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The DEAD-box RNA helicase DDX5 is involved in many aspects of RNA

processing and has been implicated in a number of cellular processes involving

alteration of RNA secondary structure. The N-terminal region of DDX5, which

contains the conserved domain 1 of the DEAD-box helicases, has been cloned

and expressed in Escherichia coli and purified. Here, the crystallization and

preliminary diffraction analysis of this region is reported. X-ray diffraction data

were processed to a resolution of 2.7 Å. The crystals belonged to space group

I222, with unit-cell parameters a = 66.18, b = 73.80, c = 104.00 Å, � = � = � = 90�.

1. Introduction

RNA helicases are involved in all aspects of RNA metabolism. They

are ATPases with RNA-binding and RNA-unwinding activities and

are involved in transcription, pre-mRNA splicing, ribosome bio-

genesis, mRNA nuclear export, translation initiation and degradation

of mRNA (Linder, 2006; Cordin et al., 2006).

DDX5 (also known as p68) was first discovered owing to its cross-

reactivity with a monoclonal antibody of the large T antigen of simian

virus 40 (Lane & Hoeffler, 1980). Subsequent analysis of the DNA

sequence of DDX5 revealed extensive homology to the translation

initiation factor eIF-4A. The molecular similarity of DDX5 to both

the large T antigen and eIF-4A, which are an ATP-dependent DNA

helicase and an ATP-dependent RNA helicase, respectively, implied

that DDX5 may function as an RNA or DNA helicase (Ford et al.,

1988). DDX5 belongs to the DEAD-box family of proteins, which are

named after their conserved amino-acid sequence Asp-Glu-Ala-Asp

(D-E-A-D; Linder et al., 1989). Based on their conserved sequence

motifs, they are classified into superfamily 2 (SF2) of the helicases

(Gorbalenya & Koonin, 1993). The DEAD-box family of helicases is

characterized by the unique Q motif as well as eight other conserved

motifs (Tanner et al., 2003). The motifs Q, I (Walker A, phosphate-

binding P-loop), Ia, Ib, II (Walker B, DExD box) and III form domain

1, while motifs IV, V and VI form domain 2 (Cordin et al., 2006;

Tanner et al., 2003). Over the past decade, an increasing number of

DEAD-box RNA helicase structures have been determined (Hog-

bom et al., 2007; Sengoku et al., 2006; Shi et al., 2004; Carmel &

Matthews, 2004; Caruthers et al., 2000; Benz et al., 1999).

DDX5 has been implicated in a wide range of biological processes,

with early studies reporting its possible involvement in the regulation

of differentiation/maturation of various animal and human cells

(Abdelhaleem, 2005). Subsequently, it was shown to bind, unwind

and rearrange RNA secondary structures (Rossler et al., 2001) and

was also shown to be crucial in the processing, alternate splicing and

degradation of mRNA (Fuller-Pace, 2006; Abdelhaleem, 2005).

DDX5 also acts as a transcriptional co-regulator of hormone recep-

tors and transcription factors of differentiation and transcriptional

initiation and mRNA decay (Fuller-Pace & Ali, 2008; Abdelhaleem,

2005). In this paper, we report the cloning, expression, purification

and preliminary X-ray diffraction analysis of the N-terminal region of

DDX5 consisting of amino acids 1–305 and spanning domain 1 of the

DEAD-box helicase.
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2. Experimental procedures

2.1. Cloning, expression and purification

The open reading frame encoding human DDX5 was amplified

from a spleen cDNA expression library (Goh et al., 2004). The 50

primer 50-CGGGATCCATGTCGGGTTATTCGAGTGACCGAG-

AC-30 and 30 primer 50-CCGCTCGAGTTAAAGTGCACCAATGT-

TTATATGAA 30 were used to clone the N-terminal region of DDX5

(residues 1–305) in an expression plasmid with an amino-terminal

glutathione S-transferease (GST) fusion partner (pGEX6p1, GE

Healthcare). The sequence identity was confirmed by DNA sequen-

cing (DNA core facility, IMCB, Singapore).

The fusion protein was expressed in Escherichia coli BL21-

CodonPlus-RIL (Stratagene). Cultures were first grown overnight at

310 K in Luria–Bertani (LB) medium supplemented with 100 mg ml�1

ampicillin and 20 mg ml�1 chloramphenicol before inoculation into

Terrific Broth (TB) supplemented with the same amounts of anti-

biotics. On reaching an OD600 of 0.8, the cultures were cooled to

291 K and induced with isopropyl �-d-1-thiogalactopyranoside

(IPTG) at a final concentration of 0.2 mM. After an incubation

period of 24 h, the cells were harvested at 4000g for 10 min. Bacterial

pellets were resuspended in lysis buffer (50 mM Tris–HCl pH 7.4,

300 mM NaCl, 10% glycerol and 2 mM DTT) supplemented with

Complete Protease Inhibitor (Roche). For purification, the cells were

subjected to sonication. The lysate was cleared by centrifugation (1 h,

15 000g) and the supernatant was mixed with 3 ml glutathione

Sepharose resin (GE Healthcare) pre-washed with lysis buffer.

Following 3 h of batch binding at 277 K with constant-rotation

mixing, four washes with lysis buffer were performed to remove

unbound proteins. Removal of the GST tag from the N-terminus of

DDX5 (1–305) was achieved by proteolytic cleavage using recombi-

nant 3C protease (GE Healthcare). Approximately 100 mg 3C

protease was used per milligram of GST-DDX5 (1–305). Briefly, the

resin-bound fusion protein was resuspended in 30 ml lysis buffer

containing 3C protease. Cleavage took place overnight at 277 K with

constant rotation. The supernatant containing cleaved DDX5 (1–305)

was separated by pouring the resin into an empty Econo-Pac column

(Bio-Rad). The elutant was concentrated using an Amicon Ultra-15

Centrifugal Filter Device (Millipore) and further purified by size-

exclusion chromatography through a Superdex S200 column (GE

Healthcare) pre-equilibrated with 25 mM Tris–HCl pH 7.4, 300 mM

NaCl, 10% glycerol and 2 mM DTT. Peak fractions were analyzed by

SDS–PAGE to assess their purity (Fig. 1). The protein concentration

was determined by spectrometry using the molar extinction coeffi-

cient of DDX5 (1–305) at 280 nm (35 785 M�1 cm�1). The molar

extinction coefficient was determined from the protein sequence of

DDX5 (1–305) using the ProtParam tool (Gasteiger et al., 2005). Pure

DDX5 (1–305) was concentrated to 11 mg ml�1. As a consequence of

cleavage, five amino acids (GPLGS) remained fused to the

N-terminus of DDX5 (1–305).

2.2. Crystallization

DDX5 (1–305) was crystallized via the sitting-drop vapour-

diffusion method at 288 K using 24-well plates. 1 ml protein solution

was mixed with 1 ml reservoir solution and equilibrated against 0.5 ml

reservoir solution (Crystal Screens I and II and PEG/Ion Screens I

and II; Hampton Research). X-ray diffraction-quality crystals were

obtained within two months from drops containing 1 ml protein

solution [DDX5 (1–305) at 11 mg ml�1 in 25 mM Tris–HCl pH 7.4,

300 mM NaCl, 10% glycerol and 2 mM DTT] and 1 ml 2%(v/v)

Tacsimate pH 4.0, 0.1 M bis-tris pH 6.5 and 20%(w/v) polyethylene

glycol (PEG) 3350.

2.3. X-ray diffraction analysis

For cryoprotection, the crystal was soaked in cryosolution

[2%(v/v) Tacsimate pH 4.0, 0.1 M bis-tris pH 6.5, 20%(w/v) PEG 3350

and 25% glycerol] and flash-cooled in liquid nitrogen. Native data

sets were collected using a Quantum CCD image plate on beamline

13B1 at the National Synchrotron Radiation Research Center

(NSRRC), Taiwan. 150 images were collected as 1� oscillations with

1 s exposure. The crystal-to-detector distance was set to 400 mm. The

X-ray diffraction pattern of a DDX5 (1–305) crystal is shown in Fig. 2.
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Figure 1
SDS–PAGE analysis of the purification stages of DDX5 (1–305). Lane 1, protein
molecular-weight standards (kDa); lanes 2–5, fractions collected from the gel-
filtration column.

Figure 2
Diffraction pattern of DDX5 (1–305) together with resolution rings. The crystal-to-
detector distance was 400 mm and the oscillation angle was 1�.



The raw data were integrated and scaled using the HKL-2000

program suite (Otwinowski & Minor, 1997).

3. Results and discussion

The N-terminal region of DDX5 (1–305) was cloned and expressed in

E. coli BL21 (DE3). The typical yield of pure DDX5 (1–305) was

2 mg per litre of bacterial culture. Crystals first appeared within two

weeks of incubation. Crystals grew to maximum dimensions of 0.15�

0.05 � 0.05 mm (Fig. 3). Native data were collected from a single

crystal of DDX5 (1–305) grown in 2%(v/v) Tacsimate pH 4.0, 0.1 M

bis-tris pH 6.5 and 20%(w/v) PEG 3350 (Fig. 2). The space group was

determined to be I222, with unit-cell parameters a = 66.18, b = 73.80,

c = 104.00 Å, �= � = � = 90�. The asymmetric unit contained one copy

of DDX5 (1–305); the crystal volume per unit molecular weight (VM)

was calculated to be 2.32 Å3 Da�1, corresponding to a solvent content

of 47% (Matthews, 1968). Crystallographic statistics of the native

data are summarized in Table 1. Crystallization of full-length DDX5

is actively being pursued, as is a molecular-replacement solution for

DDX5 (1–305) using the structure of the conserved domain 1 of

DDX3X (Hogbom et al., 2007) as a search model. The percentage

sequence identity between the first 305 residues of DDX5 and

DDX3X is �41%.
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Figure 3
Crystals of DDX5 (1–305). Typically, crystals grew to maximum dimensions of
0.15 � 0.05 � 0.05 mm.

Table 1
Statistics of preliminary data analysis.

Values in parentheses are for the highest resolution shell.

Space group I222
Unit-cell parameters (Å, �) a = 66.18, b = 73.80, c = 104.00,

� = � = � = 90
No. of molecules per ASU 1
Resolution (Å) 25–2.7 (2.8–2.7)
Wavelength (Å) 0.99
Observed reflections 42651 (4013)
Unique reflections 7229 (704)
Redundancy 5.9 (5.7)
Completeness (%) 99.8 (99.9)
Rmerge (%) 8.5 (48.3)
hI/�(I)i 19.6 (2.7)
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