Letters to the Editor

Detecting VIM-1 Production in *Proteus mirabilis* by an Imipenem-Dipicolinic Acid Double Disk Synergy Test[∀]

Gram-negative pathogens producing metallo- β -lactamases (M β Ls) capable of hydrolyzing carbapenems have achieved worldwide spread (1). The most frequent M β Ls reported so far belong to the VIM and IMP types. VIM-1 producers constitute the majority of the multiresistant *Klebsiella pneumoniae* isolates in Greek hospitals (6). M β L-positive isolates among other members of the family *Enterobacteriaceae* such as *Proteus mirabilis* have also sporadically occurred (8). Detection of M β Ls is mostly based on carbapenem-EDTA synergy tests in various formats. There are, however, sensitivity problems due to low carbapenem MICs, as well as discrepancies between the various methods (1, 3).

P. mirabilis exhibiting resistance to newer β -lactams was recently noticed at Evgenidion General Hospital in Athens. The automated system used in the clinical laboratory (Vitek 2 using the AST-N103 and AST-EXN8 susceptibility cards; bioMérieux) invariably characterized these isolates as cephalosporinase positive. Sixteen P. mirabilis isolates from 2008 were studied. MICs of ceftazidime and cefotaxime were >64 mg/liter. Isolates were also resistant to penicillins, penicillin-clavulanate combinations, and cefoxitin. MIC ranges of cefepime and aztreonam were 8 to 16 and 2 to 4 mg/liter, respectively. Isolates were fully or intermediately susceptible to imipenem (MICs of 2 to 8 mg/liter) and meropenem (MICs of 0.25 to 2 mg/liter), as determined by broth microdilution. PCR assays specific for a variety of bla genes and sequencing of the amplicons showed that all isolates carried *bla*_{TEM-1}, *bla*_{CMY-16}, and *bla*_{VIM-1}. Isoelectric focusing of cell extracts confirmed production of the respective β-lactamases. Comparable imipenem-hydrolyzing activities were also observed by spectrophotometry in crude cell extracts from all isolates, although lower (10 to 15 U) than those usually found in VIM-1-producing K. pneumoniae (40 to 80 U; 1 U was the amount of enzyme hydrolyzing 1 nmol of imipenem/min/mg of protein) (5). All but two isolates appeared MBL negative by the imipenem-EDTA double disk synergy test (DDST) (2). The EDTA-imipenem combined disk test (2) failed to detect any of the isolates. The lack of sensitivity of the EDTA-based tests prompted us to evaluate synergy between dipicolinic acid (DPA) and imipenem. Disks containing 250 µg DPA and imipenem (10 µg) were placed at a distance of 8 mm (edge to edge) as recommended (Dipicolinic Acid Diatabs; Rosco Diagnostika, Taastrup, Denmark). All 16 isolates tested were MBL positive by this method, producing synergy images (Fig. 1). To validate the specificity of the DPA-imipenem synergy method, eight P. mirabilis strains from the collection of the Hellenic Pasteur Institute were used as negative controls. Of these, two strains produced TEM-1 (imipenem MICs were 0.25 and 1 mg/liter), four lacked any acquired β -lactamase (imipenem MIC range of 0.25 to 2 mg/liter), and the remaining two, also lacking detectable *β*-lactamase activity, were mutants selected in vitro on imipenem (MICs of 4 and 8 mg/liter). All eight control isolates were consistently negative by the DPA-imipenem synergy method. We also tried to apply a combined disk test using imipenem disks (10 μ g) each supplemented with 200 μ g of DPA (Sigma-Aldrich, St. Louis, MO). Although a slight increase in the imipenem inhibition zone was observed for all but three VIM-1 producers, reproducibility was low and further standardization was not attempted.

Imipenem-DPA synergy has been effectively used for M β L-producing *Pseudomonas* spp. and *Acinetobacter* spp (4, 7). To our knowledge, this is the first successful application of this method for *P. mirabilis*. Yet, it must be pointed out that the isolates examined were clonally related, as indicated by PFGE using NotI for generating macrorestriction fragments (data not shown). Thus, the DPA-based method requires further validation using epidemiologically distinct M β L-positive strains.

Both EDTA and DPA are chelators with high inhibitory activity against M β Ls. Therefore, we cannot provide a plausible explanation for the markedly higher sensitivity of the DPA-imipenem DDST. Differences in the interaction of these agents with *P. mirabilis* cells, other than M β L inhibition, could be hypothesized. Irrespective of the underlying mechanism, it seems that the use of DPA can facilitate detection of VIM-positive *P. mirabilis* isolates that appear falsely negative by the EDTA-based tests. Also, these data

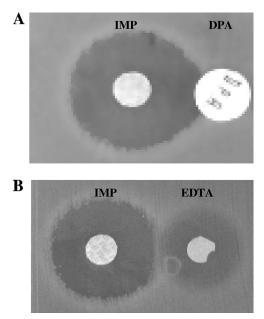


FIG. 1. (A) Positive synergy test using disks containing DPA (250 μ g) and imipenem (IMP, 10 μ g) for a *P. mirabilis* isolate producing VIM-1. (B) The same isolate appearing M β L negative by DDST using a disk containing EDTA (975 μ g). Tests were performed with Mueller-Hinton agar and an inoculum of 5 \times 10⁵ cells/ml.

that warrants investigation.

indicate an unnoticed spread of MβL-producing *P. mirabilis* Kon

REFERENCES

- Cornaglia, G., M. Akova, G. Amicosante, R. Cantón, R. Cauda, J. D. Docquier, M. Edelstein, J.-M. Frère, M. Fuzi, M. Galleni, H. Giamarellou, M. Gniadkowski, R. Koncan, B. Libisch, F. Luzzaro, V. Miriagou, F. Navarro, P. Nordmann, L. Pagani, L. Peixe, L. Poirel, M. Souli, E. Tacconelli, A. Vatopoulos, and G. M. Rossolini. 2007. Metallo-β-lactamases as emerging resistance determinants in gram-negative pathogens: open issues. Int. J. Antimicrob. Agents 29:380–388.
- Franklin, C., L. Liolios, and A. Y. Peleg. 2006. Phenotypic detection of carbapenem-susceptible metallo-β-lactamase-producing gram-negative bacilli in the clinical laboratory. J. Clin. Microbiol. 44:3139–3144.
- Giakkoupi, P., L. S. Tzouvelekis, G. L. Daikos, V. Miriagou, G. Petrikkos, N. J. Legakis, and A. C. Vatopoulos. 2005. Discrepancies and interpretation problems in susceptibility testing of VIM-1-producing *Klebsiella pneumoniae* isolates. J. Clin. Microbiol. 43:494–496.
- Kimura, S., Y. Ishii, and K. Yamaguchi. 2005. Evaluation of dipicolinic acid for detection of IMP- or VIM-type metallo-B-lactamase-producing *Pseudomonas aeruginosa* clinical isolates. Diagn. Microbiol. Infect. Dis. 53:241–244.
- Loli, A., L. S. Tzouvelekis, E. Tzelepi, A. Carattoli, A. C. Vatopoulos, P. T. Tassios, and V. Miriagou. 2006. Sources of diversity of carbapenem resistance levels in *Klebsiella pneumoniae* carrying *bla*_{VIM-1}. J. Antimicrob. Chemother. 58:669–672.
- Psichogiou, M., P. T. Tassios, A. Avlamis, I. Stefanou, C. Kosmidis, E. Platsouka, O. Paniara, A. Xanthaki, M. Toutouza, G. L. Daikos, and L. S. Tzouvelekis. 2008. Ongoing epidemic of bla_{VIM-1}-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J. Antimicrob. Chemother. 61:59–63.
- Shin, K. S., B. R. Son, S. B. Hong, and J. Kim. 2008. Dipicolinic acid-based disk methods for detection of metallo-β-lactamase-producing *Pseudomonas* spp. and *Acinetobacter* spp. Diagn. Microbiol. Infect. Dis. 62:102–105.
- 8. Vourli, S., H. Tsorlini, H. Katsifa, M. Polemis, L. S. Tzouvelekis, A.

Kontodimou, and A. C. Vatopoulos. 2006. Emergence of *Proteus mirabilis* carrying the bla_{VIM-1} metallo- β -lactamase gene. Clin. Microbiol. Infect. **12:**691–694.

V. Miriagou* C. C. Papagiannitsis E. Tzelepi Laboratory of Bacteriology Hellenic Pasteur Institute Vas. Sofias 127 Athens 11521, Greece

J. Bou Casals Rosco Diagnostika Taastrup, Denmark

N. J. Legakis

Laboratory of Biopathology Evgenidion General Hospital University of Athens Athens, Greece

L. S. Tzouvelekis

Department of Microbiology Medical School University of Athens Athens, Greece

*Phone: 30 210 6478810 Fax: 30 210 6426323 E-mail: miriagou@pasteur.gr

^v Published ahead of print on 9 December 2009.