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Abstract 

Diabetes care and chronic disease management 

represent data-intensive contexts which allow Local 

Healthcare Agencies (ASL) to collect a huge amount 

of information. Time is often an essential component 

of such information, given the strong importance of 

the temporal evolution of the considered disease and 

of its treatment. In this paper we show the 

application of a temporal data mining technique to 

extract temporal association rules over an integrated 

repository including both administrative and clinical 

data related to a sample of diabetic patients. We will 

show how the method can be used to highlight cases 

and conditions which lead to the highest 

pharmaceutical costs. Considering the perspective of 

a Regional Healthcare Agency, this method could be 

properly exploited to assess the overall standards 

and quality of care, while lowering costs. 

1. Introduction 

Italian local healthcare agencies (ASL) play the 

crucial role of monitoring health and healthcare 

expenditures of the Italian population. One of their 

main interests is to monitor the management of 

chronic diseases, which have an important socio-

economic impact on the national healthcare system. 

One of the most prevalent chronic diseases is 

Diabetes Mellitus (DM). The worldwide prevalence 

of DM for all age-groups is estimated to be 2.8% in 

2000 and 4.4% in 2030
1
, while in Italy it is around 

4.5%
2
. Worldwide, the annual direct healthcare costs 

of DM are estimated to be at least 153 billion dollars 

for the population in the range between 20 and 79 

years
1
. In Italy DM may cost around 5.17 million € 

per year, which is about the 6.65% of the total 

healthcare expenditure. The cost increases up to five 

times in case of micro and macro-vascular 

complications
2
. Some Italian ASLs have therefore 

been implementing data warehouses to collect all the 

administrative and clinical information that allow to 

extract the disease patterns of chronic patients, and to 

support decision makers in improving the overall 

standards and quality of care, while lowering costs. 

Data Mining technologies seem particularly useful to 

perform this task. Rather interestingly, over the last 
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fifteen years several methods and approaches have 

been devoted to the analysis of DM databases and 

data repositories. Data mining was used to deal with 

different tasks: analysis of blood glucose time 

series
3,4

, prediction of metabolic control
5,6

, prediction 

of vascular complications
7
, extraction of DM related 

risk factors
8
, risk assessment in diabetic foot care

9
, 

mortality prediction
10

, fraud detection and claim 

abuse
11

, adverse-event analysis
12

. Only in few cases 

administrative and clinical data have been jointly 

exploited to extract clinically useful patterns
8
 and 

there are no reports on the prediction of the most 

expensive disease patterns. Moreover, a very 

interesting feature of this data is the importance 

played by time in the development and treatment of 

the disease. In this paper we are interested in 

investigating the application of temporal data mining 

to highlight cases and conditions which lead to the 

highest pharmaceutical costs. In particular, our 

analysis will be focused on data related to a sample of 

patients suffering from DM which are collected in the 

central repository of the ASL of Pavia. 

2. Methods 

The frequent occurrence of relationships between 

clinical episodes and drug prescriptions can be 

conveniently mined in large databases through the 

exploitation of Temporal Association Rules (TARs) 

extraction techniques. The coupling of such rules with 

a cost synthesizing the expenditure related to a 

particular clinical scenario can be very useful for 

decision support and cost control purposes.  

A TAR is defined as an association rule where the 

antecedent and the consequent are related by a 

temporal relationship. An example of such a rule 

could be Total Cholesterol >280 (very high) 

BEFORE Lipid modifying agents, which tells us that 

patients found to show a very high value for the total 

cholesterol will frequently undergo a following 

prescription of lipid modifying agents within a 

specific time lag (e.g. 1 year). Our mining algorithm 

is able to automatically extract such rules from data 

and it is based on an Apriori-like strategy which 

selects frequent rules based on thresholds on support 

and confidence. Herein the support is computed as 
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the number of individuals satisfying a specific rule (in 

the case of the example the 2.6%), while the 

confidence represents the probability that a specific 

patient will experience the consequent given that the 

antecedent has occurred (here 62%). The algorithm to 

mine TARs will be detailed in Section 2.1. 

The data repository object of our study has two main 

features: first, it collects both clinical and 

administrative data which are by nature 

heterogeneous and, second, the data are strongly 

centred on the time dimension. To extract meaningful 

TARs from such data, the first interesting issue is the 

integration of both administrative and clinical data in 

order to obtain an uniform representation. On the one 

hand, healthcare administrative data are by nature 

represented by sequences of events. A sequence of 

events can be defined as a time ordered succession of 

episodes, where an episode formally identifies a 

single instance of a specific event. In more detail, 

each episode: i) represents a single occurrence of an 

event (e.g. the prescription of a specific drug); ii) is 

related to a subject (e.g. a specific patient) and iii) is 

characterized by its temporal coordinates within an 

observation period. On the other hand, clinical data 

are usually a set of time series of numeric values (e.g. 

the time series of blood glucose values). In order to 

get a representation of these data as temporal 

sequences of events (Figure 1), we pre-process them 

to obtain a discretization of the variables defined on 

the base of thresholds suggested by an expert 

clinician. For example the variable glycaemia was 

discretized as follows: “Glycaemia 65-100: regular”, 

“Glycaemia 100-125: Impaired Fasting Glucose”, 

“Glycaemia 126-180: high”, etc. 

Patient A

time [days]t5t1 t4 t6 t7

Regular HbA1c

High SBP
ACE inhibitors

Beta blockers Antithrombotic 

agents

t2 t8t3

High HbA1c

Regular SBP

Patient A

time [days]t5t1 t4 t6 t7

Regular HbA1c

High SBP
ACE inhibitors

Beta blockers Antithrombotic 

agents

t2 t8t3

High HbA1c

Regular SBP

 

Figure 1. Example of the integration of events 

coming from clinical outcomes and drug prescriptions 

through the uniform representation of temporal 

sequences.  

As concerns administrative data, in the following we 

will exploit information related to drug prescriptions 

only. In this case the length of the time interval 

related to each episode is estimated on the basis of 

the days of Defined Daily Dose
13

 (DDD). This 

procedure could however be easily extended also to 
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represent events like hospital admissions or lab tests. 

Each drug prescription can be associated to a cost, 

which is extracted from the Italian national 

pharmaceutical price list (AIFA – Italian National 

Pharmaceutical Agency
14

) which lists the reference 

prices associated to each drug available on the 

market.  

Given that each rule is satisfied by a number of 

patients (y) and on a number of different episodes (x) 

corresponding to the number of boxes sold to the 

analyzed population, we can compute the average 

cost per patient (ACP) as follows: 

ACP = [Σi=1
x
cost(i)]/y 

Knowing the confidence of the rule, which represents 

the probability that one patient will undergo the 

prescription of the drug given that he shows the 

clinical picture described in the antecedent, we can 

calculate the expected cost of a specific rule (EC) as 

follows: 

EC = ACP * confidence 

The quantity just defined represents the expenditure 

that will be related to a specific clinical condition in a 

period of time specified by the rule parameters.  

2.1 The TARs extraction algorithm 

In this section we will describe in more detail the rule 

mining algorithm used in this work. A central issue in 

this context is the temporal representation of the 

events
15

. The temporal nature of a single episode is 

strongly dependent on the choice of the temporal 

granularity, which we define as the maximum 

temporal resolution used for the representation of 

each sequence of events
16

. In our case, both the 

pharmaceutical archives and clinical databases store 

data with a resolution of one day, and as a result, the 

granularity was set to this value. Following this 

assumption, the analyzed temporal sequences include 

hybrid events, implying the presence of both interval-

based and point-like events. Events like drug 

consumption, typically lasting a few days, can be 

represented as time intervals. Lab tests, performed in 

correspondence with a medical visit, can be 

represented simply as time points. 

As already mentioned a TAR is defined as a 

relationship specified through a temporal operator 

which holds between an antecedent, consisting in a 

pattern of single or multiple cardinality, and a 

consequent, consisting in a pattern with single 

cardinality. Herein a pattern is defined as the 

occurrence of one or more contemporary events. The 

allowed temporal relationships are specified by 
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Vilain
17

 and Allen’s
18

 operators, with the addition of 

the PRECEDES operator
19

. Besides the mentioned 

temporal operators, the exploited algorithm is 

provided with three temporal parameters (left shift, 

right shift and gap) which are used to properly 

control the mutual distance of the antecedent and the 

consequent of a rule
20

. The rules extraction algorithm 

is designed following an Apriori-like strategy
21

, 

where the rule search and selection is performed on 

the basis of thresholds on support and confidence. 

The support is defined as: 

support = NPR/NP 

where NPR is the number of patients verifying the 

rule, and NP is the total number of patients included 

in the dataset. 

The confidence is defined as: 

confidence = NPR/NPA 

where NPA is the number of patients verifying the 

pattern in the antecedent. 

Moreover, the algorithm offers the additional 

opportunity to select specific rule templates, defining 

the event classes allowed for the antecedent and the 

consequent selection respectively. This feature helps 

to focus the search only on relationships between the 

members of the classes that the user wants to 

investigate, and may be particularly useful to present 

the resulting rules to the users (e.g. clinicians). As a 

representative example of the method, in this analysis 

we selected a specific rule template, where the 

antecedent selection was limited to events 

representing the discretized clinical variables, and the 

consequent selection was limited to events of drug 

prescriptions.  

The methodology introduced in this section is then 

able to automatically highlight all the interesting 

relationships between the considered healthcare 

events. Compared to simple querying methods, this 

algorithm has the advantage to detect also unexpected 

associations not available into the already existing 

knowledge. 

3. Results and discussion 

In this section we present the application of the 

method to a dataset concerning a subgroup of diabetic 

patients living in the Pavia area. The analysis was 

focused on the integration of two databases, 

containing heterogeneous data. The first database 

contains clinical data collected by General 

Practitioners and transmitted to the ASL in order to 

monitor physiological variables to provide a feedback 

about the efficacy of the care delivery process. The 
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second database is directly collected by the ASL and 

contains administrative healthcare data related to 

drug prescriptions. 

The clinical dataset collects data on a selected sample 

of 1293 diabetic patients. In an observation period of 

three years (2006-2008) a total of 5715 inspections 

was recorded, each one characterized by the 

measurement of physiological parameters related to 

DM (Table 1). 

Variable Range Unit 

1. Body Mass Index (BMI) [10-80] Kg/m2 

2. Systolic Blood Pressure [60-240] mmHg 

3. Diastolic Blood Pressure [30-150] mmHg 

4. Glycaemia [50-500] mg/dl 

5. Glycated Haemoglobin 

(HbA1c) 
[3-20] % 

6. Total Cholesterol [80-500] mg/dl 

7. HDL Cholesterol [10-120] mg/dl 

8. Triglycerides [10-2000] mg/dl 

9. Cardio-Vascular Risk [0-100] % 

Table 1. List of the clinical variables considered for 

the diabetic patients. Variables assume continuous 

values within the range reported in square brackets. 

In order to consider also the variable “age” in the 

analysis, the sample was further stratified into three 

age classes. The partition of the sample then resulted 

in the following distributions: 496 (38%) patients are 

aged in the range 45-65, 497 (39%) in the range 65-

75, 300 (23%) are over 75 years old. In our sample 

the distribution of the most frequent pathologies 

concurrent to DM is as follows: 678 (52%) patients 

suffer from hypertension, 493 (38%) suffer from 

hypercholesterolemia, and 491 (38%) are affected by 

obesity. 

The second dataset includes the administrative 

process data tracing all the drug prescriptions 

performed to the diabetic patients since 2006, 

excluding the over-the-counter drugs whose 

information is not collected. A drug prescription 

event is represented through the ATC
13

 (Anatomical 

Therapeutic Chemical) classification system. The 

ATC code intrinsically supports a hierarchical 

classification of the drugs and, according to our 

purposes, it was truncated to the 3
rd

 level (e.g. B01A: 

antithrombotic agents). 

The mining step was then separately performed on the 

three partitions of the integrated databases according 

to age classes. The analysis was based on the 

selection of a specific rule template, where the 

antecedent selection was limited to events 

representing the discretized clinical variables, and the 

consequent selection was limited to events of drug 
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prescriptions. The thresholds for minimum support 

and confidence were set to minsup=0.02 and 

minconf=0.3. The selection of a low support 

threshold (2% of the patients satisfying the rule) was 

oriented to a deep level analysis, in order to underline 

the most complex and interesting temporal behaviors 

that characterize very specific subgroup of patients. 

The value for the confidence threshold was chosen 

intentionally low in order to evaluate the wide range 

of possible drug prescriptions which characterize the 

healthcare delivery process. Since the target of the 

analysis was the investigation of precedence 

relationships between clinical patterns and subsequent 

drug prescriptions, we chose to use the BEFORE 

temporal operator. The gap parameter, which defines 

the maximum allowed distance between antecedent 

and consequent, was set to 365 days. The ultimate 

goal of our analysis is the estimation of the expected 

costs related to drug therapy, within a time window of 

one year, depending on the different combinations of 

measured physiological parameters. 

A first evaluation of the extracted rules allows to 

detect the most expensive clinical “profiles”, as 

defined by the antecedent. The results related to the 

most expensive rules characterized by complex 

antecedents over the three different age classes are 

shown in Tables 2-4. The Total Expected Cost (TEC) 

of one specific antecedent is obtained as the sum of 

the ECs of each rule showing that particular 

antecedent.  

Antecedent #Rules TEC(€) 

-BMI 30-40 (obesity) 

-SBP 130-160 (mild hypertension) 

-HbA1c >7.9 (very high) 

20 509 

-TotChol 120-220 (regular) 

-HDLChol 40-80 (regular) 

-Trigl 170-350 (high) 

18 478 

-SPB 130-160 (mild hypertension) 

-HbA1c >7.9 (very high) 
14 476 

Table 2. Synthesis of the most expensive clinical 

profiles for the class 45-65 years. 

Antecedent #Rules TEC(€) 

-BMI 25-30 (overweight) 

-Glycaemia > 180 (very high) 

-HbA1c >7.9 (very high) 

18 804 

-BMI 25-30 (overweight) 

-SBP 130-160 (mild hypertension) 

-Glycaemia > 180 (very high) 

-HbA1c >7.9 (very high) 

17 758 

-BMI 25-30 (overweight) 

-SBP 130-160 (mild hypertension) 

-HbA1c >7.9 (very high) 

19 743 

Table 3. Synthesis of the most expensive clinical 

profiles for the class 65-75 years. 
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Antecedent #Rules TEC(€) 

-TotChol 120-220 (regular) 

-HDLChol <40 (low) 
24 646 

-HbA1c >7.9 (very high) 

-Trigl 170-350 (high) 
11 611 

-BMI 20-25 (regular) 

-HbA1c >7.9 (very high) 
13 610 

Table 4. Synthesis of the most expensive clinical 

profiles for the class over-75 years. 

The results highlight that the profiles involving the 

greatest expected pharmaceutical expenditure are 

observed for the intermediate 65-75 class. This is 

explained by the comorbidity increasing with age, and 

considering that strong drug therapies are not justified 

for the over-75 class by a significant increase in the 

life expectancy. Moreover the measurement of an 

high value of glycated hemoglobin (>7.9) often 

characterizes the most expensive profiles across the 

three age classes. 

A second evaluation of the application allows to 

analyze the behavior of the TEC for different 

intervals of a clinical variable through the different 

age classes. As a representative example, we will 

consider the rules involving discretized glycated 

hemoglobin at the antecedent. Figure 2 represents the 

average values for the TEC at each level of the 

considered variable. Vertical lines represent the 95% 

confidence interval, calculated under the assumption 

of independency between the costs of each drug 

typology. 

 

Figure 2. Total expected cost for different intervals 

of the glycated hemoglobin (HbA1c) across the age 

classes. The plot represents the mean values and the 

95% confidence interval. 

The results highlight a similar behavior of the TEC 

for each class. The higher is the value of the 

measured glycated hemoglobin, the higher the 

expected pharmaceutical expenditures are. This 
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feature then suggests a direct proportionality between 

the two variables, confirming in our population what 

was already shown by previous researches on the 

relationship between glycemic control and diabetes 

care charges
22

. Moreover it’s worth to underline the 

decreasing of the costs associated to “very high” 

values when shifting from the 65-75 class to over-75 

class. This peculiar behavior also gives rise to a 

decreasing trend in the difference of the expected cost 

for “high” and “very high” values along the whole 

age dimension (p<0.05 only for the 45-65 class). 

Even for diabetic patients over 75 years old, the 

difference between the expected costs becomes 

negligible (664€ vs 671€). This behavior then 

suggests that for the oldest diabetic patients the 

highest values of glycated hemoglobin don’t have a 

strong impact on the prescribed drug therapy. 

4. Conclusions 

The analysis presented in this paper highlights the 

main potentials of the application of temporal 

association rules for the mining of healthcare 

databases. The applied algorithm allows to properly 

exploit the integration of different healthcare 

information sources, such as administrative data 

related to drug prescriptions and clinical data related 

to the most prevalent chronic pathologies, such as 

Diabetes Mellitus. The method allowed to highlight 

cases and conditions which lead to the highest 

expenditures related to pharmaceutical treatments. 

Considering the perspective of a Regional Healthcare 

Agency, this method could be properly exploited to 

assess the overall standards and quality of care, while 

lowering costs.  
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