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In both dogs and humans Leishmania infantum infection is more prevalent than disease, as infection often
does not equate with clinical disease. Previous studies additively indicate that advanced clinical visceral
leishmaniasis is characterized by increased production of anti-Leishmania antibodies, Leishmania-specific
lymphoproliferative unresponsiveness, and decreased production of gamma interferon (IFN-�) with a con-
comitant increase of interleukin-10 (IL-10). In order to differentiate infection versus progressive disease for
better disease prognostication, we temporally evaluated humoral and cellular immunologic parameters of
naturally infected dogs. The work presented here describes for the first time the temporal immune response to
natural autochthonous L. infantum infection in foxhounds within the United States. Several key changes in
immunological parameters should be considered when differentiating infection versus clinical disease, includ-
ing a dramatic rise in IgG production, progressive increases in antigen-specific peripheral blood mononuclear
cell proliferation, and IFN-� production. Polysymptomatic disease is precluded by increased IL-10 production
and consistent detection of parasite kinetoplast DNA in whole blood. This clinical presentation and the
immuno-dysregulation mirror those observed in human patients, indicating that this animal model will be very
useful for testing immunomodulatory anti-IL-10 and other therapies.

Leishmaniasis is a group of vector-borne diseases caused by
intracellular protozoan parasites of the genus Leishmania. Dis-
ease manifestations can range from localized, self-healing cu-
taneous ulcers to disseminated disease, referred to as visceral
leishmaniasis (VL). VL is fatal if left untreated. It is primarily
caused by Leishmania donovani in Africa and India and by L.
infantum (or L. chagasi) in the Mediterranean basin, Asia, and
Central and South America.

VL, as caused by L. infantum infection, is zoonotic (4). Both
dogs and humans are natural hosts (27), and in endemic re-
gions, infected dogs are the primary domestic reservoir for
zoonotic VL and the most significant risk factor predisposing
humans to infection (9). L. infantum infection often does not
equate with clinical disease (18). Typical clinical signs of VL
include fever, weight loss, anemia, lymphadenopathy, and
hepato- and splenomegaly (4, 22, 27).Clinical stages of infec-
tion can be classified by the severity of clinical signs, humoral
and cell-mediated immune responses, and parasite load (33).
We propose that these parameters can also be used to deter-
mine the best window for treatment and in some cases predict
the appearance of clinical signs and prognosis (24).

Host protection against Leishmania infection requires a
proinflammatory, TH1 immune response, as characterized by

the production of interleukin-12 (IL-12) by antigen-presenting
cells and gamma interferon (IFN-�) by T cells (reviewed in
reference 22). Advanced clinical VL in human patients is char-
acterized by Leishmania-specific lymphoproliferative unre-
sponsiveness and decreased production of IFN-� following in
vitro Leishmania antigen restimulation (11, 31). Active disease
is associated with elevated IL-10 levels in serum and enhanced
IL-10 mRNA in lesional tissues (reviewed in reference 22).
Cured or subclinical individuals are able to mount antigen-
specific IFN-� responses following Leishmania antigen re-
stimulation in vitro. Cured patients are also resistant to reinfec-
tion and are leishmanin skin test positive, suggesting no inherent
defect in the antigen-dependent TH1 response (3, 7, 34).

Canine visceral leishmaniasis (CVL) in endemic areas mimics
both the immunologic alterations and pathophysiology of human
disease. Autochthonous L. infantum infection in the United
States foxhound population has been recently described (5, 8).
Despite a potentially different means of transmission, i.e., non-
vector borne (12, 24, 29), symptomatic disease and pathological
findings in naturally infected foxhounds parallel those observed in
both canines and humans in endemic regions (12). For these
studies, we hypothesized that the immunopathology of primarily
non-vector-mediated L. infantum CVL would reflect the changes
observed in humans, including increased anti-Leishmania anti-
bodies in sera and decreased lymphoproliferative IFN-�-medi-
ated responses with increased IL-10 production. Here we fol-
lowed a cohort of U.S.-born, naturally infected canines to
determine their immunopathology and clinical presentation(s) of
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autochthonous L. infantum infection. Analysis of clinical signs,
serology, and kinetoplast-specific quantitative PCR (qPCR) cat-
egorized these animals into four different groups: (i) noninfected,
(ii) infected resistant, (iii) infected susceptible, and (iv) clinical, as
previously described in reference 33. Animals in the fourth clin-
ical state had increased production of IgG1 and IgG2, decreased
lymphoproliferative responses and IFN-� production, and in-
creased IL-10 production. The appearance of any of these immu-
nological parameters correlated with disease progression.

The work presented here describes for the first time the
temporal immune response to natural autochthonous L. infan-
tum canine infection in the United States. We show that even
in the likely absence of vector-mediated transmission (32),
clinical presentation and immuno-dysregulation mirror those
observed in dogs and humans infected in regions of endemicity
(1, 22). The ongoing antigen-specific immune response to L.
infantum infection wanes as disease progresses, and production
of anti-Leishmania antibodies and IL-10 are key immunologic
features of disease manifestation and progression.

MATERIALS AND METHODS

Description of animals. Although VL is not endemic in the United States,
canine visceral leishmaniasis has recently been described as an epidemic within
the foxhound population in this country. The first report of a foxhound CVL
epidemic in the United States was in 1999, in a foxhound kennel in New York
(8). By 2005, it was reported that 60 kennels in 22 states and two Canadian
provinces had L. infantum-seropositive foxhounds and that autochthonous in-
fection in canines was for the most part limited to foxhounds (5).

Dogs used in this study, all foxhounds, ranged in age from 6 months to 7 years.
These animals or their tissues were donated to Iowa State University College of
Veterinary Medicine by two different midwestern foxhound kennels. Nine of the
dogs were donated based on positive serological indirect immunofluorescence
assay test (IFAT) results (�1:64) and presentation of clinical signs. The remain-
ing four dogs were born to an IFAT-positive (�1:256) female. All animals were
housed at Iowa State University Veterinary College, and the Institutional Animal
Care and Use Committee at Iowa State approved all protocols involving animals.
Prior to arrival, all dogs were vaccinated for core canine diseases. Once under the
care of laboratory animal resources (LAR) at Iowa State University, blood
samples were obtained for complete blood count (CBC) and chemistry, and stool
samples were collected for enteric parasite assessment. All animals were treated
for ectoparasites and intestinal parasites (Giardia, roundworms, and Coccidia)
via treatment with Strongid (5 mg/kg of body weight), Baytril (1/4 tablet), Albon
(55 mg/kg), Panacur (2 ml/kg), Clavamox (13.75 mg/kg), and Cephalexin (25
mg/kg).

Clinical evaluation. Upon arrival at Iowa State University College of Veteri-
nary Medicine, all animals were clinically assessed via physical examination,
complete blood count, chemistry panel analysis, L. infantum kinetoplast DNA
(kDNA)-specific qPCR, and IFAT serologic analysis. Based on these parame-
ters, animals were classified into four distinct categories: noninfected, showing
no clinical signs of disease and qPCR and IFAT negative; infected resistant,
showing no to mild clinical signs and IFAT and qPCR positive or negative;
infected susceptible, showing mild to moderate clinical signs and qPCR and
IFAT positive; clinical, showing severe, disseminated disease and IFAT and
qPCR positive.

Parasites. Leishmania infantum (LIVT-2) (30) was grown to stationary phase
in complete Grace’s medium (incomplete Grace’s supplemented with 20% fetal
bovine serum, 100 U/ml penicillin, 100 �g/ml streptomycin, and 2 mM L-glu-
tamine). Freeze-thawed whole antigen was prepared as described previously
(13).

PBMC isolation and CFSE staining. All animals were allowed to acclimate for
1 week prior to immunological studies. Peripheral blood mononuclear cells
(PBMC) were isolated from heparinized blood samples using Ficoll-Histopaque
1077 (Sigma, St. Louis, MO) gradient centrifugation. Red blood cells were
removed using ACK lysis buffer (0.15 M NH4Cl, 1.0 mM KHCO3, 0.1 mM
Na2EDTA, pH 7.4). PBMC were labeled with carboxyfluorescein succinyl ester
(CFSE; Molecular Probes, Eugene, OR) as described previously (14). PBMC
were washed twice in phosphate-buffered saline (PBS) and resuspended in com-
plete medium (RPMI 1640 supplemented with 10% fetal bovine serum, 100 U/ml

penicillin, 100 �g/ml streptomycin, 2 mM L-glutamine, and 25 mM HEPES
buffer). PMBC were counted and adjusted to 4 � 106/ml for further analysis.

PBMC proliferation assay. CFSE-labeled PBMC (2 � 105/well) were plated
on 96-well plates and incubated with medium alone or stimulated with con-
canavalin A (ConA; 5 �g/ml) for 4 days, with freeze-thawed whole L. infantum
antigen (10 �g/ml) for 7 days, or with distemper vaccine (Vanguard Plus 5;
Pfizer) control for 10 days, at 37°C with 5% CO2. Cells were harvested, washed
in fluorescence-activated cell sorter (FACS) buffer (0.1% albumin, 0.1% sodium
azide in PBS), and labeled with phycoerythrin (PE)-conjugated anti-canine CD4
antibody (Serotec, Raleigh, NC). Cells were fixed in 1% paraformaldehyde and
analyzed using a FACSCanto flow cytometer (BD Pharmingen, San Diego, CA).
Data were analyzed using FlowJo software (Tree Star Inc., Ashland, OR).

IFN-� and IL-10 ELISA. Unlabeled PMBC (2 � 105) were plated and incu-
bated as described above. Supernatants were collected at the indicated time
points and stored at �20°C until analysis. IFN-� and IL-10 production levels
were measured using enzyme-linked immunosorbent assay (ELISA) kits from
R&D Systems (Minneapolis, MN) according to the manufacturer’s recommen-
dations.

Serology and real-time qPCR. Serum samples were collected from all animals,
stored at �20°C, and sent to the Centers for Disease Control and Prevention for
IFAT testing for antibodies to Leishmania spp. as previously described (5). DNA
from whole blood samples collected in heparinized tubes (BD Pharmingen, San
Diego, CA) was isolated using the Qiagen blood DNA isolation kit according to
the manufacturer’s instructions. DNA quality and quantity were measured using
a NanoDrop ND1000 spectrophotometer (Wilmington, DE). L. infantum
kDNA-specific primers and probe (F, 5�-CCGCCCGCCTCAAGAC; R, 5�-TG
CTGAATATTGGTGGTTTTGG [Integrated DNA Technologies, Coralville,
IA]; probe, 5�–6-carboxyfluorescein [6-FAM]–AGCCGCGAGGACC–3� minor
groove binder nonfluorescent quencher [Applied Biosystems, Foster City, CA])
were used. (FAM is a laser-activated reporter dye.) Blood DNA samples were
assayed via qPCR in duplicates of three dilutions (straight, 1:10, and 1:20) using
a Stratagene Mx3005P qPCR system via a 96-well format and Platinum qPCR
SuperMix-UDG master mix (Invitrogen, Carlsbad, CA). Primers were used at
775 nM and probe at 150 nM, with thermocyling at 50°C for 2 min, 95°C for 2
min, and 50 cycles of 95°C for 30 s, 57°C for 1 min, and 60°C for 1 min. Results
were analyzed via MxPro QPCR software version 4.01 in conjunction with Mi-
crosoft Excel.

L. infantum-specific IgG ELISA. High-affinity plates were coated overnight at
4°C with 10 �g/well of freeze-thawed L. infantum antigen in 50 mM carbonate-
bicarbonate buffer. Plates were blocked with 200 �l of blocking buffer for 1 h at
room temperature and washed. Serum samples (100 �l) were diluted 1:100 and
incubated for 2 h at room temperature. Plates were developed with horseradish
peroxidase-conjugated anti-canine IgG1 or IgG2 (1:20,000; Bethyl Laboratories,
Montgomery, TX) for 1 h, and absorbance was read at 405 nm using a microplate
reader (Molecular Devices, Sunnyvale, CA).

Statistical analysis. Statistical significance was analyzed using Prism4 (Graph-
Pad Software Inc., La Jolla, CA). Differences between groups were determined
using the Mann-Whitney U-test. P values below 0.05 were considered signifi-
cantly different.

RESULTS

Clinical evaluation. Clinical assessment included a CBC and
chemistry panel (Table 1). Following euthanasia, necropsy was
performed by a veterinary pathologist and a complete set of
tissues was collected for each animal and evaluated histologi-
cally (Table 1). Lymphocytosis (elevated lymphocyte numbers
in the blood) was consistently present in all dogs tested. Per-
sistent lymphocytosis is indicative of chronic antigen stimula-
tion, which we would attribute to the presence of Leishmania
parasites in infected animals. However, since noninfected dogs
also showed lymphocytosis, we cannot rule out the possibility
of an increased circulating lymphocyte number due to other
infections, including gastrointestinal or ectoparasitism, which
had been observed in these foxhounds previously (data not
shown). In all infected animals we observed a moderate to
marked hyperglobulinemia. Serum chemistry and histopatho-
logic findings in the infected susceptible dogs indicated the
onset of systemic disease consistent with visceral leishmaniasis,
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including elevated blood urea nitrogen (BUN), creatinine, and
phosphorous, anemia, lymphoplasmacytic portal hepatitis, his-
tiocytic splenitis, and membranous glomerulonephritis. CBC
and serum chemistry evaluations of clinical dogs indicated
these animals had signs of nonregenerative anemia, renal com-
promise (elevated BUN, creatine, and phosphorus), and he-
patic injury (elevated alanine transferase). Despite their clini-
cal state, lymphocytopenia was not observed in clinical dogs.
Histopathologic examination confirmed these findings and also
showed systemic histiocytic inflammation with a myriad of in-
tracellular Leishmania amastigotes.

Serology and qPCR. To confirm infection and disease status,
each dog was evaluated for L. infantum serostatus and qPCR
for L. infantum kDNA. Serum samples from all foxhounds in
the study were sent to the Centers for Disease Control and
Prevention for IFAT analysis of antibodies against Leishmania
spp. (Table 1). All dogs in the control (noninfected, nonfox-
hound), noninfected group and two dogs from the infected
resistant group were seronegative (titer of �1:16). The two
remaining dogs within the infected resistant group had sero-
positive titers (1:64). Dogs within the infected susceptible
group (three dogs) had titers of 1:256, and dogs within the

clinical group (four dogs) had strong seroreactivity to Leish-
mania antigen (1:512).

L. infantum-specific kDNA amplification was observed in all
clinical and infected susceptible dogs and in two of the infected
resistant group. As expected, no amplification was observed in
the noninfected foxhounds (Table 1) or in the control, nonfox-
hound dogs. These data indicate that increased parasitemia is
found during later stages of infection.

L. infantum-specific IgG1 and IgG2 production. Chemistry
findings in serum samples from clinical dogs indicated these
animals had pan-elevation of Igs: IgA, �500 mg/dl; IgG,
�5,000 mg/dl; IgM, 400 mg/dl (normal ranges are 20 to 150
mg/dl, 1,000 to 2,000 mg/dl, and 70 to 270 mg/dl, respectively).
Hypergammaglobulinemia has been associated with CVL
pathophysiology in disease progression (12) and suppression of
the immune response to L. infantum (26). However, a relation-
ship between IgG isotype profile and disease resistance versus
susceptibility remains to be established. Conflicting reports
have failed to provide a clear role for IgG1 or IgG2 production
in disease development (25, 28). Based on our findings of
detectable circulating parasites as disease progressed, we
wanted to determine if this observation correlated with detec-

TABLE 1. Summary of kDNA qPCR, IFAT serology, CBC and blood chemistry, and gross and histopathology findings
for L. infantum-infected dogs

Clinical state (n)
No.

PCR�/no.
tested

IFAT
titer

CBC and chemistry
(no. with indicated

finding/total no.
evaluated)

Body condition (no. with
condition/total no. tested)

Gross pathological findings
(no. with finding/total no.

tested)

Histopathologic finding(s)
(no. with finding/total no.

tested)

Noninfected (2) 0/2 Lymphocytosis (2/2) Adequate (2/2) Mild mesenteric and
popliteal
lymphadenomegaly (2/2)

No significant findings
(2/2)

Infected resistant (4) 2/4 1:64 Lymphocytosis (4/4),
hyperglobulinemia
(2/4)

Adequate (4/4) Moderate systemic
lymphadenomegaly (4/4),
mild splenomegaly (2/4)

No significant findings
(2/4), mild
lymphoplasmacytic
portal hepatitis (2/4),
rare Leishmania
amastigotes
identified via splenic
impression smear
(1/4)

Infected susceptible (3) 3/3 1:256 Lymphocytosis (3/3),
hyperglobulinemia
(3/3), anemia (1/
3), elevated BUN,
creatinine, and
phosphorus (1/3)

Adequate to thin (3/3) Moderate systemic
lymphadenomegaly (3/3),
mild splenomegaly (2/3),
hepatomegaly (1/3)

Lymphohistiocytic
portal hepatitis (3/3),
membranous
glomerulonephritis
(3/3), histiocytic
splenitis (2/3), rare
Leishmania
amastigotes
identified via splenic
impression smear
(1/3)

Clinical (4)a 4/4 1:512 Lymphocytosis (2/2),
anemia (2/2),
elevated BUN,
creatinine,
phosphorus,and
alanine
transferase (2/2),
hyperglobulinemia
(2/2)

Thin to emaciated
(4/4)

Marked systemic
lymphadenomegaly (2/2),
splenomegaly (2/2),
hepatomegaly (2/2)

Lymphohistiocytic
portal hepatitis (2/2),
membranous
glomerulonephritis
(2/2), histiocytic
splenitis (2/2),
systemic histiocytic
inflammation with
myriad intracellular
Leishmania
amastigotes (2/2)

a Only two of four dogs were assessed for CBC, chemistry, and necropsy changes.
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tion of specific antibody levels. Using whole parasite antigen
we found that sera from control and noninfected groups con-
tained minimal IgG1 and IgG2 antibodies when measured by
ELISA, as optical density (OD) values observed were similar
to background readings (OD, �0.01). The highest levels of
anti-L. infantum IgG1 (Fig. 1A) and IgG2 (Fig. 1B) were
produced by the infected susceptible and clinical groups. Over-
all, IgG levels increased as disease progressed; however, we did
not observe a direct correlation between either IgG isotype
and clinical status. Other nonantibody effector functions may
therefore be more predictive of disease progression.

L. infantum-specific PBMC proliferative response. A key
immunologic feature of late clinical VL is the inability of
PBMC to generate a protective, L. infantum-specific immune
response (31). This is characterized by the loss of the antigen-
specific lymphoproliferative response and the loss of IFN-�
production. To identify whether this lack of antigen respon-
siveness as disease progresses occurred in our canine cohort,
we analyzed the antigen-specific proliferative response of
PBMC CD4� T cells from all four groups. Blood samples were
collected every 4 weeks during a period of at least 3 months for
each dog. PBMC were isolated from whole blood samples,
stained with CFSE, and stimulated with ConA, L. infantum
antigen, or distemper vaccine or left untreated. PMBC were
then analyzed for CD4� T-cell proliferation via flow cytom-
etry. CD4� T cells from all dogs proliferated in response to
stimulation with ConA, indicating that the CD4� T-cell com-
partment was not mitogenically deficient (Fig. 2B). In response

to distemper vaccine stimulation all groups except for the clin-
ical dogs had a proliferative response, indicating that although
mitogenically competent, clinical dogs were not capable of
initiating antigen-specific proliferative responses (Fig. 2A and
B). In response to L. infantum antigen stimulation, control
(uninfected, nonfoxhound) and noninfected dogs showed a
minimal level of proliferation in response to antigen restimu-
lation (Fig. 2). While a significantly greater percentage of
CD4� T cells from infected resistant dogs proliferated in re-
sponse to antigen restimulation than in noninfected dogs, in-
fected susceptible dogs demonstrated the greatest percentage
of proliferative CD4� T cells, with a level significantly higher
than in infected resistant animals (Fig. 2A). In contrast, the
antigen-specific CD4� T-cell proliferative response from clin-
ical animals was significantly decreased compared to that of

FIG. 1. Anti-L. infantum IgG1 and IgG2 responses increase with
CVL disease progression. L. infantum-specific IgG responses were
measured via ELISA using sera from a control (one dog), noninfected
(two dogs), infected resistant (four dogs), infected susceptible (two
dogs), and clinical (three dogs) animals. Blood samples were collected
and centrifuged to clarify serum. Results shown are OD values from
the antigen-specific IgG1 (A) and IgG2 (B) ELISAs. Lines indicate
mean values for each group.

FIG. 2. Decreased lymphoproliferative response in PBMC from L.
infantum-infected, clinical dogs. (A) PBMC proliferative response
evaluations from a control (one dog), noninfected (two dogs), infected
resistant (four dogs), infected susceptible (two dogs), and clinical (two
dogs) animals were repeated monthly over 3 to 6 months. PBMC were
isolated, stained with CFSE, restimulated with freeze-thawed L. infan-
tum antigen, and incubated for 7 days at 37°C. Cells were then har-
vested and stained with a PE-conjugated anti-CD4 antibody. PMBC
CD4� T-cell proliferation was assessed via CFSE dilution using flow
cytometry. Each point is indicative of a blood draw from each animal
over a 3- to 6-month period and subsequent proliferation assay. At
least four separate proliferation assays were carried out over time on
each dog in every group. Horizontal lines indicate the mean responses
for each group. �, significant difference (P 	 0.05). (B) PBMC prolif-
erative responses to L. infantum antigen (Ag), distemper vaccine
(DHPP), or ConA stimulation for the control (one dog), infected
susceptible (three dogs), and clinical (two dogs) animals. PBMC were
isolated and processed as described for panel A and stimulated with L.
infantum antigen for 7 days, with DHPP for 10 days, or with ConA for
4 days. CD4� T-cell proliferation was assessed via CFSE dilution using
flow cytometry. At least three separate experiments were carried out
for each dog in every group. Bars indicate the average proliferation for
each group (
 standard errors of the means).
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infected susceptible dogs. These data suggest that as disease
progresses, there is an initial increase in antigen-specific lym-
phoproliferative responsiveness of CD4� T cells that eventu-
ally dwindles. Appearance of clinical disease correlates with
the loss of the antigen-specific lymphoproliferative response.
Based on this observed loss of proliferative response in late
disease, we wished to determine if cytokine production, spe-
cifically IFN-� and IL-10, could be correlated with this lym-
phosuppressive change.

Disease progression and antigen-specific PBMC IFN-� and
IL-10 production. Treated individuals develop a cell-mediated
immune response capable of offering protection from reinfec-
tion, as characterized by antigen-specific IFN-� responses (7,
34). In contrast, individuals with advanced VL show a decrease
in antigen-specific IFN-� production and elevated levels of the
immunoregulatory cytokine IL-10 in serum and increased
IL-10 mRNA expression in lesional tissue (6, 10). The corre-
lation between VL disease progression and IL-10 production
in humans is now well established (22). In CVL, IFN-�-medi-
ated responses seem to predominate in L. infantum-infected
but asymptomatic dogs (23). Similar to human disease, IL-10
mRNA expression has been positively correlated with parasitic
load and progression of clinical disease in naturally infected
dogs (15). In order to determine the correlation between dis-
ease and cytokine production in our cohort, culture superna-
tants from PBMC restimulated with L. infantum antigen were
assayed for IFN-� (Fig. 3A) and IL-10 (Fig. 3B) production.
Production of IFN-� and IL-10 from PBMC in the control
group (Fig. 3A and B) was below the detection limit of the
assay (16 pg/ml and 10 pg/ml, respectively). PMBC from in-
fected resistant and infected susceptible animals produced
comparable levels of IFN-� (Fig. 3A). PBMC from infected
resistant dogs produced significantly higher levels of IFN-�
than noninfected animal PMBC. PBMC from clinical dogs,
however, produced significantly lower amounts of IFN-� than
infected susceptible and infected resistant dogs.

Analysis of IL-10 production from culture supernatants in-
dicated a significant increase in the production of this cytokine
with disease progression. PBMC from dogs in the clinical
group produced the greatest amount of IL-10 compared to all
other groups (Fig. 3B), with decreasing amounts detected from
infected susceptible and then infected resistant dogs. All three
groups were significantly different from one another. PBMC
from noninfected dogs produced levels of IL-10 that were
below the detection limit of the assay (10 pg/ml). These data
demonstrate that clinical progression and loss of antigen-spe-
cific T-cell proliferation in our cohort were associated with
decreased levels of antigen-specific IFN-� production and in-
creased production of IL-10 in response to L. infantum antigen
restimulation.

DISCUSSION

During CVL, susceptibility to symptomatic infection has
been associated with increased antibody production and loss of
L. infantum-specific CD4� T-cell function with a concomitant
increase in immunosuppressive mechanisms. However, little is
known regarding the mechanisms that control the balance be-
tween resistance to infection and susceptibility. Characteriza-
tion of measurable immunopathological end points may pro-

vide a means to better predict disease development in infected
dogs. Our studies using a cohort of naturally infected dogs
show how changes in IgG production, lymphoproliferative re-
sponses, and effector cytokine production correlate with the
appearance of clinical signs and disease progression.

In our study increases in serologic titer were associated with
disease progression (Table 1). The highest titers (1:256 and
1:512) were observed in dogs displaying mild to severe clinical
disease within the infected susceptible and clinical groups.
Moreover, high antibody titers also correlated with the detec-
tion of L. infantum parasites in peripheral blood samples via
qPCR (Table 1), indicating an increase in circulating parasites
later in disease. Analysis of antigen-specific IgG1 and IgG2 in
sera of the four groups of dogs showed an increase in both
isotypes with disease progression (Fig. 1A and B). Infected
susceptible and clinical dogs exhibited the highest OD values,
indicating increased IgG1 and IgG2 levels compared to non-
infected and infected resistant dogs, but there was no clear
difference between isotypes regarding clinical state or progres-
sion.

During human VL, increased levels of anti-Leishmania
IgG have been shown to have a negative correlation with
delayed-type hypersensitivity (DTH) responses (17). Here
we show that along with increased IgG in sera, L. infantum
antigen responsiveness of PBMC CD4� T cells significantly
decreased in the clinical group of animals (Fig. 2). This loss

FIG. 3. Disease progression correlates with decreased IFN-� and
increased IL-10 production. Shown are PBMC effector cytokine re-
sponses from the control (one dog), noninfected (two dogs), infected
resistant (four dogs), infected susceptible (two dogs), and clinical (two
dogs) animals. Culture supernatants were collected from PBMC cul-
tures stimulated with L. infantum antigen for 7 days and analyzed via
ELISA for IFN-� (A) and IL-10 (B). Each point is indicative of one
experiment. At least three separate experiments were carried out for
each dog in every group. Lines indicate the mean responses for each
group. *, significant difference (P 	 0.05). ND, not detectable.
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of lymphoproliferation has been described as “immune ex-
haustion” due to unchecked levels of pathogen antigen (2,
19). Infected susceptible animals showed the most robust
proliferative response compared to all other groups. Prolif-
eration in the noninfected foxhound group may be attrib-
uted to nonspecific proliferation or perhaps a dwindling
recall response. Animals in this group were donated as part
of a litter of puppies born to a seropositive, qPCR-positive
female. It is therefore possible that they may have been
exposed to L. infantum parasites in utero at a very low dose,
leading to exposure and some T-cell activation but perhaps
not patent infection. Altogether, our data show that PBMC
CD4� T cells from L. infantum-infected dogs respond to
antigen stimulation during the earlier stages of infection but
lose that ability as they progress to clinical disseminated
disease, negatively correlating with the increased levels of
IgG in sera.

Antibody production is an important contributor to VL pa-
thology due to antigen-antibody complex deposition. B-cell
activation and increased IgG production are observed in con-
junction with IL-10 overproduction during VL (22). To deter-
mine what effector cytokines were produced by the dampened
T cells with limited antigen responsiveness in our cohort, we
assessed IFN-� and IL-10 production in cultured PMBC. We
found that decreased proliferative responses in the clinical
group were accompanied by significantly decreased IFN-� pro-
duction (Fig. 3A) and significantly increased IL-10 production
(Fig. 3B). This profile matches observed changes in cytokine
production in human cohort studies (10, 20, 21, 31) and dogs
(23) in areas of endemicity. Our infected resistant and infected
susceptible groups produced similar levels of IFN-�; however,
the infected susceptible group showed significantly increased
production of IL-10 compared to the infected susceptible
group. The observed increase in IL-10 production along with
increased blood parasite burden may be specific factors which
promote clinical disease.

The factors that determine disease progression in CVL re-
main poorly understood. It is clear that no one clinical param-
eter can be used to predict which infected dogs will likely
become clinically ill. Our studies using our canine cohort of
progressive CVL indicate that several key changes in clinical
parameters should be considered, including a rise in IgG pro-
duction and a progressive increase of antigen-specific PBMC
proliferation followed by a decreased IFN-�-mediated re-
sponse, a dramatic increase in IL-10 production, and consistent
detection of parasite kDNA in whole blood. Further studies
are needed to fully understand the relationship between in-
creased IgG, IL-10 production, and parasite load. While it has
been shown that all three of these events precede clinical
disease (16, 17, 23), the causal relationship between them is yet
to be determined. Understanding which event drives the others
may provide insights into the mechanisms leading to VL and
for future immunotherapies.
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