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Abstract 

  

Critical care environments are inherently complex 

and dynamic. Assessment of workflow in such 

environments is not trivial. While existing 

approaches for workflow analysis such as 

ethnographic observations and interviewing provide 

contextualized information about the overall 

workflow, they are limited in their ability to capture 

the workflow from all perspectives. This paper 

presents a tool for automated activity recognition 

that can provide an additional point of view. Using 

data captured by Radio Identification (RID) tags and 

Hidden Markov Models (HMMs), key activities in the 

environment can be modeled and recognized. The 

proposed method leverages activity recognition 

systems to provide a snapshot of workflow in critical 

care environments. The activities representing the 

workflow can be extracted and replayed using virtual 

reality environments for further analysis.  

 

1. Introduction 
    

Workflow in critical care environments such as 

Emergency Rooms (ER) and Trauma is a source of 

several avoidable medical errors
1
. Assessment of 

workflow and activities can provide valuable insights 

into improvement of patient safety and efficacy of 

patient management. Further, clinical workflow 

visualization can serve as a valuable education tool 

for residents and nurse trainees. As a result of these 

possible benefits, researchers use several methods to 

monitor clinical workflow. These methods include 

ethnographic data collection, observations, surveys 

and questionnaires coupled with cognitive task 

analysis of the processes. These tools can be used to 

build individual pieces of the workflow centered 

around the individual and an activity
2
. However, 

existing tools are limited in their ability to capture the 

numerous activities occurring simultaneously in a 

complex environment. Observations, for example, are 

gathered from an individual’s point of view and 

cannot capture all activities occurring at an instance 

of time. Theoretically, by increasing the number of 

observers in the critical care environment it is 

possible to capture information regarding all the 
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activities in the environment. Practically however, 

more than two observers, in most cases, are 

considered to be a disturbance in the critical care 

workflow. In addition, the quality of data captured by 

these methods is dependent upon the quality of the 

individual gathering the data. This is yet another 

limitation of current methodologies. Given the 

dynamic and interactive nature of critical care 

environments, in addition to the limitations 

discussed, current methods of data capture do not 

provide the optimal solution. With such constraints 

imposed on data collection in complex environments 

there is a need for an unobtrusive method of data 

collection that can augment existing methods and 

capture workflow from different points of view 

simultaneously.  

 

Often medicine looks to aviation to provide guidance 

in increasing reliability and reducing the occurrence 

of adverse events. One critical component of error 

analysis in aviation is the black box. The black box 

refers to devices installed on aircrafts that track both 

communication within the cockpit of the aircraft as 

well as performance parameters such as altitude, 

airspeed and heading. If some tool akin to a black 

box were available for critical care units, analysis of 

adverse events would be far more accurate. The 

ability to automatically track all events that led to the 

adverse situation would be of great use in workflow 

modeling, error analysis and training clinical 

professionals. The method and tools described in this 

paper is a one solution to this problem. 

 

2. Background 

 

This paper presents a hybrid critical care monitoring 

system that combines data gathered through 

observations and Radio Identification (RID) tags to 

provide a complete picture of the workflow. RID tags 

provide a means for automatic identification of an 

entity, in addition to location sensing. In a clinical 

context, an entity could be a clinician (nurse, 

physician etc.) or an asset (such as an ultrasound 

machine). Key entities, through the use of RID 

tagging, would have capability to identify other tags 

and store this information.  
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In the domain of healthcare, tags have been used for 

tracking patients, equipment and staff to improve 

efficiency in the case of high-volume emergencies
3
. 

Context aware computing is another domain in 

healthcare where tags are being used, examples being 

context-aware pill containers, beds and electronic 

patient records (EPR)
3, 4

. A system integrating these 

tools could possibly verify whether the nurse 

approaching the bed has the right pills and dosage for 

the patient in the bed by cross-checking the 

prescription with the EPR. Other applications include 

using RID based wrist bands for fast and accurate 

patient identification
3
.  

 

The applications described use RID tags to obtain 

proximity information, or identification or simply 

location. The work presented in this paper, however, 

takes an alternate approach to location aware 

computing. We shift the focus from obtaining the 

exact location of tagged entities to analyzing 

interactions and their respective activities. The 

theoretical foundations of this approach are as 

follows. When modeling workflow, we are interested 

in the actual activity and the sequence of activities 

the key players participate in. One method to find 

these activities is to develop a relation between 

location of the entity and the subset of activities 

possible in that location. This is done by studying 

preliminary ethnographic observations gathered.  In 

this way, base heuristics for activities are gathered 

and can be used by the system for activity 

recognition. 

 

In a critical care environment, protocols are followed 

when a patient is admitted into the unit. These 

protocols place constraints on the type of activity to 

be performed and the sequence of activities. For 

example, when a patient enters an ER unit, there are 

certain activities that usually occur. Firstly, key 

members of the patient care team (resident, nurse and 

so on) gather by the bed of the patient. Following 

this, examination of patient takes place. A resident 

may move to the telephone to consult or the nurse 

may move to the nurse’s station to document details 

of the encounter. All these activities are linked to 

entities in the space performing some type of 

movement in the environment. If we develop a 

system that can record and analyze movements and 

link it to known patterns of activities, we can 

theoretically model the workflow.  

 

A limitation of this approach lies in reliance on 

movements and patterns of movements. Such an 

approach will noticeably miss the activities when the 

entities are not moving. However, in an environment 

such as critical care, a large percentage of activities 
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do indeed involve movements and activities that 

don’t involve movements can be captured by an 

observer. This system in fact eases the burden on the 

observer who can capture high level cognitive details 

of examination and leave the low level activity details 

to the automated system. 

  

In this work, we use Hidden Markov Models (HMM) 

to analyze the temporal data gathered by the tags and 

recognize known activities. HMM is a probabilistic 

modeling method used for temporal sequence 

analysis, and have been widely used in gesture and 

speech recognition. A description of this modeling 

technique is presented in the following subsection 

along with the rationale for why we chose HMM and 

how the method is used to solve the problem at hand. 

 

2.1 Hidden Markov Models 

 

The Hidden Markov Model is a finite set of states, 

each of which is associated with multidimensional 

probability distributions. Transitions among the states 

are governed by a set of probabilities called transition 

probabilities. In a particular state an outcome or 

observation can be generated, according to the 

associated probability distribution.  

 

There are three fundamental variables that must be 

determined to generate a model for this system.  

(i) Initial state probability, π – This is a set of 

probabilities πi, which indicates the probability 

of the starting or initial state being i. π can be 

represented by a Nx1 matrix where N is the 

number of states. 

(ii) Transition probability, A – A set of probabilities 

Aij where aij indicates the probability of the 

operator transitioning from state i to state j. 

Hence, A is represented by a NxN matrix. 

(iii) Bias probability, B - a set of probabilities Bi(k) 

where bi(k) is the probability that symbol k is 

observed at state i. Hence, B is represented by a 

NxM matrix, where N is the number of states and 

M is the number of observation symbols. 

 

The HMM is then represented as λ = (π,A,B), where 

the observed sequence is modeled as a state machine, 

wherein the current state is dependent only on the 

previous state. Using HMM’s requires solution to 

three basic problems: 

(i) Problem 1: Given a model λ = (A,B,π), what is 

the probability that a given observed sequence O 

belongs to λ i.e. P(O| λ). 

(ii) Problem 2: Given, λ = (A,B,π), what is the 

sequence of states I = {i1, i2, i3, i4 … iT} (T is the 

number of observed symbols) such that P(O, I| λ) 

is maximized? 
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(iii) Problem 3: How can the HMM parameters π, A 

and B be adjusted so as to maximize P(O, I| λ)? 

This is also known as a training problem or 

training an HMM.  

 

The current problem at hand is activity recognition 

using HMMs. The observed sequence in this case is 

temporal data about encounters obtained from the 

tags. We use the data gathered for a known set of 

activities to train separate HMMs for each of the 

activities. This is done by solving problem 3. Then 

given sample data, we can identify which HMM is 

most similar to the sample (problem 1). The 

following are the steps to train and test HMMs: 

(i) Obtain data from tags for specific (marked) 

activities or motions. This is obtained from 

qualitative data collected (observations and 

interviews) in addition to tag data.  

(ii) Use marked data to set the parameters of the 

HMM i.e. train the model (Problem 3) 

(iii) Test the HMM, by evaluating if test data are 

appropriately recognized (Problem 1) 

 

Algorithm for Testing HMM (Forward-Backward 

Method) 

 

This method defines a variable αt(i) called the 

forward variable as follows: 

αt(i) = P(O1,O2,O3, … Ot, it= i | λ) 

This is the probability of the partial observation 

sequence up to the position t. At state i at position 

αt(i) is given by, 

1. ����� �  �	
	����, 1 � � � � 

2. For t = 1,2,…T-1, 1 � � � �, 

������� � ��������	,��
	��

� 
������� 
3. Then, 

���|�� �  �������
	��

 

Step 1 refers to the probability for picking state i and 

generating O1. The probabilities then generated by 

step 2 represent transitioning from state at t to state at 

t+1 and  generating Ot+1. Inductively P(O|λ) is found. 

A backward variable βt(i) is defined as: ������, ����, … ��|�� , ��                           
This is the probability of sequence from t+1 to T is 

observed, given the state i at time t and λ.  ���� is 

given by, 

1.  ���� �  1, 1 � � � � 

2. For t = T-1, T-2, …1, 1 � � � �, 

 ���� � !��	,�
������� �������
���

" 
3. Then, 
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Both the forward and backward procedure can solve 

for P(O|λ) in N
2
T time. Practically a test sequence is 

divided into two parts by breaking it in the middle. 

The first part is solved using the forward variable and 

the second part is solved using the backward variable. 

These probabilities are then combined to find the 

probability of a test sequence being close to the given 

HMM. As we have a library of HMM’s we find the 

probability of the test sequence to be close to all the 

HMM’s in the library. Whichever HMM generates 

the highest probability for a test sequence is the 

winning HMM for the given test sequence.  

 

Algorithm for Training HMM (Baum-Welch) 

 

This method is used in the training phase to find the 

HMM for a particular activity. All the tag data 

pertaining to a single activity are used to train a 

HMM for that activity.  The function P(O|λ) is called 

the likelihood function. Assume, #���� �  ���� � �|�, �� 
This is the probability of being in state i at time t, 

given sequence O = O1,O2, … ,OT and λ. From Bayes 

theorem, 

#���� �  ���� � �, �|�����|�� �  ����� �������|��  

where ����� and  ���� are the forward and backward 

variables defined previously. We can define a 

variable $���, �� as, $���, �� �  ���� � �, ���� � �|�, �� 
From derivations

6
 we get, 

$���, �� �  ������	�
������� ���������|��  

It can be seen that summing up #���� from t=1 to T 

provides the number of times state i is visited or 

summing up only up to T-1 provides the number of 

transitions out of state i. Similarly, summing $���, �� 
from t=1 to T-1, the number of transitions from state i 

to state j is obtained. Therefore, ∑ #�����&����  = Expected no. of transitions from i ∑ $���, ���&����  = Expected no. of transitions from i to j 

The re-estimation formulae is as follows �	 �  #����, 1 � � � �                            �	,� �  ∑ '(�	,��)*+(,+∑ -(�	�)*+(,+                                  


��.� �  ∑ -(�	�)(,+,/(,0∑ -(���)(,+                              

These are the updated parameters for the new HMM. 

Therefore the algorithm proceeds as follows. Obtain 

the initial HMM. Calculate A, B and π. Estimate 

P(O|λ) till a sequence length t. Re-estimate the model 
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and the likelihood function. These steps are done 

repeatedly until the likelihood function is maximized.

 

When a tag comes in proximity to the base stations, 

an event is recorded and the received signal strength 

indication (RSSI) value is recorded. RSSI value 

inversely proportional to distance between 

HMMs provide a method by which this 

processed to reveal the underlying activity. In the 

following section, activity recognition using HMMs 

is discussed. 

 

3.  Methods 

 

All experiments were performed after obtaining 

approval from Institutional Review Boards of 

involved institutions.  

 

3.1 Data Collection 

 

Tag information is obtained from off-the

RID tags called SNiF (http://www.sniftag.com/

(Figure 1). Tags record encounters with other tags 

(tag-tag encounter) and base stations (tag

encounter). Base stations can be considered as fixed 

tags that provide approximate tag location 

information. We place base stations at critical 

locations in the environment. This allows for 

determining activities that pertain to certain regions.

The preliminary observations conducted in a trauma 

unit showed that trauma bays (B1-B4 in Figure 

nurse’s station (B5 and B6) and entry/exit points 

were critical areas in the unit. In our study base 

stations were placed in these locations.

carried by the core clinical team that included the 

trauma nurse, Intensive Care Unit (ICU) nurse, 

resident and the attending. 

  

In order to train the HMM’s we recorded movements 

for certain activities in the critical care unit. 

identified fifteen activities that occur in a critical care 

unit and can be captured by movement analysis.

activities were identified based on analysis of 

preliminary ethnographic observations gather

interviewing. These activities identified could

suitably captured by distinct movement patterns. 

activities included arrival of a patient, telephone 

consult and documentation. These activities revolved 

around the patient arrival scenario, dep

Figure 2. ‘P’ refers to the patient; ‘N’ refers to the 

nurse and ‘R’ to the resident on call. t

instants. When a patient arrives and is placed on a 

bed, clinicians carrying tags tend to gather around 

that bed (t1 and t2). This can be logged

based system, provided there exists 

near the bay. Other examples of activit

and the likelihood function. These steps are done 

epeatedly until the likelihood function is maximized. 

When a tag comes in proximity to the base stations, 

an event is recorded and the received signal strength 

indication (RSSI) value is recorded. RSSI value is 

inversely proportional to distance between the tags. 

this data can be 

processed to reveal the underlying activity. In the 

following section, activity recognition using HMMs 

All experiments were performed after obtaining 

view Boards of 

the-shelf active 

http://www.sniftag.com/) tags 

). Tags record encounters with other tags 

tag encounter) and base stations (tag-base 

encounter). Base stations can be considered as fixed 

tags that provide approximate tag location 

information. We place base stations at critical 

This allows for 

determining activities that pertain to certain regions. 

The preliminary observations conducted in a trauma 

B4 in Figure 2), 

nurse’s station (B5 and B6) and entry/exit points 

e unit. In our study base 

stations were placed in these locations. Tags were 

carried by the core clinical team that included the 

trauma nurse, Intensive Care Unit (ICU) nurse, 

In order to train the HMM’s we recorded movements 

for certain activities in the critical care unit. We 

identified fifteen activities that occur in a critical care 

unit and can be captured by movement analysis. Key 

activities were identified based on analysis of 

preliminary ethnographic observations gathered and 

identified could be 

suitably captured by distinct movement patterns. The 

arrival of a patient, telephone 

. These activities revolved 

scenario, depicted in 

‘P’ refers to the patient; ‘N’ refers to the 

t refers to time 

When a patient arrives and is placed on a 

bed, clinicians carrying tags tend to gather around 

be logged by the tag 

 a base station 

activities included a 
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resident being near a phone to seek a phone consult 

(t3) and the nurse sitting near a computer to document 

cases (t3). These activities have a distinct movement 

pattern associated with them and we can train an 

HMM to recognize these activities and label them. 

more observations are gathered we can develop 

heuristics for more complex activities and train th

system to recognize the same. 

 

Figure 1. Active RID (SNiF®) tag and base station

 

Figure 2. Activity heuristics for patient arrival

 

3.2 Training and Testing HMMs

 

We gathered movement samples for the 

in the ER. 100 samples were gathered for each 

activity. 50 of these samples were used to train HMM 

for the activity using the training algorithm. The 

remaining samples were employed for testing the 

HMM library. Overall accuracy of the system was 

determined as the number of correctly recognized 

activities by the HMM library against the total 

number of test samples.  

 

3.3 Virtual World Replay 

 

When activities are recognized by the HMM, they 

can easily be replayed in virtual worlds. A sample 

virtual trauma unit was created and visualized (Figure 

3). We created the trauma room using IRRLicht® 

Software (www.irrlicht.net). We developed a plug

resident being near a phone to seek a phone consult 

) and the nurse sitting near a computer to document 

ities have a distinct movement 

pattern associated with them and we can train an 

HMM to recognize these activities and label them. As 

more observations are gathered we can develop 

heuristics for more complex activities and train the 

 
Active RID (SNiF®) tag and base station 

 
patient arrival 

3.2 Training and Testing HMMs 

We gathered movement samples for the 15 activities 

samples were gathered for each 

of these samples were used to train HMM 

for the activity using the training algorithm. The 50 

remaining samples were employed for testing the 

HMM library. Overall accuracy of the system was 

determined as the number of correctly recognized 

HMM library against the total 

When activities are recognized by the HMM, they 

can easily be replayed in virtual worlds. A sample 

virtual trauma unit was created and visualized (Figure 

trauma room using IRRLicht® 

We developed a plug-in 
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for the IRRLicht software that could take the input 

sequence of activities and then play those activities 

back in the virtual world using standardized activity 

animations. This offered an opportunity to visualize 

the workflow after it has been recorded. This tool can 

be used for assessment and education purposes. 

 

 
Figure 3. Virtual trauma unit for workflow 

visualization  

 
Figure 4. Hidden Markov Model based motion 

recognition percentage 

 

4. Experimental Results 

 

Figure 4 summarizes the recognition accuracy for the 

15 motion patterns (maximum 90.5% and minimum 

84.5%).  When the source of error was analyzed it 

was found that some of the samples from the training 

set deviated from their normal movement pattern 

which introduced errors. Once the deviations were 

removed from the datasets, we achieved an accuracy 

of 98.5% at an average. In addition, at each time 

instant signal strength values for tag-base interactions 

are recorded for a single tag-base pair. This leaves a 

sparse matrix for analysis. We used linear 

interpolation to fill the sparse matrix, which added to 

the error rate. Our future work includes incorporation 

of accelerometer (records acceleration of tags) with 

existing signal strength values in order to improve 

recognition performance. It was also found that 

physicians using the virtual world replay perceived 
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the visualization tool to be useful for replaying 

workflow and activities in an ER. A useful feature of 

the tool was the ability to find normative workflow 

and also visualize deviations from the normal 

workflow pattern.  

 

5. Conclusion 

 

The tool presented in the paper for automated 

workflow extraction makes several key contributions. 

Firstly, automated workflow recognition to gather 

information in a passive manner is of great use to 

cognitive science researchers interested in clinical 

workflow analysis. Currently the system is capable of 

augmenting conventional data collection mechanisms 

to offer rich multidimensional activity data that 

allows observers to focus on higher level details 

rather than simply annotating low level activities.  

Another potential use for this system is an error 

detection mechanism. Using HMMs models of 

normative workflow can be created. When deviations 

from norm are detected, error prone situations could 

be indicated. For retrospective analysis of data this 

could direct researchers to key points in the events to 

be analyzed.  

 

A limitation of the system lies in its inability to detect 

activities that cannot be fully represented by 

movements. Future works include improving HMM 

recognition rates and including audio to enrich 

information gathered. This will provide richer data 

and better method to capture and analyze workflow 

automatically. 
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