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Abstract
Aims/hypothesis Interleukin-6 is an inflammatory cytokine
with pleiotropic effects upon nutrient homeostasis. Many
reports show that circulating IL6 correlates with obesity and
contributes to insulin resistance; however, IL6 can promote
energy expenditure that improves glucose homeostasis.
Methods We investigated nutrient homeostasis in C57BL/
6J mice with sustained circulating human IL6 (hIL6)
secreted predominantly from brain and lung (hIL6tg mice).
Results The hIL6tg mice displayed no features of systemic
inflammation and were more insulin-sensitive than wild-type
mice. On a high-fat diet, hIL6tg mice were lean, had low leptin
concentrations, consumed less food and expended more
energy than wild-type mice. Like ob/ob mice, the ob/obIL6

mice (generated by intercrossing ob/ob and hIL6tg mice) were
obese and glucose-intolerant. However, low-dose leptin
injections increased physical activity and reduced both body
weight and food intake in ob/obIL6 mice, but was ineffective
in ob/ob mice. Leptin increased hypothalamic signal trans-
ducer and activator of transcription-3 phosphorylation in
ob/obIL6 mice, whereas ob/ob mice barely responded.
Conclusions/interpretation Human IL6 enhanced central
leptin action in mice, promoting nutrient homeostasis and
preventing diet-induced obesity.
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Leptin sensitivity . Obesity

Abbreviations
AMPK AMP-activated protein kinase
CNTF Ciliary neurotrophic factor
DEXA Dual-energy X-ray absorptiometry
GFAP Glial fibrillary acidic protein
HFD High-fat diet
hIL6 Human IL6
hIL6tg

mice
Mice with sustained circulating human IL6
secreted predominantly from brain and lung

LepRb Leptin receptor, isoform b
mIL6 Murine IL6
SOCS3 Suppressor of cytokine signalling
STAT3 Signal transducer and activator of

transcription-3

Introduction

Understanding how IL6 regulates central and peripheral
nutrient homeostasis is complicated by contradictory and
multi-systemic effects under various physiological states
[1]. IL6 is best known as a pro-inflammatory cytokine that
regulates innate immunity and the acute-phase response.
However, IL6 also has tissue-specific effects that can differ
in humans and rodents, depending on context and timing of
stimulation [2]. IL6 promotes chronic inflammation, where-
as it displays anti-inflammatory effects during acute
inflammatory stimuli [3].

Obesity and its progression to diabetes are associated
with chronic inflammation characterised by secretion of the
proinflammatory cytokines resistin, TNFα and IL6 from
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adipocytes [4]. Epidemiological data confirm that elevated
circulating IL6 correlates with adiposity in humans [5]. IL6
is generally thought to promote systemic insulin resistance,
especially during obesity, because it is secreted from fat
cells of insulin-resistant humans [5]. However, in type 2
diabetes patients the plasma concentrations of IL6 and
TNFα may best reflect the level of adiposity rather than
insulin sensitivity during the euglycaemic–hyperinsulinaemic
clamp [6]. Yet TNFα might also be a principle cause of
dysregulated insulin signalling, as it stimulates production of
IL6, IL1 and C-reactive peptide [7]. It is possible that IL6
opposes the action of TNFα upon insulin sensitivity, as
physical exercise promotes secretion of IL6 from skeletal
muscle, while improving insulin sensitivity and nutrient
homeostasis [1, 8]. The question of how IL6 integrates
multiple signalling cascades to coordinate nutrient homeo-
stasis in mammals remains unanswered.

Cell-based experiments and in vivo studies in rodents
show that IL6 promotes insulin resistance [9]. In vivo,
90 min after IL6 injections plasma glucose and insulin
concentrations increase [10]. Infusion of IL6 for 3 h causes
hepatic and muscle insulin resistance [11, 12]. In addition,
hepatic insulin receptor signalling improves in ob/ob mice
treated with neutralising antibodies against IL6 [13].
Recently, electrotransfer of murine IL6 cDNA into skeletal
muscle promoted liver inflammation and hyperinsulinaemia
in mice [14].

Unlike in rodent studies, infusion of recombinant human
IL6 (hIL6) to sustain physiological concentrations in healthy
individuals or patients with diabetes increases lipolysis in the
absence of adverse effects and enhances glucose infusion rates
during a euglycaemic–hyperinsulinaemic clamp [15–17].
Moreover, adipose-derived hIL6 can have autocrine effects
that increase leptin secretion and fat oxidation, and reduce
expression and activity of lipoprotein lipase in human
adipose tissues, a phenomenon that might attenuate progres-
sion of obesity and diabetes [18]. Human IL6 also displays
anti-inflammatory characteristics by inhibiting TNFα and
IL1, and activating IL1 receptor antagonist and IL10 [19–21].
Moreover, in rodents IL6 has central effects similar to those
of leptin in promotion of nutrient homeostasis and peripheral
insulin sensitivity [1, 22]. Thus, the role of IL6 in the
regulation of nutrient homeostasis is contradictory and
incompletely resolved, possibly confounded by differences
between human and murine cytokine action [1].

Leptin is secreted from adipose tissue in proportion to fat
stores, informing the central nervous system of the peripheral
energy supply. Dysregulated leptin action (ob/ob mice)
increases food intake, while reducing energy expenditure.
In addition, ob/ob mice display severe obesity and insulin
resistance that progresses to diabetes [23]. However,
ordinary obesity in mice and humans is associated with
elevated leptin concentrations, suggesting leptin resistance

in the central nervous system as a principle cause [24, 25].
Interestingly, IL6 might be required for a normal leptin
response, as adult Il6−/− mice develop hyperphagia and
obesity, which is difficult to prevent by peripheral leptin
injections [26].

To establish the long-term systemic effect of hIL6 upon
nutrient homeostasis in mice, we investigated glucose
tolerance, energy expenditure and insulin action in trans-
genic C57BL/6J mice and ob/ob mice that secrete hIL6
constitutively into the circulation. Our results show that
hIL6 promotes central leptin action in mice, together with
its beneficial effects upon nutrient homeostasis.

Methods

Animals Treatment of mice involved in this study was
approved by the Institutional Animal Care and Use
Committee (IACUC) of Children’s Hospital Boston. IL6
transgenic mice, which have been previously described
[27], were generated by ten backcrosses for pure C57BL/6J
background. Ob/ob mice were purchased from the Jackson
Laboratory (Bar Harbor, ME, USA). Ob/obIL6 mice were
generated by mating ob+/−/IL6tg mice with ob+/− mice.
Animals were fed either regular chow diet with 9% of
energy derived from fat or a high-fat diet (HFD) (Research
Diets, New Brunswick, NJ, USA) with 45% of energy
derived from fat.

Metabolic analysis Intraperitoneal glucose tolerance test
was performed on mice fasted overnight for 16 h. Blood
glucose levels were measured on random-fed or overnight-
fasted animals in mouse-tail blood using a glucometer
(Elite; Bayer, Leverkusen, Germany) and serum samples
were collected for insulin measurements. Animals were
then injected intraperitoneally with D-glucose (2 g/kg body
weight) and blood glucose levels were measured [28].
Blood insulin and leptin levels were determined using rat
insulin and mouse leptin ELISA kits (Crystal Chem,
Downers Grove, IL, USA). Lean and fat body mass were
assessed by dual-energy X-ray absorptiometry (DEXA)
(GE Lunar, Madison, WI, USA) [28].

Food intake, physical activity and energy expenditure All
measurements were performed over a 72 h period with a
comprehensive laboratory animal monitoring system (Oxymax
Windows 3.0.3; Columbus Instruments, Columbus, OH,
USA). The data presented are average values obtained in these
recordings.

Hypothalamic neuropeptide expression Neuropeptide
mRNAwas analysed using quantitative real-time PCR with
customised primers. Actin gene expression was used to

526 Diabetologia (2010) 53:525–535



normalise RNA content and the relative gene product
amounts were reported as mean±SEM of several animals.

Western blotting Mice were fasted overnight (16 h) and
then fed for 4 h. Tissues were removed under anaesthetic,
homogenised and applied for direct immunoblotting
(50 μg) with the indicated antibodies [29]. Antibodies used
in this study included: rabbit insulin receptor, IRS1 and
IRS2 antibodies (Upstate Biotechnology, Billerica, MA,
USA); antibodies against signal transducer and activator of
transcription-3 (STAT3), phospho-specific STAT3 (Tyr307),
phospho-Aktser473, Akt and β-actin (Cell Signaling Tech-
nology, Danvers, MA, USA); monoclonal antibody to
suppressor of cytokine signalling (SOCS3) and phospho-
tyrosine (Upstate Biotechnology). The intensity of signals
was determined using a Kodak molecular imaging system.

Statistical analysis Unless otherwise stated, mean values ±
SEM were used to make comparisons between groups.
Logistic regression or generalised linear regression (SPSS
version 16; SPSS, Chicago, IL, USA) was used where
indicated to establish significant difference (p<0.05) when
multiple categorical predictors were compared across the
experiments. A generalised linear model was used to make
comparisons across all samples, using the Bonferroni
correction for multiple comparisons.

Results

The effect of human IL6 on growth and diet-induced obesity
in mice To investigate the effect of hIL6 upon nutrient
homeostasis, we created mice with sustained circulating
hIL6 secreted predominantly from brain and lung (hIL6tg

mice) by backcrossing wild-type C57BL/6J mice 12 times
with MUP/hIL6 mice expressing human IL6 cDNA under
the control of a mouse urinary protein gene promoter. The
hIL6 transgene is expressed predominantly in the brain and
the lung (as demonstrated by RT–PCR), (Electronic
supplementary material [ESM] Methods, ESM Fig. 1a)
[27]. To verify that hIL6 is active in mice, we compared the
biological response of wild-type mice to daily injections
(50 ng i.p.) of hIL6 or murine IL6 (mIL6) (circulating IL6
143–180 pg/ml, 150 min after injection). Murine IL6 and
hIL6 stimulated STAT3 phosphorylation in liver, although
the effect of mIL6 was 1.5-fold greater than that of hIL6
(Fig. 1a). Body weight and blood glucose concentrations
were unchanged during 3 days of mIL6 or hIL6 injections;
however, circulating insulin increased equally during
injections with mIL6 or hIL6 (ESM Fig. 1b–d). As
previously shown, serum amyloid A protein, a sensitive
marker of hepatic acute-phase reaction in mice, increased

significantly after mIL6 injections [14, 30]; despite this, hIL6
had no effect upon serum amyloid A concentrations in mice
or cultured mouse hepatocytes (ESM Methods, Fig. 1b, ESM
Fig. 1e) [31]. In hIL6tg mice, circulating hIL6 reached
1,150 pg/ml, which was about tenfold higher than the
concentration achieved during injection (ESM Methods,
ESM Table 1). Nevertheless, hIL6tg mice displayed no
evidence of inflammatory or immunological disturbances in
tissue histology as demonstrated by immunostaining, white
blood cell count or serum chemistry (ESM Methods, ESM
Figs 1f, 2b–d, ESM Tables 1 and 2). In addition, IL6
transgene expression in different brain regions did not trigger
inflammatory responses within the central nervous system, as
demonstrated by RT–PCR (ESM Methods, ESM Table 3).
Thus, hIL6 is biologically active in mice, but did not
promote an acute inflammatory response.

The hIL6tg mice maintained between 4 and 24 weeks of
age on regular chow (9% of energy derived from fat) were
slightly smaller than wild-type mice (Fig. 1c). By compar-
ison, HFD (45% energy derived from fat) caused significant
weight gain in wild-type mice, whereas HFD-fed hIL6tg

mice were slightly smaller than chow-fed wild-type mice
(Fig. 1c, d). DEXA confirmed that the lean body mass of
24-week-old wild-type or hIL6tg mice was not influenced
by diet. By comparison, HFD increased adipose mass
of wild-type mice twofold, but had no effect on hIL6tg

mice (Fig. 1e). Haematoxylin and eosin staining con-
firmed that adipocytes were 30% smaller (p<0.05) in
HFD-fed hIL6tg mice than in wild-type mice (Fig. 1f, g).
Thus, hIL6tg mice were slightly smaller and had less
visceral fat on a chow diet, whereas HFD-induced obesity
was prevented.

Glucose tolerance and insulin sensitivity in hIL6tg

mice Although acute treatment of C57BL/6J mice with
IL6 causes insulin resistance and hyperinsulinaemia, fasting
insulin was unexpectedly low in chow- and HFD-fed hIL6tg

mice (Fig. 2a). The HOMA2 (http://software.informer.com/
getfree-homa2-calculator-download/) of insulin resistance
confirmed that HFD-fed wild-type mice developed insulin
resistance, whereas HFD-fed hIL6tg mice remained insulin-
sensitive (Fig. 2b). Moreover, glucose tolerance in HFD-fed
hIL6tg mice was indistinguishable from that in chow-fed
wild-type and hIL6tg mice, whereas the HFD caused
glucose intolerance in wild-type mice (Fig. 2c, d). Consis-
tent with the expected compensatory response to insulin
resistance, beta cell mass and islet density increased
significantly in HFD-fed wild-type mice; however, beta
cell mass in hIL6tg mice on chow or HFD was indistin-
guishable from that in chow-fed wild-type and hIL6tg mice
(Fig. 2e, f). Thus, hIL6 prevented diet-induced insulin
resistance and compensatory beta cell growth in hIL6tg

mice.
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Hepatic metabolism and signalling in hIL6tg mice IL6 has
contradictory effects upon hepatic glucose metabolism due
at least in part to the opposing action of hepatic STAT3
signalling. Under ordinary conditions, STAT3 mediates the
suppressive effect of IL6 on hepatic glucose production
[32]. However, during obesity IL6 inhibits peripheral
insulin signalling by stimulating STAT3 to SOCS3 signal-
ling [33]. In the present study, postprandial STAT3
phosphorylation increased in chow-fed wild-type and
hIL6tg mice; however, STAT3 phosphorylation was barely
detected in HFD-fed wild-type mice (Fig. 3a, b). Basal and
postprandial STAT3 phosphorylation increased significantly
in HFD-fed hIL6tg mice, consistent with the improved
glucose tolerance under these conditions (Fig. 3a).

As expected, liver SOCS3 levels were related to STAT3
phosphorylation. Compared with chow-fed wild-type mice,
SOCS3 increased in chow-fed hIL6tg mice, decreased in
HFD-fed wild-type mice and increased tenfold in HFD-fed
hIL6tg mice (Fig. 3c, d). The postprandial IRS1 concentra-
tion decreased significantly in the liver of chow-fed and
HFD-fed hIL6tg mice, which correlated with increased
SOCS3 concentration as previously described (Fig. 3c, e)
[33]. By comparison, hIL6 had no effect on liver IRS2
concentrations in chow-fed mice, whereas it prevented loss
of IRS2 in HFD-fed hIL6tg mice (Fig. 3d, f). Thus changes
in IRS1 and IRS2 concentrations were poor predictors of
the effect of hIL6 upon systemic glucose homeostasis and
peripheral insulin sensitivity.
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Fig. 1 The effect of human IL6
on growth and diet-induced
obesity in mice. a Western blot
and densitometric analysis of
pSTAT3 and total STAT3 in
liver of C57BL/6 mice after
three daily injections of mIL6
(50 ng), hIL6 (50 ng) or vehicle.
Intensity of pSTAT3 was
normalised to STAT3 (n=10).
b Serum amyloid A (SAA)
levels measured from random
fed mice 150 min after injection
of mIL6, hIL6 or vehicle
(n=10). c Average body weights
of male hIL6tg mice on chow
diet (white circles; n=15) and
on HFD (white squares; n=10),
or of wild-type mice on chow
diet (black circles; n=15) and on
HFD (black squares; n=10).
d Representative images of
24-week-old mice as labelled.
e Body composition of 24-
week-old wild-type and hIL6tg

mice on chow and HFD mea-
sured by DEXA (n=10–12).
f Representative haematoxylin
and eosin staining of epididymal
adipose tissue of wild-type and
hIL6tg mice aged 24 weeks.
Scale bar, 500 µm. g Morpho-
metric analysis of epididymal
adipose tissue (n=5 animals
per genotype). Values (where
applicable) are mean±SEM;
*p<0.05 and **p<0.01 for
wild-type vs hIL6tg mice
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The insulin receptor mediates tyrosine phosphorylation
of IRS1 and IRS2, which directly activates the
phosphatidylinositol-3-kinase to Akt cascade in all cells.
Insulin stimulated equally insulin receptor phosphorylation
and AktSer473 phosphorylation in liver of chow-fed wild-
type and hIL6tg mice; however, insulin-stimulated insulin
receptor phosphorylation in HFD-fed hIL6tg mice was
significantly stronger than in HFD-fed wild-type mice
(Fig. 3g, h). Consistent with these results, insulin-
stimulated AktSer473 phosphorylation in HFD-fed hIL6tg

mice was also increased compared with HFD-fed wild-type
mice (Fig. 3g, i). This pattern of insulin receptor and Akt
phosphorylation might explain in part the positive effect of
hIL6 upon insulin sensitivity in hIL6tg mice.

Energy balance in hIL6tg mice Excess food intake
relative to energy expenditure promotes obesity, a process

in which leptin plays an important regulatory role [34]. At
6 months of age, wild-type and hIL6tg mice were
monitored for 72 h in the comprehensive lab animal
monitoring system. Food intake by chow-fed wild-type
and hIL6tg mice was indistinguishable, whereas circulating
leptin decreased significantly in the latter (Fig. 4a, b).
These results suggest that chow-fed hIL6tg mice were
more sensitive to leptin than wild-type mice. Compared
with chow-fed wild-type mice, leptin increased signifi-
cantly in HFD-fed wild-type mice, while food intake in
both groups was indistinguishable, suggesting that wild-
type mice developed leptin resistance on HFD (Fig. 4a, b).
By comparison, leptin decreased sevenfold in HFD-fed
hIL6tg mice, while food intake decreased. Since adipose
mass was equal in hIL6tg mice on chow or HFD (Fig. 1e),
these results suggest that hIL6 promotes leptin sensitivity
in hIL6tg mice.

Regardless of diet, the hIL6tg mice consumed more
oxygen and expelled more CO2 than wild-type mice during
the light and dark phases (Fig. 4c, d). They also displayed
20% more voluntary movement than wild-type controls,
when controlling for age, time of day and diet (Fig. 4e).
Thus, diet-induced obesity was probably avoided in hIL6tg

mice by a combination of reduced food intake and
increased activity and energy expenditure, which was
associated with increased leptin sensitivity.

Central regulation of feeding behaviour in hIL6tg mice In-
tracerebral IL6 injections can prevent obesity in Il6−/− mice,
suggesting that IL6 might affect central regulation of nutrient
homeostasis [26]. We investigated the STAT3 to SOCS3
signalling cascade in the hypothalamus of wild-type and
hIL6tg mice, where this pathway plays an important role in
regulating expression of Pomc and Agrp [35]. Compared
with wild-type mice and regardless of diet, STAT3 phos-
phorylation was significantly increased in fasted hIL6tg mice;
however, feeding increased STAT3 phosphorylation only in
HFD-fed wild-type mice (Fig. 5a, b). Consistent with these
results, chow- and HFD-fed hIL6tg mice displayed a
significant tenfold increase in hypothalamic SOCS3 protein
compared with wild-type mice (Fig. 5c, d).

We used semi-quantitative RT–PCR to determine
whether hIL6 altered expression of Agrp and Pomc. As
expected, feeding suppressed expression of the former and
increased expression of the latter in chow-fed wild-type and
hIL6tg mice (Fig. 5e, f). By comparison, expression of Agrp
and Pomc was reduced and insensitive to feeding in HFD-
fed wild-type mice, whereas expression in HFD-fed hIL6tg

mice responded normally to feeding (Fig. 5e, f). Thus, hIL6
had multiple effects in the hypothalamus of mice on HFD;
these effects were consistent with increased energy utilisa-
tion, reduced food intake and changes in peripheral glucose
homeostasis.
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Fig. 2 Glucose tolerance and insulin sensitivity in hIL6tg mice. a Fasting
serum insulin levels (n=10) at 24 weeks. b HOMA index of insulin
resistance (IR). c Glucose tolerance test of 24-week-old male mice fed a
chow (n=15) diet or d HFD (n=10). Circles, wild-type; triangles,
hIL6tg. e Percent of pancreas area that consisted of islets (n=4 animals
per group). f The number of islets per μm2 (n=4 animals per group).
Data are expressed as average ± SEM. *p<0.05 and **p<0.01 for wild-
type vs hIL6tg mice
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The effect of human IL6 in ob/ob mice Ob/ob mice are
hyperphagic, obese and develop severe insulin resistance that
progresses to diabetes; however, peripheral injections of leptin
can restore nutrient homeostasis [36]. We created ob/obIL6

mice to determine whether hIL6 could restore nutrient
homeostasis without leptin. As expected, ob/ob mice on a
chow diet were heavier than wild-type mice between 4 and
12 weeks of age (Fig. 6a). Until 7 weeks, both hIL6tg and
ob/obIL6 mice had reduced body mass compared with wild-
type mice (Fig. 6a). However, at 8 weeks the ob/obIL6 mice
were slightly heavier than wild-type and hIL6tg mice, gaining
weight until the ob/obIL6 mice were only 3.3±0.3 g (p<

0.0001) lighter than ob/ob mice at 12 weeks of age (Fig. 6a).
DEXA analysis showed that ob/obIL6 mice accumulated less
adipose mass than ob/ob mice at 8 weeks of age, whereas the
adipose mass was indistinguishable by 12 weeks (Fig. 6b).
Compared with wild-type and hIL6tg mice, food intake
during a 48 h period was significantly greater and indistin-
guishable in ob/ob and ob/obIL6 mice (Fig. 6c). By 48 weeks,
the ob/ob mice were heavier than ob/obIL6 mice (ob/ob 78 g,
ob/obIL6 65 g; p<0.05), whereas wild-type and hIL6tg mice
had identical weights (wild-type 34.7 g, hIL6tg 32.8 g; p=
0.7) (Fig. 6a). Thus, hIL6 largely failed to restore nutrient
homeostasis in ob/obIL6 mice.
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Despite the fact that the adipose mass was equal in ob/ob
and ob/obIL6 mice at 12 weeks, the fed blood glucose and
fasted insulin concentrations were reduced 50% in the latter
(Fig. 6d, e). Despite this, ob/ob and ob/obIL6 mice were
diabetic, as their fasting blood glucose and glucose
tolerance were dysregulated compared with wild-type and
hIL6tg mice (Fig. 6f). By 48 weeks of age, fed blood
glucose was indistinguishable in wild-type, hIL6tg and
ob/obIL6 mice, and significantly lower than in ob/ob mice
(Fig. 6d). Thus, hIL6 promotes glucose homeostasis in old
obese ob/obIL6 mice.

To directly establish the effect of hIL6 upon leptin
action, we injected leptin intraperitoneally into 12-week-old
chow-fed mice. A typical daily dose of leptin (1 mg/kg
body weight) decreased food intake and body weight of
ob/ob and ob/obIL6 mice (data not shown). To better
distinguish the effect of leptin in these two groups, we

injected a low dose of leptin (0.1 mg/kg) daily for 16 days.
Compared with ob/ob mice, low-dose leptin significantly
decreased body weight and increased locomotor activity of
obese ob/obIL6 mice; however, low-dose leptin had no
effect in chow-fed wild-type or hIL6tg mice, and was too
low to significantly reduce food consumption by ob/ob
mice (Δfood=−0.5±0.3 g, p>0.05) (Fig. 6g–i). Low-dose
leptin did, however, significantly reduce food consumption
by ob/obIL6 mice (Δfood=−1.0±0.2 g/day, p<0.001)
(Fig. 6i). To establish whether hIL6 increases central leptin
signalling, we compared STAT3 phosphorylation in the
hypothalamus of 1-year-old wild-type, hIL6tg, ob/ob and
ob/obIL6 mice at 2 h after a single low-dose leptin injection.
Compared with wild-type mice, basal and leptin-stimulated
STAT3 phosphorylation was significantly increased in
hIL6tg mice, but significantly decreased in ob/ob mice
(Fig. 6j). Remarkably, basal and leptin-stimulated STAT3
phosphorylation in ob/obIL6 mice was indistinguishable
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from that in wild-type mice (Fig. 6j). These results support
the hypothesis that circulating hIL6 augments central leptin
signalling and action, revealing the principle mechanism by
which hIL6 promotes nutrient homeostasis in hIL6tg mice.

Discussion

Despite evidence of pleotropic and contradictory actions of
IL6 upon glucose tolerance in rodent models and human
studies, our experiments show clearly that overexpression
of hIL6 in brain and lung of hIL6tg mice reduces daily food
consumption and promotes energy expenditure. Consistent
with the reduced adiposity, circulating insulin decreases and
glucose tolerance improves, confirming that hIL6 promotes
systemic insulin sensitivity, especially in animals on HFD.
Moreover, circulating leptin and daily food consumption
decreases, suggesting that hIL6 improves central leptin
sensitivity or action.

Previous reports have shown that central leptin signal-
ling requires IL6-mediated signals for a normal response.
Thus Il6−/− mice slowly develop obesity while circulating
leptin increases, and obese Il6−/− mice do not respond to
intracranial leptin injections [26]. By contrast, circulating
leptin decreases significantly in hIL6tg mice on chow or
HFD. Since leptin signalling is required in the hypothala-
mus to suppress appetite and promote energy expenditure,
hIL6 apparently augments leptin action: otherwise the
hIL6tg mice would consume more food and accumulate
adipose mass [23]. In our study, only ob/obIL6 mice
responded significantly to low-dose leptin injections with
greater locomotor activity accompanied by decreased body
weight and food consumption. Thus our results support the
hypothesis that life-long hIL6 promotes central leptin
signalling, which prevents diet-induced obesity in mice.

The signalling subunit gp130 of the IL6 receptor
complex is similar structurally to the intracellular tail of
the signalling-isoform of the leptin receptor, isoform b
(LepRb) [37]. Consistent with the shared regulation of
STAT3 phosphorylation by leptin and IL6, Pomc and Agrp
expression in our study was nearly normal in hIL6tg mice
on a HFD. However, the effect of hIL6 upon Pomc and
Agrp regulation appears to occur through its effects upon
leptin signalling, as ob/ob and ob/obIL6 mice were equally
hyperphagic.

STAT3 to SOCS3 signalling is stimulated by leptin in the
hypothalamus and throughout the body by numerous
factors including IL6, IFN-γ, IL10, CNTF (ciliary neuro-
trophic factor) and other gp130 signalling cytokines [2].
However, the leptin response increased while SOCS3
production also increased in the hypothalamus of lean
hIL6tg mice, suggesting that SOCS3 does not inexorably
block the leptin signal. Direct comparison of hypothalamic

STAT3 phosphorylation in ob/ob and ob/obIL6 mice shows
that hIL6 weakly promoted STAT3 phosphorylation in the
absence of leptin. Thus, hIL6 largely promotes the leptin-
stimulated STAT3 to SOCS3 cascade, which maintains the
normal relation between leptin and SOCS3.

We posit that IL6 receptor α-neurons are separate from
LepRb-neurons, since hIL6 failed to normalise body weight
or food intake in ob/obIL6 mice. However, IL6 receptor α-
neurons might converge upon a common efferent circuit,
ordinarily regulated by LepRb neurons, to augment leptin
signalling in ob/ob mice or wild-type mice on the HFD. A
similar relation appears to exist between CNTF receptor
neurons and LepRb neurons [2]. LepRb and the CNTF
receptor share structural homology and can activate similar
signalling pathways in the hypothalamus. In the absence of
CNTF receptor, CNTF can activate gp130 through a
homodimer of IL6 receptor and leukaemia inhibitory factor
receptor (LIFR) [38]. CNTF can ameliorate obesity by
circumventing diet-induced leptin resistance [39]. It
remains to be investigated whether CNTF mediates any of
the central effects of IL6.

Cell-based experiments suggest that the IL6-stimulated
STAT3 to SOCS3 cascade causes hepatic insulin resistance
by inhibiting insulin receptor signalling and increasing
IRS1 degradation [10]. In parallel with increasing SOCS3
concentrations, IRS1 concentrations in the present study
decreased in the postprandial liver of hIL6tg mice; however,
hIL6 prevented the near complete loss of insulin-stimulated
insulin receptor autophosphorylation and the downstream
phosphorylation of IRS2 and Aktser473 in animals on HFD,
a finding consistent with improved systemic glucose
tolerance. Recently, the negative effect of SOCS3 on
insulin action has been questioned, since liver-specific
Stat3−/− mice with low SOCS3 concentrations were unable
to suppress hepatic glucose production [32]. The strongest
effect of mIL6 upon liver metabolism might depend upon
hypothalamic STAT3 signalling, which mediates the nor-
malising effect of leptin on hepatic insulin action in rats on
a HFD [35]. Intracerebral ventricular insulin infusion has
been shown to increase levels of mIL6 in the liver, which
can increase hepatic STAT3 and through that suppress
expression of gluconeogenic enzymes [32]. Thus hepatic
IL6 to STAT3 signalling triggered by brain insulin action
could play an important role in nutrient homeostasis.
However, in animals on a chow diet hIL6 might not be
sufficient, because STAT3 phosphorylation did not increase
in fasted hIL6tg mice, while increasing equally in wild-type
and hIL6tg mice. Whereas the HFD inhibited hepatic
STAT3 phosphorylation in our study, hIL6 strongly
promoted basal and postprandial STAT3 phosphorylation.
Thus a postprandial signal, perhaps initiated by insulin and/
or leptin in the hypothalamus, appears to be essential for
hepatic STAT3 phosphorylation.
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The question of whether IL6 has positive or negative
effects on metabolism is the subject of continuing contro-
versy [8]. The hypothesis that IL6 induces insulin resistance
is challenged by findings that regular physical exercise
increases insulin sensitivity while promoting production
and release of IL6 from contracting skeletal muscle [40, 41].
IL6 can also increase peripheral insulin sensitivity and
glucose tolerance by activating AMP-activated protein
kinase (AMPK) in muscle [17, 42]. Here, however, hIL6
had no effect on AMPK phosphorylation or activity in
hIL6tg mice (data not shown). Further investigation regard-
ing a potential of AMPK to mediate some of the effects of
hIL6 is required.

The relation between IL6 and leptin in the central
nervous system might play an important role on the effect
of exercise upon nutrient homeostasis. Moderate exercise
promotes peripheral insulin sensitivity and suppresses
weight gain [43]. Human IL6 secretion from skeletal
muscle is dramatically increased during and after exercise
[44]. Our results are consistent with the hypothesis that the
effect of exercise upon nutrient homeostasis and insulin
sensitivity might be mediated through central effects of
muscle-derived IL6 in promoting central leptin signalling.

Our results are consistent with the hypothesis that
decreased fat mass in hIL6tg mice, especially those on
HFD, arises through increased energy expenditure. Thus
oxygen consumption, CO2 production and physical activity
were increased in the hIL6tg mice. These data are consistent
with previous reports that a single intracranial injection of
IL6 increases oxygen consumption and energy expenditure
by rats [22, 26].

Chronic cerebral expression of mIL6, using an IL6
transgene under the control of glial fibrillary acidic protein
(GFAP) promoter, activates the hypothalamic–pituitary–
adrenal axis, which increases corticosterone concentrations
in stressed mice [45]. However, in our experiments, plasma
corticosterone concentrations were barely increased in
unstressed hIL6tg mice compared with control mice and
increased equally in both mice during stress (data not
shown). However, as in our hIL6tg mice, the plasma leptin
concentration was reduced in GFAP-IL6 transgenic mice
[45]. Since circulating IL6 was not elevated in those GFAP-
IL6 mice, those results support the hypothesis that hIL6
promotes leptin action in the central nervous system.

Previous reports have shown that transgenic IL6 causes
various pathologies of the immune system that can be fatal
to mice [46, 47]. Human IL6 in C57BL/6J mice under the
control of human immunoglobulin heavy-chain enhancer
develop mesangial proliferative glomerulonephritis with
massive IgG1 plasmacytosis [48]. MTI/IL6 transgenic mice
expressing murine IL6 constitutively in the liver developed
progressive kidney damage and died between 12 and
20 weeks of age [49]. Hepatic inflammation occurs in

transgenic mouse secreting mIL6 from muscle [14]. Despite
the above, our hIL6tg mice with circulating hIL6 secreted
from brain and lung never displayed hepatic inflammation,
acute inflammatory response or systemic inflammation.
Perhaps the sites of IL6 secretion are critical for its systemic
effect. In any case, hIL6tg mice provide a unique system to
investigate the role of hIL6 in central and peripheral
nutrient homeostasis.

In summary, hIL6 protects mice from insulin resistance
and obesity. Since this effect was not observed in ob/ob
mice, hIL6 apparently augments central leptin action
without substituting for leptin. Due to its immunoreactive
nature, IL6 might never be a successful therapeutic
treatment strategy; however, prolonged treatment with IL6
homologues with high accessibility to the central nervous
system might show therapeutic promise in anti-obesity
therapy.
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