Skip to main content
. 2010 Feb 3;5(2):e9006. doi: 10.1371/journal.pone.0009006

Figure 3. SpGH38-catalysed hydrolysis of Man9(GlcNAc)2 glycans.

Figure 3

(A) Action of SpGH38, alone, on Man9(GlcNAc)2. The glycan remains unmodified. (B) Action of SpGH38 in combination with a specific α−1,2 mannosidase the Bacteroides thetaiotaomicron Bt3990. Following α−1,2 mannoside removal (which has previously been shown to be specific, see Supplemental Figure 1 in [10], SpGH38 is able to further degrade the unmasked glycans, with the action pattern most indicative of α−1,3 mannosidase activity. An α−1,3 mannosidase activity for SpGH38 is further supported by the specificity of the enzyme for the disaccharide α−1,3 mannobiose (see text).