tried other methods [single-linkage, Girvan and New-man
(GN) algorithm [5,19]], but complete linkage gave the best results of the other methods
attempted. Please see [19,20] for a review of standard hierarchical clustering techniques.

The complete linkage algorithm again clusters trains based upon a similarity measure. In this
algorithm, a similarity matrix is created and the elements with the maximum similarity are
joined. However, the clusters are formed through virtual grouping of the elements and there is
no recalculation of the similarity measure; the similarity between clusters is simply defined to
be the minimum similarity between elements of the clusters. For the data presented in this
paper, we use the absolute value of the normalized cross-correlation matrix as our similarity
matrix, since this is what is commonly used to do examine community structure in neuroscience
applications. To compute this matrix, spike trains are first convolved with a Gaussian kernel
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and the signal is demeaned (the mean value of the signal is subtracted). The cross correlation
is given by

(7)

where C is the linear cross-correlation function

(8)

Since the complete linkage algorithm has no inherent method of determining the clustering
cutoff, we compute the (weighted) modularity [25] for each step of the algorithm. The
modularity measure was originally tailored to detect the optimal community structure based
upon structural connections between nodes (i.e., adjacency matrix); however it can also be
used to detect optimal clustering based on not structural but dynamical relations, where the
adjacency matrix is substituted with the correlation matrix. The modularity is given by

(9)

where Aij is our similarity matrix,  , and δ(ci ,cj)=1 if i and j are in the
same community and zero otherwise. The maximum value of the modularity is then used to
define the clustering cutoff.

The complete linkage dendrogram is shown in Fig. 5(b) and the modularity for this clustering
is plotted in Fig. 5(a). The clustering cutoff is defined as the maximum of the modularity
[24,25]; however the scaling of the modularity, even in this simple case, provides ambiguous
results. The numerical maximum of the modularity is observed for the clustering step marked
by the dashed red line in Fig. 5—significantly above the clustering step that starts linking
random spike trains. Even if we relax this definition and assume that the set of high modularity
values is equivalent, the exact location of the cutoff is ambiguous as shown by the area enclosed
in the transparent red box. Note that the FCA does not have this ambiguity, as the cutoff is
quite clear and the algorithm correctly identifies the groups embedded in the spike train data.

To further explore the performance of the FCA in comparison with complete linkage and
modularity, we monitor the performance of both methods for progressively lower correlations
within the four clustered groups (Fig. 6). We did not perform this analysis for the gravitational
method since that algorithm has no predetermined stopping point and cluster identification
must be assessed by the user. As before, the intercluster correlation is controlled through
progressive random deletion of spikes from a master train. In order to compare the performance
of the two algorithms, it is necessary to compare the obtained clusterings to the known structure
of the data. To assess the correctness of the retrieved clusters as compared to the actual structure
of the network, we calculate I, the normalized mutual information (NMI) [8,45] as a function
of the average correlation within the constructed groups. The NMI is a measure used to evaluate
clustering algorithms and determine how well the obtained clustering C′ matches the original
structure C. To compute the NMI, one first creates a matrix with c rows and c′ columns, where
c is the number of communities in C and c′ is the number of found communities in C′. An entry
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Nij is defined to be the number of nodes in community i that have been assigned to the found
community j. If we denote Ni/j=Σj/iNij and N=ΣijNij then we can define

(10)

This measure is based on how much information is gained about C given the knowledge of C
′. It takes a minimum value of 0 when C and C′ are independent and a maximal value of 1 when
they are identical.

In Fig. 6 we use the NMI to compare the obtained clustering with the known structure of the
simulated data. As shown in the figure, complete linkage and modularity consistently fail to
identify the correct structure. This is because the maximum of the modularity occurs for a point
in the algorithm where various independent spike trains have been joined, creating erroneous
group structure. However, the FCA correctly identifies neurons for almost all values of
correlation. Please note that the 80% level of correctness using complete linkage and
modularity for higher intercluster correlation values is due to the fact that we had only 24
independent groups (20 spike trains +4 independent clusters) in the tested network. A higher
number of independent neurons would lead to a poorer performance of that method (due to the
erroneous grouping of independent neurons) and thus higher relative effectiveness of the FCA.

IV. APPLICATION TO EXPERIMENTAL DATA
In order to show possible applications of the FCA to real data, we examined spike trains
recorded from the hippocampus of a freely moving mouse, using tetrode recording methods
[46]. All animal experiments were approved by the University of Michigan Committee on the
Use and Care of Animals. In this paper, we focus on the population of pyramidal neurons (77
total; by subregion: 42 CA1, 21 CA2, and 14 CA3). While recording this cell population, the
mouse was placed in a novel rectangular track environment. The mouse initially explored the
environment by running approximately 20 laps, then settled down, and shortly thereafter fell
asleep. A raster plot of this data is shown in Fig. 7. This data set is of interest for two reasons.
First, there are established differences in the functional organization of hippocampal networks
between active exploration and slow-wave sleep [47]. These include the joint activation of
pyramidal cell ensembles at time scales corresponding to gamma frequencies during awake
movement [48] and the high-speed replay of pyramidal cell sequences within ripple events that
occur preferentially during slow-wave sleep and rest [49]. Second, the mouse learned a new
spatial representation during exploration of the novel environment (as indicated by the
formation of “place fields” [46]) and the subsequent epoch of slow-wave sleep has been
hypothesized to be a period of memory consolidation [50,51] that is presumed to involve
alterations in structural and thus functional network connectivity. These structural alterations
involve the strengthening of existing monosynaptic connections between the neurons.
Furthermore, recent experimental findings have shown that memory consolidation of the neural
representation of novel stimuli results in two changes: neurons that are correlated during initial
exposure progressively increase their cofiring, while the neurons that have shown a loose
relation become further decorrelated [52]. In terms of network reorganization, this should lead
to the tightening of the cluster of cells involved in the coding of the new environment and, at
the same time, a functional decoupling from the other cells.
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Given these functional differences between the various behavioral states of the mouse, we
expected to see different clustering patterns during the exploration and sleep phases due to the
known differences in network dynamics between these behavioral states.

In Fig. 8(a) we show the scaled significance used in the FCA during the initial exploration as
well as the first sleep period. For this data, the jitter amount added to create surrogates was
drawn from a normal distribution with a standard deviation of 10s to destroy long term rate
correlations between neurons which would arise from the formation of place cells. The cutoff
point in the algorithm occurs when the scaled significance drops below the dashed red line.
The step in the algorithm at which this cutoff occurs indicates the number of neurons involved
in the clustering. Thus if a cutoff occurs for a late (as opposed to early) step in the clustering,
more neurons are recruited into the clusters. One can see that there is an increase in the number
of significant pairs being clustered during the sleep period (due to the later stage of cutoff),
consistent with the increased coactivation of neurons known to occur during sleep ripples.

We then compared the initial exploration of the novel environment to a subsequent exploration
of the same environment (after the sleep epochs). Here, we hypothesized that due to memory
consolidation and the associated changes in correlations between neurons, we would observe
a selective drop in the joining AMD when comparing the initial exposure to a novel
environment to a subsequent exposure once the environment has become familiar. This drop
should occur for initially small AMD values (initially correlated neurons) as these neurons
become further correlated. However, for initially large (insignificant) AMD values, we expect
an increase in the AMD values when comparing novel and familiar exploration. This growth
occurs as the neurons with low correlations become further uncorrelated.

To assess any changes in the AMD values between initial (novel) and familiar exploration, we
examine the  values (see Sec. II B) used in the joining steps of the FCA when applied to
data from each epoch. In Fig. 8(b), we show changes in the average s used to cluster the
neurons for the clustering steps which have a significantly lower  than that obtained from
surrogates (i.e., cofiring cells), during novel exploration and a subsequent familiar exploration.
We indeed see that the average  value is lower for neurons during the familiar exploration
indicating that the firing patterns of the neurons are more tightly correlated. Thus, as in the
case of [52], the observed decrease of the  during the subsequent presentation of the novel
environment occurs for neurons which fire in the same spatial locations of the maze. In Fig. 8
(c), we show the average  distances for the nonsignificant clustering steps during the novel
and familiar exploration. These distances are greater during the familiar exploration as the
activity of the neurons having low correlation becomes even less correlated.

V. CONCLUSIONS
In conclusion, we have developed a functional clustering algorithm to perform grouping based
on relative activity patterns of discrete event data sets. We applied this algorithm to neural
spike train data and have shown that the algorithm performs better than existing ones in simple
test cases, using simulated data. Additionally, we showed that the algorithm successfully
detects state-related changes in the functional connectivity of the mouse hippocampus.
Functional clustering should therefore be a useful tool for the detection and analysis of neuronal
network changes occurring during cognitive processes and brain disorders.

Additionally, we would like to emphasize that the algorithm is generic and can be applied to
any network whose nodes participate in discrete temporal events. Possible other networks to
which the algorithm could be applied include networks of oscillators where the trajectory
passes through a Poincaré section, failure events on networks of routers, or fluctuation events
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in a power grid network. Thus, the functional clustering algorithm is a valuable method for the
detection of functional groupings in dynamic network data.

Acknowledgments
This work was funded by the NSF (S.F.), NIH under Grant No. NIBIB EB008163 (M.Z.), the Whitehall Foundation
(J.B.), and the National Institute on Drug Abuse under Grant No. R01 DA14318 (J.B.). The authors would also like
to thank the Center for the Study of Complex Systems at the University of Michigan for the use of their computing
resources to analyze data in this paper.

References
1. Strogatz SH. Nature (London) 2001;410:268. [PubMed: 11258382]
2. Albert R, Barabasi AL. Rev. Mod. Phys 2002;74:47.
3. Newman MEJ. SIAM Rev 2003;45:167.
4. Schwarz AJ, Gozzi A, Bifone A. Magn. Reson. Imaging 2008;26:914. [PubMed: 18479871]
5. Girvan M, Newman M. Proc. Natl. Acad. Sci. U.S.A 2002;99:7821. [PubMed: 12060727]
6. Leicht EA, Newman MEJ. Phys. Rev. Lett 2008;100:118703. [PubMed: 18517839]
7. Newman MEJ. Proc. Natl. Acad. Sci. U.S.A 2006;103:8577. [PubMed: 16723398]
8. Danon L, Díaz-Guilera A, Duch J, Arenas A. J. Stat. Mech.: Theory Exp 2005;P09008
9. Fingelkurts AA, Fingelkurts AA, Kahkonen S. Neurosci. Biobehav Rev 2005;28:827. [PubMed:

15642624]
10. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Cereb. J Blood Flow Metab 1993;13:5.
11. Gerstein GL, Perkel DH, Subramanian KN. Brain Res 1978;140:43. [PubMed: 203363]
12. Slonim N, Atwal GS, Tkacik G, Bialek W. Proc. Natl. Acad. Sci. U.S.A 2005;102:18297. [PubMed:

16352721]
13. Eldawlatly S, Jin R, Oweiss KG. Neural Comput 2009;21:450. [PubMed: 19431266]
14. Gerstein GL, Perkel DH, Dayhoff JE. J. Neurosci 1985;5:881. [PubMed: 3981248]
15. Baker SN, Gerstein GL. Neural Comput 2000;12:2597. [PubMed: 11110129]
16. Dayhoff JE. Biol. Cybern 1994;71:263. [PubMed: 7918803]
17. Lindsey BG, Gerstein GL. J. Neurosci. Methods 2006;150:116. [PubMed: 16105685]
18. Schneidman, E.; Bialek, W.; Berry, M, II. Advances in Neural Information Processing 15. Becker,

S.; Thrun, S.; Obermayer, K., editors. Cambridge: MIT; 2003. p. 197-204.
19. Borgatti S. Connections 1994;17:78.
20. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Phys. Rep 2006;424:175.
21. Berger D, Warren D, Normann R, Arieli A, Grun S. Neurocomputing 2007;70:2112.
22. Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A. J. Neurosci. Methods 2007;165:151. [PubMed:

17628690]
23. Ozden I, Lee HM, Sullivan MR, Wang SSH. J. Neurophysiol 2008;100:495. [PubMed: 18497355]
24. Newman MEJ, Girvan M. Phys. Rev. E 2004;69:026113.
25. Newman MEJ. Phys. Rev. E 2004;70:056131.
26. Fortunato S, Latora V, Marchiori M. Phys. Rev. E 2004;70:056104.
27. Zhou H. Phys. Rev. E 2003;67:041908.
28. Newman MEJ. Phys. Rev. E 2004;69:066133.
29. Ball GH, Hall DJ. Behav. Sci 1967;12:153. [PubMed: 6030099]
30. Hebb, D. The Organization of Behavior. New York: Wiley; 1949.
31. Singer W. Neuron 1999;24:49. [PubMed: 10677026]
32. Zhou CS, Zemanova L, Zamora-Lopez G, Hilgetag CC, Kurths J. New J. Phys 2007;9:178.
33. Milner PM. Psychol. Rev 1974;81:521. [PubMed: 4445414]
34. Engel AK, Singer W. Trends Cogn. Sci 2001;5:16. [PubMed: 11164732]
35. von der Malsburg C. Curr. Opin. Neurobiol 1995;5:520. [PubMed: 7488855]

Feldt et al. Page 10

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



36. Singer W. Ann. N.Y. Acad. Sci 2001;929:123. [PubMed: 11349422]
37. von der Malsburg, C. MPI Biophysical Chemistry Internal Report. 1981. unpublished
38. Gray CM. Neuron 1999;24:31. [PubMed: 10677025]
39. Singer W. Annu. Rev. Physiol 1993;55:349. [PubMed: 8466179]
40. Engel AK, Konig P, Singer W. Proc. Natl. Acad. Sci. U.S.A 1991;88:9136. [PubMed: 1924376]
41. Rolston JD, Wagenaar DA, Potter SM. Neuroscience 2007;148:294. [PubMed: 17614210]
42. Date, A.; Bienenstock, E.; Geman, S. Division of Applied Mathematics, Brown University, Technical

Report. 1998. unpublished
43. Shmiel T, Drori R, Shmiel O, Ben-Shaul Y, Nadasdy Z, Shemesh M, Teicher M, Abeles M. J.

Neurophysiol 2006;96:2645. [PubMed: 16885517]
44. Pazienti A, Maldonado PE, Diesmann M, Grun S. Brain Res 2008;1225:39. [PubMed: 18547547]
45. Fred, ALN.; Jain, AK. Proceedings of 2003 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition; p. 128-133.URL:
ieeexplore.iee.org/stamp/stamp.jsp?arnumber=1211462&isnumber27266

46. Berke JD, Hetrick V, Breck J, Greene RW. Hippocampus 2008;18:519. [PubMed: 18398852]
47. Buzsáki G, Buhl DL, Harris KD, Csicsvari J, Czéh B, Morozov A. Neuroscience 2003;116:201.

[PubMed: 12535953]
48. Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsáki G. Nature (London) 2003;424:552. [PubMed:

12891358]
49. Foster DJ, Wilson MA. Nature (London) 2006;440:680. [PubMed: 16474382]
50. Buzsáki G. J. Sleep Res 1998;7:17. [PubMed: 9682189]
51. Kudrimoti HS, Barnes CA, McNaughton BL. J. Neurosci 1999;19:4090. [PubMed: 10234037]
52. O’Neill J, Senior TJ, Allen K, Huxter JR, Csicsvari J. Nat. Neurosci 2008;11:209. [PubMed:

18193040]

Feldt et al. Page 11

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://ieeexplore.iee.org/stamp/stamp.jsp?arnumber=1211462&isnumber27266


FIG. 1.
(Color) Functional clustering algorithm. (a) An example of the algorithm applied to four spike
trains. Two trains are merged in each step by selecting the pair of neurons with the highest
scaled significance value and effectively creating a new neuron by temporally summing their
spike trains. The procedure is repeated until one (complex) spike train remains. (b) We cease
clustering when the trains being grouped are no longer significant; here the dotted red line
denotes the significance cutoff. (c) The subsequent dendrogram obtained from the FCA. The
dotted line denotes the clustering cutoff. (d) Schematic of the average minimum distance
between spike trains.
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FIG. 2.
(a) AMD and (b)  calculated between two random Poisson trains as a function of the total
number of spikes in the trains. One spike train contained a constant number of 50 spikes while
the spiking frequency in the other was varied between 2 and 200 spikes. While the AMD scales
with the number of spikes in the trains, the  remains constant as the number of spikes is
varied.
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FIG. 3.
(Color) Performance of the FCA on simulated data. (a) The cross-correlation matrix showing
the correlation structure of the simulated data. (b) The scaled significance used in each step of
the FCA. The dashed red line denotes the point at below which clustering is no longer
significant. (c) Dendrogram resulting from functional clustering. The algorithm easily
identifies the correct groups.
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FIG. 4.
(Color) Application of the gravitational method to simulated data. [(a) and (b)] Pairwise
distances as a function of time in the stimulation for high correlation within clusters (a) and
low correlation within clusters (b). Blue traces: intracluster distances; green traces: intercluster
distances; and red traces: distances between any train and an independent train. [(c) and (d)]
Matrix version of distances for the point in time denoted by the dashed vertical line in (a) and
(b), respectively. Note that for the low correlation case, one cannot detect the formation of
individual clusters.
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FIG. 5.
(Color online) (a) Modularity calculation for the clustering obtained using complete linkage.
The transparent red (gray) box marks the ambiguous cutoff area. (b) Dendrogram indicating
clustering by complete linkage. Here the clustering cutoff is ambiguous and the algorithm fails
to identify the appropriate structure.
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FIG. 6.
(Color online) Normalized mutual information as a function of average group correlation. The
measure takes a maximal value of one when the established clustering structure matches the
predetermined groups and I→0 when the obtained clustering structure is independent of the
original groupings. Functional clustering identifies the correct group structure for almost all
values of correlation while complete linkage and modularity consistently create erroneous
structure.
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FIG. 7.
(Color online) Raster plot of neural data obtained from an unrestrained mouse during
exploration of a novel environment and sleep.
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FIG. 8.
(Color online) (a) The scaled significance used in clustering calculated for novel exploration
(0–200s) and the first sleep period (900–1100s). The significance cutoff is shown by the dashed
line. The FCA is able to detect the greater number of neurons involved in joint firing known
to occur during sleep. (b) Comparison of the  averaged over significant clustering steps
from novel exploration and a subsequent familiar exploration. We observe a decrease in this
value during the familiar exploration as correlations between neurons become tighter. (c)
Comparison of the  distances averaged over nonsignificant clustering steps during novel
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and familiar exploration. Here we see an increase in this value during familiar exploration as
neurons which were uncorrelated become further decorrelated.
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