
Copyedited by: PSB MANUSCRIPT CATEGORY: ORIGINAL PAPER

[14:42 8/1/2010 Bioinformatics-btp672.tex] Page: 348 348–354

BIOINFORMATICS ORIGINAL PAPER Vol. 26 no. 3 2010, pages 348–354
doi:10.1093/bioinformatics/btp672

Gene expression

A new gene selection procedure based on the covariance
distance
Rui Hu∗, Xing Qiu and Galina Glazko
Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Avenue, Box 630,
Rochester, NY 14642, USA

Received on July 23, 2009; revised on October 29, 2009; accepted on December 3, 2009

Advance Access publication December 8, 2009

Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: Very little attention has been given to gene selection
procedures based on intergene correlation structure, which is often
neglected in the context of differential gene expression analysis. We
propose a statistical procedure to select genes that have different
associations with others across different phenotypes. This procedure
is based on a new gene association score, called the covariance
distance.
Results: We apply the proposed method, along with two alternative
methods, to several simulated datasets and find out that our
method is much more powerful than the other two. For biological
data, we demonstrate that the analysis of differentially associated
genes complements the analysis of differentially expressed genes.
Combining both procedures provides a more comprehensive
functional interpretation of the experimental results.
Availability: The code is downloadable from http://www.urmc
.rochester.edu/biostat/people/faculty/hu.cfm
Contact: huruizg@hotmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Microarray technology has become a routine gene expression
analysis tool in recent years. Biomedical researchers rely on this
technology to identify potentially ‘interesting’ genes. Typically,
individual genes are tested for their differential expressions between
phenotypes by the two-sample Student’s t-test or its non-parametric
counterpart. The resulting P-values are adjusted by a chosen multiple
testing procedure (MTP) in order to control certain group-wise
Type I errors. In depth reviews of MTPs used in microarray analysis
can be found in Dudoit et al. (2003) and Simon et al. (2003).
Popular choices include the Bonferroni procedure, which controls
the familywise error rate (FWER), and the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995), which controls the false
discovery rate (FDR). Despite the inherently different designing
philosophy, the empirical Bayes methodology (Efron, 2003) can be
considered as one of the MTPs since it controls a local version
of FDR.

All of the above MTPs were first designed for independent tests.
However, it might be inappropriate to model gene expressions
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as independent random variables because gene expressions are
correlated in groups of functionally linked genes (e.g. gene ontology,
biological pathways). Long-range, inter-pathway correlation has
also been documented recently (Almudevar et al., 2006; Klebanov
and Yakovlev, 2008; Qiu et al., 2005a). Ignoring the dependence
between gene expressions leads to the loss of control of type I errors
and poor reproducibility (high instability) of outcomes (Qiu and
Yakovlev, 2006; Qiu et al., 2005b, 2006).

Several extensions to the MTPs have thus been proposed in order
to address this ‘dependence problem’. For example, the Westfall–
Young permutation procedure (Westfall and Young, 1993) can be
seen as an extension of the Šidák procedure for dependent tests;
and a variant of the original Benjamini–Hochberg procedure lends
itself to the control of FDR with gene dependence (Benjamini
and Yekutieli, 2001); and a data-driven variable transformation
called the δ-sequence method (Klebanov et al., 2008; Klebanov and
Yakovlev, 2008) de-correlates gene expressions and thus improves
the power and stability of the non-parametric empirical Bayes
method significantly.

Although the invention of these new MTPs has mitigated the
adverse effect of intergene dependence in differential expression
analyses, none of them were designed to select candidate genes by
utilizing the rich information contained in the intergene dependence
structure. Several other approaches have been proposed to capitalize
on this dependence structure:

(1) Incorporating the existing biological gene sets information
into statistical procedures. One such example is the gene set
enrichment analysis (Mootha et al., 2003; Subramanian et al.,
2005), which has gained considerable momentum in the past
few years. The main drawback of this approach is that it is
not suitable for searching new functionally linked gene sets.

(2) A multitude of cluster analysis methods including several
variants of principal components analysis (Liu et al.,
2002; Raychaudhuri et al., 2000; Wang and Gehan, 2005),
hierarchical clustering (Eisen et al., 1998), self-organizing
maps (Törönen et al., 1999), support vector machines (Brown
et al., 2000; Furey et al., 2000), etc. These methods can be
used as exploratory tools to highlight the possible hidden
relationship between genes, or as means to reduce the vast
dimensionality of the multiple testing problem. Like the
methods in the first approach, these methods do not select
genes by their dependence structure directly. Instead, they
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group genes in the form of either principal components or
gene clusters, so the selection step (which is still based on
statistical inference of mean values) can be more efficient.

(3) Another approach is to select genes based on the phenotypic
changes of their dependence structure directly. The standard
practice is to compute an association score for each gene
pair which represents the change of their association in
different phenotypes and then compute its P-value by a
resampling method. Choices of this score include liquid
association (Li, 2002), biweight midcorrelation (a robust
correlation coefficient) (Shedden and Taylor, 2005), or simply
the Pearson correlation with Fisher transformation (Choi
et al., 2005). One major obstacle of this method is the
daunting magnitude of multiple testing. If we denote m as the

number of genes, then there are m(m−1)
2 distinct gene pairs. It

renders most MTPs powerless. Consequently, these proposed
methods either rely on unadjusted P-values (Li, 2002) thus
totally abandoning control over group-wise type I error, or
resort to some ad hoc criteria such as selecting top n% of gene
pairs (Choi et al., 2005) or genes that have scores greater than
a prespecified threshold (Shedden and Taylor, 2005).

The persistent interest in incorporating dependence structure
into gene selection procedure stems from the interdependence of
all biological processes. Transcriptional regulatory circuits, called
network motifs, with a set of transcription factors regulating a
set of target genes in a multi-layer, auto-correlated manner is
the basic example of the interlocked biological processes (Alon,
2006). In these circuits, expression of target genes depends on
the expression of regulator genes. Changes in these associations
in different cellular states can be indicative of changes in regulatory
programs which motivates association studies (Dettling et al., 2005;
Lai et al., 2004; Li, 2002). On the other hand, induced changes of
the cellular states can also be reflected in changes of the dependence
structure. For example, histone deacetylases (HDACs) dynamically
affect transcription of many genes; HDAC inhibitors downregulate
HDACs and consequently affect the transcription of up to 20% of
the entire genome (Menegola et al., 2006; Stamatopoulos et al.,
2009). Disentangling the subset of genes, differentially associated
(DA) with HDACs under inhibitors treatment, can be informative
in carcinogenesis studies, given recent success of HDAC inhibitors
as anticancer drugs (Bots and Johnstone, 2009).

A procedure, specifically designed to select genes changing their
associations with other genes was recently suggested (Hu et al.,
2009). This procedure also overcomes the multiplicity problem
of differential association analysis based on gene pairs. Instead

of searching for DA gene pairs in a sea of m(m−1)
2 potential

candidates by univariate tests, they propose to test whether the
joint distributions of the correlation vectors (CVs) change across
different phenotypes. CV is defined as the Fisher transformation
of the Pearson correlation coefficients between a given gene
and the rest. The multiplicity of this method is m, so MTPs
commonly used in differential expression analysis can be applied
to control group-wise type I errors. This approach utilizes the
joint distributions of CVs. Consequently, it can detect genes which
are differentially correlated (DC) with a large number of genes,
yet each individual correlation change is too small to be detected
by a pairwise method. The main caveat of this approach is the

low testing power. One likely culprit is the use of the Fisher
transformed Pearson’s correlation coefficient as the association
score. In this article, we propose a new gene selection procedure
based on a new association score, the covariance distance, together
with a trimming algorithm. Through several simulation studies,
we demonstrate that it is a better choice for selecting DC genes
compared with the CV method based on the Pearson’s correlation
coefficients. In addition to testing gene correlation coefficient
changes, this new method can also detect gene variance changes
across phenotypes.

2 METHODS

2.1 Biological data used in the study
The biological dataset used in this study is the childhood leukemia dataset
from the St Jude Children’s Research Hospital (SJCRH) Database (Yeoh
et al., 2002). We select two groups of data: 88 patients (arrays) with
hyperdiploid acute lymphoblastic leukemia (HYPERDIP) and 79 patients
(arrays) with a special translocation type of acute lymphoblastic leukemia
(TEL). To make two data groups comparable, only the first 79 arrays in
HYPERDIP are used.

Since the original probe set definitions in Affymetrix GeneChip data
are known to be inaccurate (Dai et al., 2005), we update them by using
a custom CDF file to produce values of gene expressions. The CDF file was
downloaded from http://brainarray.mbni.med.umich.edu. Each slide is then
represented by an array reporting the logarithm (base 2) of expression level
on the set of 7084 genes. To avoid introducing false standard deviations
(SDs) when performing permutations, each gene is centered by subtracting
its sample mean. For convenience, the words ‘gene’ and ‘gene expression’
are used interchangeably to refer to these log-transformed and mean-centered
gene expressions in this article.

2.2 The covariance distance vector
Let c=A,B be two different phenotypes or biological conditions, m be the
total number of genes and n be the number of arrays sampled from each
phenotype group. Denote Xc = (Xc

1 ,...,Xc
m) as the m-dimensional random

vector from which n independent observations (arrays), xc
i = (xc

i1,...,x
c
in),

i=1,...,m, are sampled in the phenotype c. As a special case, if Xc

is a multi-normal random vector, its joint distribution function, FXc (x),
is completely characterized by its first-order moments (the means) and
second-order moments (the covariances).

Univariate gene selection methods select genes that have different
marginal distributions (usually in terms of different mean values) under
different biological conditions: selected genes are called differentially
expressed (DE) genes. For the distributional changes caused by the changes
of the second-order moments, we suggest a different hypothesis testing
framework.

We define the covariance distance between two genes xc
i and xc

j to be
dc

ij = σ̂(xc
i −xc

j ), where σ̂ is the function of sample SD. Like the sample
correlation coefficient, this distance is a measure of the similarity between
two random variables in terms of their second-order moments. We also define
the covariance distance vector for the i-th gene as Dc

i = (dc
i1,...,d

c
im), with

its joint distribution denoted by FDc
i
(x).

We propose to test the following hypotheses

Hi :FDA
i

(x)=FDB
i

(x).

The i-th gene is selected if Hi is rejected.
This approach is closely related to a similar method proposed by Hu

and colleagues (2009). The main difference lies in the choice of association
score: the covariance distance is used in place of the Pearson’s correlation
coefficient (with Fisher transformation). The covariance distance approach
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has two distinctive advantages: (i) the covariance distance is more sensitive to
small changes (differences) of corr(xi,xj) when xi and xj are highly correlated
(see Section 4 of the Supplementary Materials for more details); (ii) it can
also reflect the changes of the variances of xi and xj (see Section 2 of the
Supplementary Materials for more details). If the association scores between
a fixed gene and the others are different across phenotypes, it is called DA.
As a special case, if the correlation coefficients between one gene and the
rest are different across phenotypes, it is called DC.

2.3 The trimmed covariance distance vector
We choose the N-distance (also known as the N-statistic) with Euclidean
kernel as the multivariate summary statistic for testing hypotheses (see
Section 3 of the Supplementary Materials for details). This statistic has been
successfully employed to select DE genes, DC genes and gene combinations
in microarray data analysis (Hu et al., 2009; Szabo et al., 2002, 2003; Xiao
et al., 2004; ?).

In order to test the hypotheses, we need to create samples of the covariance
distance vectors. We may divide the arrays in each phenotype into ns

subgroups, each containing n
ns

arrays. By computing the covariance distance
vectors from each subgroup, we obtain a sample of vectors with size ns for
each phenotype. We have tested different choices of ns (ns =1,4,8,16) and
found that the results are consistent. Therefore, we choose ns =1 to save
computing time.

We compute covariance distance vectors for the i-th gene in both
phenotypes (DA

i and DB
i ), and then calculate Ni, the sample N-distance

between DA
i and DB

i . This is a measure of the difference between two
covariance distance vectors. A list of significant genes can be selected as
the DA genes based on this measure.

An adaptation to the above approach can make it more practical, which is
illustrated by the following example. Suppose there are 10 genes in a study.
In one phenotype all 10 genes are independent; in the other phenotype the
first gene becomes highly correlated with the rest but the other nine genes
are still independent with each other. With a large enough sample size, the
above approach will call all genes DA. In fact, the selection of the first gene
is straightforward because it has completely different dependence structures
with nine other genes in two phenotypes. Genes 2,...,10 have the same
dependence structures with all but the first genes in two phenotypes, which
leads to a relatively small, albeit none-zero change of the N-distance of its
covariance distance vectors. The first gene is the ‘reason’ for the correlation
structure change. Therefore, it is reasonable to expect a sensible statistical
procedure to select the first gene as the only DA gene. In other words, our
criterion here is to select genes which change their associations with most
of the other genes. This selection criterion can be achieved by excluding a
subset of genes that induce large changes of the covariance distance before
computing the N-distance.

For the fixed i-th gene, we can sort all m genes in descending order by
|dA

ij −dB
ij |, j=1,...,m, which reflects the j-th gene’s ‘contribution’ to Ni. If

we omit the top K genes, the remaining covariance distance vector is called
the trimmed covariance distance vector (TCDV) and denoted by Dc,K

i
where c=A or B. Here, K is a parameter which indicates how many genes
(covariance distances) need to be trimmed. Trimming is a widely used
technique in robust inference (see e.g. Wilcox, 2005). A good K should
be large enough so genes with only a few changed covariance distances
(possibly due to the presence of DA genes) have near-zero difference
of TCDV, and small enough so that true DA genes can still be detected
effectively.

Instead of testing Hi, we can test the following hypotheses based on the
TCDV

H′
i :FDA,K

i
(x)=FDB,K

i
(x),

where FDA,K
i

(x) and FDA,K
i

(x) are the joint distributions of DA,K
i and DB,K

i ,

respectively. The i-th gene is declared to be DA if H
′
i is rejected.

2.4 Resampling P-values through permutations
By using the TCDV in place of the covariance distance vector, we can
compute a resampling-based P-value for the i-th gene as follows:1

(1) Compute dA
ij and dB

ij , its covariance distances with all other genes in
two phenotypes.

(2) Sort genes by |dA
ij −dB

ij | in descending order, j=1,...,m.

(3) Omit the first K genes (covariance distances) in the covariance
distance vectors DA

i and DB
i to get the TCDVs DA,K

i and DB,K
i in

two phenotypes.

(4) Compute NK
i , the N-statistic of DA,K

i and DB,K
i .

(5) Randomly shuffle the arrays in two different conditions, then split
them into two groups with equal size.

(6) Compute the TCDVs and the N-distance for this permuted dataset.
If computationally feasible (e.g. n≤10), this step is repeated for all
possible permutations of arrays. Otherwise L random permutations
will be used. Record these resampling-based N-statistics as NK

il ,i=
1,...,m, l=1,...,L.

(7) Obtain the resampling-based P-value, pi, by comparing NK
i with NK

il :

pi = #(NK
il �NK

i )
L .

Finally, we apply the extended Bonferroni adjustment (Gordon et al., 2007)
with threshold 1.0 to control the per-family error rate (PFER). Extended
Bonferroni adjustment is less conservative than the FWER controlling
procedures and more stable than the FDR controlling procedures in the
context of microarray analysis.

2.5 Trim number
Ideally, K , the number of trimmed genes, should be chosen such that just the
true DA genes are trimmed, no more, no less. As expected, this is a Catch-
22. In reality, it is a classical trade-off between type I error and the power
of the test, so a good choice of K depends on how it affects the selection
power. We conduct the following experiment to answer this question. We
randomly choose 500 genes from the leukemia dataset and vary K from 0
to 499. For each fixed K , by applying the above algorithm with permutation
number L=10000, we obtain resampling-based P-values, and then we select
DA genes by controlling the PFER at 1.0 level with the extended Bonferroni
procedure (Gordon et al., 2007). The relationship between the trim number
K and the number of selected DA genes is summarized in Figure 1. It shows
that the number of selected DA genes decreases as K becomes larger. When
K stays between 100 and 480, the number of selected DA genes is very close
to the case when K =250 (half of total number of genes), marked by the
horizontal line in Figure 1. It implies that a conservative (large) choice of K
does not decrease the testing power too much. Together with the simulation
results below, we suggest trimming half of the total number of genes in
practice. If the computation resources permit, we encourage researchers to
produce a figure similar to Figure 1 and select the appropriate trim number
accordingly.

2.6 Correlation coefficient vector and covariance
vector gene selection method

We compare the performances of the new TCDV method and the method
proposed in Hu et al. (2009) (CV in what follows). In fact, the main
improvement of the TCDV method is the choice of the correlation distance
over the Pearson’s correlation coefficient as the association score to quantify
changes of between-gene dependence. Because the covariance distance

1This simple resampling method is equivalent to the group method used in Hu
et al. (2009) with the number of groups equal 1. More elaborate resampling
schemes such as the resampling method in Hu et al. (2009) can provide
slightly better statistical power, but they are computationally prohibitive.
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Fig. 1. Number of selected DA genes as a function of K , number of trimmed
genes. The horizontal line marks the case when K =250, the trimming
strategy used in this study.

is defined as the SD of the difference between gene expressions, it has
the ability to detect changes of both correlation coefficients and variance
(technical details including two illustrations can be found in Section 2 of the
Supplementary Materials). Therefore, it makes sense to compare the TCDV
method to a third method, which uses the covariance between genes as the
association score. We denote this method as the COV method.

2.7 Simulation studies
We simulate several sets of data, each containing m=708 genes in two groups
which represent two different phenotypes (phenotypes A and B). Both groups
contain 80 arrays (replications). Since the covariance distance is sensitive to
the changes of both correlation coefficient and SD, we have the following
two simulated datasets:

• SIMU1: for phenotype A, any two distinct genes have correlation
coefficient 0.9 and all the genes have SDs 0.35. Therefore, the
(population) covariance distance between genes i and j is dA

ij =√
0.2∗0.35 where 1≤ i< j≤708. For phenotype B, all the genes still

have the same SDs 0.35, but the correlation coefficients are changed to

corr(i, j)=

⎧⎪⎨
⎪⎩

0.9+ρd for 1≤ i< j≤100,

0.9
√

1−10ρd for 1≤ i≤100< j≤708,

0.9 for 101≤ i< j≤708.

Here, corr(i, j) stands for the correlation coefficients between the
i-th and the j-th genes and ρd is a constant taking value in
{0.01,0.02,0.03,0.04}. Therefore, the covariance distance between the
i-th and j-th gene is

dB
ij =

⎧⎪⎨
⎪⎩

√
0.2−2ρd ∗0.35 for 1≤ i< j≤100,√
2−1.8

√
1−10ρd ∗0.35 for 1≤ i≤100< j≤708,

dA
ij for 101≤ i< j≤708.

SIMU1 is designed to mimic the changes of the correlation coefficients
across two phenotypes. The first 100 genes are DC.

• SIMU2: for phenotype A, any two distinct genes have correlation
coefficient 0.9 and all the genes have SDs 0.35. As in SIMU1, the
covariance distance between genes i and j is dA

ij =√
0.2∗0.35, where

1≤ i< j≤708. For phenotype B, any two distinct genes still have
the same correlation coefficients 0.9 as in phenotype A, but the first

100 genes have the SDs 0.35+sd and all the other genes have the
SDs 0.35. Here, sd is a constant taking value in {0.04,0.08,0.12,0.16}.
The covariance distance between the i-th and jth genes is

dB
ij =

⎧⎪⎪⎨
⎪⎪⎩

√
0.2∗(0.35+sd ) for 1≤ i< j≤100,√
0.2∗0.352 +0.07sd +s2

d for 1≤ i≤100< j≤708,

dA
ij for 101≤ i< j≤708.

SIMU2 is designed to mimic the changes of the variance across two
phenotypes.

In both simulated studies, the first 100 genes are set to be DA genes. ρd and sd

quantify how much covariance distances are different across two phenotypes.
The choices of 0.9 as the base correlation coefficient and 0.35 as the base
SD are to match the mean sample correlation coefficient and mean (SD) in
the leukemia dataset.

Another way to simulate the covariance structure of the biological data
is through a resampling method. More precisely, we randomly choose 708
genes from the leukemia dataset and permute the arrays in both HYPERDIP
and TEL. Then we split the arrays into two groups with equal size of arrays
(79) in each group. These two groups mimic two biological conditions
without DA genes. Next, we introduce changes to the first 100 genes in the
first group. We denote the expressions in the first group by xA

ij , 1≤ i≤708
and 1≤ j≤79, and generate the dataset as follows:

• SIMU3: we multiply the gene expressions xA
ij (1≤ i≤50,1≤ j≤79) by

sd where sd =1.3 if 1≤ i≤25 and sd =1.6 if 26≤ i≤50. As a result,
the SDs of the first 50 genes are increased by small (sd =1.3) or
large (sd =1.6) amounts. Next, we generate 50 79-dimensional random
vector ai (1≤ i≤50) with i.i.d. standard normal components {aij},
1≤ j≤79 and add them to the gene expressions xi+50,j, respectively
(1≤ i≤50) with a tuning parameter ρd defined as follows: xi+50,j +
ρdaij where ρd =0.1 if 1≤ i≤25 and ρd =0.2 if 26≤ i≤50. Evidently,
the covariance distances associated to the second 50 genes are different
in two groups and the differences are mainly caused by the changes
of the correlation coefficients. Again, the first 25 of them have smaller
effect size comparing to the next 25.

In SIMU3, the first 100 genes are considered DA genes of which the last 50
are DC.

3 RESULTS

3.1 Simulation results
We apply the TCDV, CV and COV methods to 20 randomly
generated SIMU1 and SIMU2 datasets. The mean and the SD of the
true positive (TP)/false positive (FP) of each method are reported
in Tables 1–3. When applying the TCDV method, we use three
different trimming strategies: (i) under-trim (K =50), (ii) exact-trim
(K =100) and (iii) over-trim (K =354, or half of the total number
of genes).

For SIMU1, both the TCDV and CV method select the DA genes
while the COV method does not. The TCDV method performs
better than the CV method in terms of testing power. It shows
that the TCDV method is a better choice than the CV method
for testing the pure correlation coefficient changes when genes are
highly correlated (see Section 4 of the Supplementary Materials for
a mathematical explanation). For SIMU2, the TCDV method detects
the DA genes successfully, whereas the CV method does not. The
COV method catches only a few TPs. It demonstrates that using
covariance is not the main reason why the TCDV method performs
better than the CV method. As for the TCDV method, the more genes
we trim, the less FPs we get. As expected, the under-trim strategy
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Table 1. SIMU1, TP and FP with the TCDV method

Effect size K=50 K=100 K=354
ρd Mean (SD) Mean (SD) Mean (SD)

TP 0.01 30 (15.48) 30 (15.58) 27.55 (15.35)
0.02 89.65 (10.11) 89.8 (10.33) 90.1 (11.12)
0.03 99.8 (0.68) 99.8 (0.68) 100 (0)
0.04 100 (0) 100 (0) 100 (0)

FP 0.01 4.65 (2.15) 2.75 (1.58) 2.1 (1.22)
0.02 29.45 (25.86) 5.6 (2.29) 2.35 (1.28)
0.03 271.8 (139.59) 7.1 (2.83) 2.65 (1.49)
0.04 446.25 (120.54) 5.85 (2.13) 1.55 (1.2)

Total number of genes: 708. Number of DA genes: 100. The extended Bonferroni
threshold 1.0.

Table 2. SIMU2, TP and FP with the TCDV method.

Effect size K = 50 K = 100 K = 354
sd Mean (SD) Mean (SD) Mean (SD)

TP 0.04 3.75 (1.92) 3.75 (1.95) 3.85 (2.13)
0.08 44.25 (9.55) 44.65 (9.6) 45.1 (10.11)
0.12 91.6 (5.17) 91.55 (5.15) 92.3 (5.03)
0.16 99.7 (0.95) 99.75 (0.89) 99.8 (0.68)

FP 0.04 1.65 (1.24) 1.55 (1.24) 1.3 (1.23)
0.08 4.55 (2.64) 2.6 (1.46) 1.6 (0.86)
0.12 22.75 (11.97) 5.56 (2.54) 2.35 (1.19)
0.16 251.5 (118.78) 7.75 (2.12) 2.25 (1.22)

Total number of genes: 708. Number of DA genes: 100. The extended Bonferroni
threshold 1.0.

Table 3. SIMU1 and SIMU2, TP and FP with the CV and COV methods

Effect size CV method COV method

TP FP TP FP
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

ρd 0.01 4.05 (13.88) 0.6 (2.61) 0 (0) 0 (0)
0.02 24.5 (33.96) 3.5 (9.29) 0.3 (1.31) 0 (0)
0.03 63.35 (35.89) 1.6 (4.78) 0 (0) 0.05 (0.22)
0.04 82.35 (27.37) 6.65 (21.54) 0 (0) 0 (0)

sd 0.04 0.05 (0.22) 0.1 (0.44) 0 (0) 0 (0)
0.08 0 (0) 0.4 (1.32) 0.05 (0.22) 0 (0)
0.12 0.15 (0.48) 1.05 (4.13) 8.45 (22.25) 0.85 (3.71)
0.16 0 (0) 0.05 (0.22) 4.2 (14.91) 0 (0)

Total number of genes: 708. Number of DA genes: 100. The extended Bonferroni
threshold 1.0.

(K =50) leads to considerable FPs, but fortunately, both the exact-
trim (K =100) and the over-trim (K =354) strategies largely reduce
the FPs and the difference between the two is minor. In practice, the
true number of DA gene is not available to us, therefore we suggest
to be always conservative and trim half of the number of genes.

Table 4. SIMU3, TP and FP in simulations of biological data with the TCDV
method and the CV method.

Effect size TCDV method CV method

K = 50 K = 100 K = 354
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

TP sd =1.3 20.3 (3.62) 19.9 (3.95) 18.95 (4.99) 0 (0)
sd =1.6 24.4 (0.92) 24.35 (1.06) 24.3 (1.23) 0.35 (0.73)
ρd =0.1 14.75 (3.71) 13.25 (4.04) 12.4 (5.12) 7.9 (4.0)
ρd =0.2 21.6 (0.92) 21.6 (0.92) 21.45 (1.16) 18.95 (1.86)
Total 81.05 (8.38) 79.1 (8.88) 77.1 (11.26) 27.2 (5.85)

FP 76.25 (82.95) 12.6 (31.69) 2.2 (5.52) 0.05 (0.22)

Total number of genes: 708. Number of DA genes: 100. The extended Bonferroni
threshold 1.0.

Since COV method does not show acceptable power in the
simulation study, we only apply the TCDV method and CV method
to SIMU3.Again, the above two procedures are applied to 20 SIMU3
datasets (obtained from different choices of 708 genes). The mean
and SD of the TP/FP are summarized in Table 4.

The TCDV method selects 70–80% of the DA genes. When we
trim conservatively (K =354), it has a good control of the FPs. On
the other hand, the CV method fails to select the DA but non-DC
genes altogether and performs poorly in selecting the DC genes.

3.2 The analysis of biological data
We apply both the TCDV method (K =3542) and the CV method
to the biological datasets. It takes approximately 98 and 18 h to
analyze the biological dataset with L=100000 permutations by
the TCDV and CV methods, respectively. All computations were
done on four nodes of a cluster computer which has six nodes each
with 8× Intel E5450 3.0 GHz processors and 8×2 GB SDRAM.
By controlling the PFER at 1.0 level with the extended Bonferroni
procedure, the TCDV method selects 293 unique genes while the
CV method selects only 14. Furthermore, we have tested the pure
variance differences for all the genes. With extended Bonferroni
threshold 1.0, there are only five unique genes that significantly
change their variances across phenotypes. Compared with 293 DA
genes we detect with TCDV method, this number is quite small.
Therefore, it is reasonable to believe that the majority of gene DA
is induced by changes of correlation coefficients.

The choice of a gene selection method should be determined by
the biological relevance of the produced genes list. In what follows
we demonstrate that the analysis of DA genes is a valuable addition
to the analysis of DE genes. Taking together both procedures
provides a more comprehensive functional interpretation of the
experimental results.

• We compare the lists of DA (obtained using TCDV) and
DE (obtained using Wilcoxon rank sum test and controlling
PFER with the extended Bonferroni adjustment at level 1.0)
genes between HYPERDIP and TEL groups. DA list has
293 and DE list has 98 unique genes. There are only 40
genes shared between two lists. To explore the functional
differences between these gene lists we further construct small
molecular interaction networks for each of the lists separately
using the Ingenuity software (Redwood City, CA, USA;
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http://www.ingenuity.com/index.html). For every list we select
five top-scored networks (Supplementary Figs 1 and 2).
Supplementary Table 1 illustrates that the major functional
difference between these two lists lies in the presence of
‘DNA Replication, Recombination, and Repair’ biological
function in the DA gene list, while other processes in
which genes from both lists are involved are more similar.
‘DNA Replication, Recombination, and Repair’ network,
among others, include histone, cyclin-dependent kinase,
heat shock protein, minichromosome maintenance protein,
modulator of apoptosis, proteosomal subunits, replication
protein, transcription regulator TP53 and ubiquilin. We list
these proteins here because they reflect the general functional
trend of the DA genes, i.e. at the protein level these
genes mostly regulate and modify the activities of other
genes/proteins. To illustrate how the analysis of DA genes
complements the analysis of DE genes, we merge2 two
small interaction networks: ‘Cell Cycle, Cancer, Reproductive
System Disease’ resulted from the list of DE genes and ‘DNA
Replication, Recombination, and Repair’ resulted from the
list of DA genes (Supplementary Fig. 3). The integration
of two networks leads to appearance of new connections
between nodes, which were hidden before integration (compare
Supplementary Figs 1b, 2a and 3). The connections represent
molecular interactions already known from the literature. This
experiment demonstrates that indeed genes from DE and
DA lists are interacting partners in biological processes and
the analyses of DE and DA genes are complementing each
other. The search of Canonical Pathways significantly enriched
in genes from either list (using Ingenuity software) reveals
that there is only one such a pathway, ‘Cell Cycle: G1/S
Checkpoint Regulation’, which includes genes from DA list
(Supplementary Fig. 4). Interestingly, AML1 is involved in the
regulation of the G1 to S cell cycle transition and regulates p21
(G1/S pathway member) (Bernardin-Fried et al., 2004; Strom
et al., 2000). In contrast, in TEL group TEL/AML1 fusion
converts AML1 from functioning as a transcriptional activator
to a transcriptional repressor (Hiebert et al., 1996). We would
expect that the enrichment of G1/S checkpoint with DA genes
results from their differential association with the new fusion
TEL/AML1 gene in TEL, as compared with HYPERDIP group.

• The TEL-AML1 group is different from other leukemia
subtypes by the presence of t(12;21)(p13;q22) translocation,
generating the TEL/AML1 fusion gene. We are interested
in whether this cytological abnormality can be monitored
throughout the overrepresentation of either DA or DE genes
in chromosomal bands in the comparison of TEL/AML1
and HYPERDIP groups. We apply a conditional test for
overrepresentation of DE and DA genes in chromosomal
bands. After correction for multiple testing there are no
chromosomal bands significant for the enrichment in DE genes.
However, bands 21q, Xp, 21q22.3, Xp11.23, 6p25.1 come
as significant in the analysis of DA genes. It should be noted
that the band 21q22.3 contains the fusion TEL/AML1 gene
and one can hypothesize that either the translocation itself or

2The ‘merging’ operation is implemented when two networks share one or
more genes.

TEL/AML1 fusion protein affects other genes in this band.
Among others, 21q22.3 band includes ubiquitin-conjugating
enzyme and SUMO protein, which post-translationally modify
TEL protein, leading to its compartmentalization to specific
nuclear speckles (Chakrabarti et al., 2000). Ubiquitin-
conjugating enzyme and SUMO also interact with TEL/AML1
fusion, leading to its compartmentalization in the same speckles
about 10 times less frequently, whereas TEL/AML1 and AML1
occupy non-overlapping sites in the nucleus (Chakrabarti et al.,
2000). These observations suggest that ubiquitin-conjugating
enzyme and SUMO are DA between TEL and HYPERDIP
groups because they interact differently with TEL/AML1, TEL
and AML1 proteins. Still the question remains, whether other
genes in this band are called DA because the translocation
somehow influences their expression or because they interact
differently with fusion and fusion’s partners. The appearance
of four other significant bands is difficult to explain. Although
in the original analysis (Yeoh et al., 2002) it was noted that
chromosomes 21 and X contained almost 70% of genes,
defining HYPERDIP group, the biological explanation of this
phenomenon is still lacking. Here, we simply note that the
analysis of DA genes provides some additional information
about cytogenetic abnormalities as compared with the analysis
of DE genes.

4 DISCUSSIONS AND CONCLUSIONS
Thanks to the recent advances of microarray technology, conducting
large-scale microarray experiments is now much more affordable.
With larger datasets, it is natural for biologists to ask questions
about the changes of the dependence structure between genes in
addition to changes of the marginal distributions. Unfortunately,
the ‘large p, small n’ nature of the microarray data makes it very
difficult to select co-expressed gene pairs directly, because the
multiplicity of the correlation/covariance matrix is in the range
of millions thus it is hard to distinguish meaningful biological
changes from the ‘background noise’. From the multiple testing
perspective, it is advantageous to put the focus on genes instead
of gene pairs (Hu et al., 2009; Hudson et al., 2009) because it
reduces the multiplicity dramatically (from 25 087 986 to 7084 in
our real data analysis) so that standard MTPs can be employed to
control group-wise type I errors, just as in the case of differential
expression analysis. While procedures based on this approach are
much more efficient than those based on gene pairs, their selection
power is still a major concern. In Hu et al’s study, the number of
DA genes selected by the CV method is one magnitude of order less
than the DE genes. We have found in this study that the covariance
distance is a better summary statistic for detecting changes of the
dependence structure between gene expressions. Consequently, the
TCDV procedure selects far more DA genes than the CV procedure.
In fact, DA genes selected by the TCDV procedure even outnumber
DE genes selected by a comparable non-parametric differential
analysis procedure. With the application of the TCDV method to
more gene expression datasets, we believe that the DA genes along
with the DE genes will provide us more comprehensive information
for the biological research. Meanwhile, improvement of the selection
power and the reduction of the computational cost of the TCDV
are certainly worth further investigation. More quantitative insights
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into the gene dependence structures will definitely help us better
understand the true underlying biological mechanism.
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