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Plants possess many metabolic genes for the production of a wide variety of phytochemicals in a tissue-specific manner.
However, the metabolic systems behind the diversity and tissue-dependent regulation still remain unknown due to incomplete
characterization of phytochemicals produced in a single plant species. Thus, having a metabolome dataset in addition to the
genome and transcriptome information resources would enrich our knowledge of plant secondary metabolism. Here we
analyzed phytochemical accumulation during development of the model plant Arabidopsis (Arabidopsis thaliana) using liquid
chromatography-mass spectrometry in samples covering many growth stages and organs. We also obtained tandem mass
spectrometry spectral tags of many metabolites as a resource for elucidation of metabolite structure. These are part of the
AtMetExpress metabolite accumulation atlas. Based on the dataset, we detected 1,589 metabolite signals from which the
structures of 167 metabolites were elucidated. The integrated analyses with transcriptome data demonstrated that Arabidopsis
produces various phytochemicals in a highly tissue-specific manner, which often accompanies the expression of key
biosynthesis-related genes. We also found that a set of biosynthesis-related genes is coordinately expressed among the tissues.
These data suggested that the simple mode of regulation, transcript to metabolite, is an origin of the dynamics and diversity of
plant secondary metabolism.

The structural diversity of secondary metabolites is
an important part of the nature of plants as a rich
source of useful phytochemicals for humans. Compar-
ison of the metabolite compositions of plant tissues
investigated for specific secondary metabolites in
Arabidopsis (Arabidopsis thaliana; Brown et al., 2003) and
for primary metabolites in Lotus japonicus (Desbrosses
et al., 2005) revealed that plants have evolved meta-
bolic systems for producing a variety of metabolites in
a tissue-dependent manner to improve plant fitness.
Genome sequencing has uncovered the genetic back-
ground of the diversity of plant genomes, which
encode large families of metabolism-related genes
such as cytochrome P450s and glycosyltransferases
(D’Auria and Gershenzon, 2005; Yonekura-Sakakibara
and Saito, 2009). Recent progress in phytochemical
genomics studies using the model plant Arabidopsis

has enriched the list of functionally identified genes
(Hirai et al., 2007; Saito et al., 2008; Yonekura-Sakakibara
et al., 2008) with the aid of transcriptome resources
(Craigon et al., 2004; Schmid et al., 2005; Kilian et al.,
2007; Obayashi et al., 2007, 2009; Goda et al., 2008).
However, the majority of metabolic gene functions
as well as plant metabolic systems themselves
remain unknown, because the phytochemicals pro-
duced in Arabidopsis have not been fully character-
ized. Indeed, metabolome analyses using liquid
chromatography-mass spectrometry (LC-MS) led to
the postulation that Arabidopsis produces a large
number of unknown metabolites (Bottcher et al.,
2008; Farag et al., 2008; Iijima et al., 2008; Matsuda
et al., 2009). Thus, in addition to the genome and
transcriptome resources, two types of metabolome
resources are required to investigate metabolic sys-
tems in plants. The first is information for structural
elucidation of metabolites (Matsuda et al., 2009). The
second is metabolic profile data for integrated analyses
with other omics datasets. In this study, to explore the
structural diversity of secondary metabolites pro-
duced in one plant species, we analyzed the accumu-
lation of known and unknown phytochemicals during
development of the model plant Arabidopsis using
LC-MS of samples covering many growth stages and
diverse organs. We also acquired tandem mass spec-
tral (MS/MS) data of many metabolites (MS/MS
spectral tags [MS2Ts]) to elucidate the structures of
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Arabidopsis metabolites. The analyses of the dataset
(AtMetExpress development) demonstrated that Arabi-
dopsis has the capability of producing diverse metab-
olites with high tissue specificity.
The AtMetExpress development dataset also makes

it possible to understand the mechanism behind the
variations in metabolic profiles among plant tissues by
investigating the relationship between gene expres-
sion and metabolite accumulation. For example, when
metabolite accumulation patterns are distinct from the
patterns of biosynthesis-related genes, several other
factors such as catabolism, translocation, and feedback
regulation are likely to play important roles in the
metabolic systems. An underdetermined system re-
quires the identification of novel components, based
on which a more detailed analysis of the behavior of
the metabolic system can be achieved. In contrast, a
concerted regulation of biosynthesis-related gene ex-
pression and metabolites indicate a simple mode of
regulation of the metabolic systems. In such systems, it
is expected that coexpression/accumulation analysis
of the gene and metabolite would reveal additional
components of the system such as biosynthesis-related
genes. To perform integrated analyses, metabolome
data of the AtMetExpress development dataset were
acquired by an experimental design compatible with
that of the AtGenExpress development transcriptome
dataset (Schmid et al., 2005). An analysis of the data-
sets revealed how transcriptional programs control the
tissue-specific production of diverse phytochemicals.
The results suggested that a simple mode of regulation
employing transcript to metabolite is an origin of the
dynamics and diversity of plant secondary metabo-
lism.

RESULTS

Data Acquisition of AtMetExpress Development Dataset

For determining the metabolite levels, we obtained
quadruplicate metabolic profiles of 36 distinct tissues
by using LC coupled with electrospray ionization
quadrupole time-of-flight MS/MS (LC-ESI-Q-TOF/MS)
according to previously described methods (Matsuda
et al., 2009). The obtained data matrix contains the
relative peak intensity values of 1,589 metabolite
signals from 144 samples (36 tissues by four replicates;
Supplemental Data S1). The experimental design was
compatible with that of the AtGenExpress develop-
mental (Schmid et al., 2005) series for integrated anal-
yses with transcriptome data (Supplemental Tables S1
and S2). The following statistical analyses were per-
formed by using the metabolic profile dataset contain-
ing the 1,589 detected metabolite signals.
In addition to the metabolic profile data for deter-

mining the metabolite levels, the MS/MS spectral data
of detectable metabolites were obtained by employing
the specific method for structurally elucidating Arabi-
dopsis metabolites. Crude extracts of nine representa-

tive tissues of Arabidopsis were analyzed using the
survey mode of the LC-ESI-Q-TOF/MS to obtain the
MS/MS spectral data of detectable metabolites auto-
matically. Hereafter, the MS/MS spectral data ob-
tained using this method are referred to as MS2Ts
(Matsuda et al., 2009). In this study, 36 MS2T libraries
with 476,120 accessions were created (Supplemental
Table S3).

Because the metabolic profile data and MS2T librar-
ies were acquired by using compatible analytical con-
ditions, we could obtain MS/MS spectral data of a
metabolite signal in the metabolic profile data by
identifying the MS2T data acquired from the same
metabolite. This means that metabolite signals in the
data matrix could be tagged with the corresponding
MS2T data. By using this method, approximately 95%
of the metabolite signals in the data matrix were
tagged with MS2Ts. By referring to the structural
information available from the MS2Ts, among the
1,589 metabolite signals in the dataset, the structures
of 167 metabolites were elucidated (37 metabolites
were identified, two were annotated, and 128 were
characterized; Supplemental Table S2; refer to “Mate-
rials and Methods” for details). For instance, a metab-
olite accumulating in roots (retention time, 4.15 min;
mass-to-charge ratio [m/z] 389) was deduced to be
guaiasylglycerol-b-feruloyl ether by interpreting the
MS/MS spectral data (Supplemental Fig. S1). Hexosyl
andmalonyl derivatives of guaiasylglycerol-b-feruloyl
ether were also newly identified as Arabidopsis me-
tabolites (e.g. compound 12 in Fig. 1A). Most of the
annotated metabolites were glucosinolates (GSLs; 1–
4), phenylpropanoids (5–19), and nitrogen-containing
products (1–4, 13, 15, 17–19, 24, 25; Fig. 1A). The accu-
mulation patterns of GSLs were similar to those of
published data (Petersen et al., 2002; Bringmann et al.,
2005), suggesting the reproducibility of the metabolic
profile data. It was also confirmed that 53 metabolites
among the 75 seed metabolites previously reported by
Böttcher et al. (2008) were reproductively found in this
study. The metabolites detected in the Böttcher et al.
(2008) study alone were unusual metabolites accumu-
lating only in a transparent testa4 mutant in the Lands-
berg erecta background.

Diversity of Metabolites Produced by Arabidopsis

The clustering of metabolites by MS/MS spectral
similarity indicates that Arabidopsis produces groups
of metabolites that are structurally uncharacterized.
Based on the MS2Ts for each metabolite signal, the
structural similarities among metabolites were exam-
ined by determining the similarity of MS/MS spectra
using the dot product method (Stein and Scott, 1994).
The structural similarity network showed several
clusters of metabolite signals (Fig. 2; S . 0.35). The
threshold level was arbitrarily selected to find the
largest number of metabolite clusters. The relation-
ships between the threshold values and the properties
of the metabolite structural similarity networks are
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Figure 1. (Legend appears on following page.)
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shown in Supplemental Table S4. Some of the clusters
were characterized as known metabolites, including
glycosides of flavonols (kaempferol, quercetin, and
isorhamnetin), sinapoyl-containing metabolites, sina-
poylcholine (SC) derivatives, GSLs, and lignans. Al-
though many other clusters were poorly annotated in
the databases, the results still indicate that Arabidop-
sis has the capability to produce known and unknown
metabolites with wide structural diversity.

High Tissue Specificity of Metabolite Accumulation

The dataset enabled us to compare the spatial dis-
tribution of phytochemicals with AtGenExpress gene
expression data (Winter et al., 2007). For example,
spermidine-di-p-coumaroyl (17) and its key biosyn-
thetic gene (spermidine hydroxycinnamoyltransferase
[SHT]; Grienenberger et al., 2009) are specifically ex-
pressed in flowers (Fig. 1B). However, the Pearson
correlation coefficient (PCC) between them is weak
(r = 0.41) because SHT (At2g19070) is expressed only
transiently at the early stages of flower development,
whereas 17 is also detected in mature flowers. Because
of such inconsistencies, overall gene-metabolite (G-M)
correlations were weaker than gene-gene (G-G) and
metabolite-metabolite (M-M) correlations (Supple-
mental Fig. S2). Here, the global trend of metabolite
accumulation across the tissues was investigated by
statistical analyses and compared with gene expres-
sion data.
Analysis of the metabolome dataset revealed that

organ systems, including roots, flowers, and seeds,
had distinct and characteristic metabolic profiles as

shown by principal component analysis (Fig. 3). Over-
all morphological similarity was reflected as the dis-
tances in principal component analysis. In contrast,
intermediate metabolic profiles were obtained for ro-
sette leaves and internodes because the data for these
regions were plotted near the origin of the axes. A
similar trend was observed in the graphical represen-
tation of the network of metabolites with very similar
accumulation patterns (PCC r. 0.7; Supplemental Fig.
S3). The high tissue specificity of metabolite accumu-
lation was confirmed by a Venn diagram of detectable
metabolites in five representative tissues, including
roots, leaves, internodes, flowers, and seeds (Supple-
mental Fig. S4). Relatively large numbers of metabo-
lites specifically accumulated in flowers (22%), seeds
(13%), and roots (12%), whereas only 8% of metabo-
lites were commonly detected in all five tissues, and
rosette leaves showed the basal phenotype (4%). The
annotation data indicated that hydroxycinnamoyl-
spermidines (17, 18) and flavonol glycosides (8) in
flowers and SC derivatives (11, 15) in seeds are tissue-
characteristic metabolites (Yonekura-Sakakibara et al.,
2007, 2008; Bottcher et al., 2008; Grienenberger et al.,
2009).

To compare the global trend of tissue specificity
between gene expression and metabolite accumula-
tion, Shannon entropy, H, were determined for the
accumulation patterns of each metabolite and gene
(Schug et al., 2005). Histograms of the entropy levels
amongmetabolome and transcriptome data are shown
in Figure 4. The results demonstrated that most genes
are more evenly expressed among the 36 tissues
(reflected by the higher entropy values) than the

Figure 1. A, Structures of representative Arabidopsis phytochemicals with summary of biosynthetic pathways and enzymes
referred to in text. B, Accumulation and expression patterns of spermidine-di-p-coumaroyl (17; left) and SHT gene (right). Gene
expression patterns were obtained from the Bio-Array Resource eFP Browser (Winter et al., 2007).

Figure 2. Clustering of metabolite signals by
structural similarity. The structural similarity
values (S) were determined using dot product
methods (0 # S # 1). Nodes in the graph repre-
sent metabolite signals detected in positive (red)
and negative (blue) ion modes. Edges represent
pairs of structurally similar metabolites above the
threshold (S . 0.35). The network contains 79
clusters of 1,269 edges among 467 metabolites,
of which 95 metabolites are structurally assigned.
The filled circles and diamonds indicate structur-
ally unassigned and assigned metabolites, respec-
tively. The metabolite classes included in clusters
are also shown.
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phytochemicals. Higher tissue specificity of the phy-
tochemical accumulations (lower entropy values) was
also observed in the subset of the structurally anno-
tated metabolites (n = 167). However, small numbers
of genes showed relatively low entropy values. The
overrepresenting gene ontology (GO) in a subset of
genes with low entropy (H , 4.0; 2,007 genes) were
investigated (Supplemental Table S5), since these low-
entropy genes may have some role in tissue-specific
function of metabolic systems. In addition to genes
possessing GO terms such as flower development and
cell wall, the results indicated that genes belonging to
GOs such as oxygen binding (including CYP P450),
transferase, and secondarymetabolism are significantly
overrepresented in the subsets (P, 0.05). These results
suggested that, in addition to the tissue-dependent
accumulation of phytochemicals, genes likely respon-
sible for secondary metabolism tend to be expressed in
tissue-specific manner.

Comparison between Accumulation Patterns of
Metabolites and Expression of Their Biosynthetic Genes

To clarify any possible similarity of expression pat-
tern of each gene to the accumulation pattern of its
associated metabolites, we conducted a clustering
analysis using the batch-learning self-organizing
map (BL-SOM) method. BL-SOM is an improved and
a reproducible method of the original SOM (Kanaya
et al., 2001), and thus applied to integrated analysis of
transcriptome and metabolome, leading to successful
prediction of genes’ functions (Hirai et al., 2004, 2005).
All 1,589 metabolite signals with 10,147 metabolism-

related genes (selected by GO terms) were classified
into a 30 3 26 lattice according to their relative
expression level across 36 tissues (Fig. 5, A–D). The
dataset also contains dummy profile data as tissue
markers (Supplemental Table S6). For example, the
seed marker has an artificially generated reference
representing metabolic profile accumulating only in
mature seeds (ATME84). Therefore, the metabolites
and genes specifically expressed and accumulated in
mature seeds should be classified near the seedmarker
position. Figure 5A also indicates lattices by circles in
which the accumulated genes and metabolites are
classified according to the tissues. These regions were
arbitrarily defined by summarizing the feature maps
of individual experiments (Supplemental Fig. S5).

The results of BL-SOM analyses revealed that the
regulation of gene expression and metabolite accu-
mulation in primary metabolic pathway is rather
complex. Although Tyr, Phe, and Trp (21–23) are
synthesized from the shikimate pathway (Fig. 1A),
the three aromatic amino acids are located at a differ-
ent position on the map (blue cells; Fig. 5B). Mapping
of these biosynthesis-related genes described in the
metabolic pathway database, AraCyc (Mueller et al.,
2003; Poole, 2007; red cells), showed poor similarity
between both G-M and G-G relationships. Similar
results were also observed for the cases of Met, Leu,
and Ile biosynthesis (Supplemental Fig. S6).

In contrast, simpler modes of regulation are ob-
served in the case of the phenylpropanoid pathway. As
shown in Figure 1, Arabidopsis has the capability to
produce various types of phenylpropanoids. The phen-
ylpropanoid pathway looks like a tree structure in

Figure 3. Principle component analyses of metabolic profiles across 36
tissues of Arabidopsis (n = 144). Despite the low variance (36%) shown
in the figure, the remaining principal components, each describing a
low variance, represent the noise (data not shown).

Figure 4. Frequency distribution of tissue specificity of metabolite
accumulation and gene expression. Degrees of specificity were eval-
uated by determining Shannon entropy levels (H) among 36 tissue
samples of Arabidopsis. Higher and lower entropy levels, respectively,
indicate lower and higher tissue specificity.
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Figure 5. Integrated analysis of transcriptome (AtGenExpress) and metabolome (AtMetExpress) data. A to D, BL-SOM clustering
of 10,147 metabolism-related genes and 1,589 metabolite signals by expression and accumulation patterns across 36 tissues. In
the BL-SOM analysis, the genes and metabolites with similar expression or accumulation profiles are clustered into neighboring
cells. Positions of genes are indicated by red, and other colors represent positions of metabolites. A, Positions of tissue markers:
filled circles roughly represent dominant tissues in each cell. Dummy metabolic profile data of each tissue marker and feature
maps of BL-SOM analysis are shown in Supplemental Table S4 and Supplemental Figure S5, respectively. B to D, Mapping of
aromatic amino acid (B), phenylpropanoid (C), and Met-derived GSL (D) biosynthesis-related genes and metabolites. E,
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which many pathways branch from the common
pathway for the biosynthesis of a C6-C3 (phenylpro-
panoid) unit. BL-SOM analysis demonstrated that 11
genes of the core phenypropanoid pathway were
coordinately expressed (high G-G similarity) and
that the most intense expression was observed in
internode tissues, probably for the active lignin bio-
synthesis in vascular tissues (Fig. 5C). On the other
hand, the accumulation patterns of phenylpropanoids
such as SC derivatives (11) in seeds (yellow cells),
hydroxycinnamoylspermidines (17, 18) in flowers
(blue cells), and coumarins (5) in roots (green cells;
Bottcher et al., 2008; Fellenberg et al., 2008; Kai et al.,
2008) were tissue specific with relatively high M-M
similarity. In addition, it has also been observed that
the key enzyme genes responsible for these biosyn-
theses (SHT for hydroxycinnamoylspermidines [17,
18] and feruloyl-CoA 6’-hydroxylase for scopolins [5];
Kai et al., 2008; Grienenberger et al., 2009) were located
near the product metabolites (red cells). In the case of
SNG2, encoding sinapoylglucose:choline sinapoyl-
transferase (Shirley et al., 2001), gene expression was
activated in siliques, indicating that SC (15) is actively
biosynthesized during seed development. Similar re-
sults were observed for procyanidin (6, 7) and flavonol
glycoside (8) biosynthesis (Supplemental Fig. S6C).
These results indicated that the functional differenti-
ation of the phenylpropanoid pathway among the
tissues was attained by controlling the expression of a
small number of key regulatory genes, leading to the
proposal that the high M-G similarity results in the
tissue-specific accumulation of phenylpropanoids.

We next considered Met-derived GSL biosynthesis
(see Supplemental Text S1 for details). Despite the
concerted regulation of biosynthesis-related genes
(red; Hirai et al., 2004, 2005, 2007), GSLs accumulated
predominantly in the dry seeds and the flowers as
reported previously (in Fig. 5D; Brown et al., 2003).
The difference in GSL profiles between the seeds and
the maternal organs (flowers and leaves) raises the
question of how the structure-dependent GSL accu-
mulation pattern is controlled, because methylsulfinyl
(MS)-GSLs (2, blue) are formed from methylthio
(MT)-GSLs (1, orange; Hansen et al., 2007), and then
converted into hydroxyalkyl (OH)-GSLs (3, green;
Kliebenstein et al., 2001). The accumulation pattern
of OH-GSLs in the seeds is explained by the expression
of the responsible gene AOP3 during seed developing
(Kliebenstein et al., 2001). On the other hand, as the
known genes involved in MS- and MT-GSL synthesis
are poorly expressed in seeds (see Supplemental Text
S1 for details), a translocation of MS or MT GSLs from

the maternal organs into the embryos has been postu-
lated (Nour-Eldin and Halkier, 2009).

Correlation between Gene Expression and
Metabolite Accumulation

BL-SOM analysis suggested that there are correla-
tions between gene expression and metabolite accu-
mulation in the case of phenylpropanoid pathway.
However, the correlation is not expected to be strong,
as demonstrated by the SHT gene and spermidine-
di-p-coumaroyl (17) pair, where weak correlation was
observed (PCC r = 0.41) due to the presumable time
gap between gene expression and resultant metabolite
accumulation (Fig. 1B). Although the weak correla-
tions were statistically insignificant, from these results
new hypotheses of metabolism-related gene functions
could be generated by correlation analyses of a small
subset of genes and metabolites.

The 5-hydroxyferuloyl moiety in hydroxycinnanoyl-
spermidines (18) is synthesized by 5#-hydroxylation of
the feruloyl moiety (Fellenberg et al., 2008). The G-M
correlation network of CYP genes and hydroxycinna-
noylspermidines revealed candidate CYPs responsible
for 5#-hydroxylation steps by employing a lower
threshold level (PCC r . 0.5) to detect weak correla-
tions (Fig. 5E). Among them, CYP98A8 and CYP98A9
could be the candidates involved in this reaction and
thus deserved further investigation, because a homol-
ogous gene, CYP98A3, is responsible for a similar
reaction (Schoch et al., 2001). Recently, this hypothesis
was independently confirmed by a reverse genetics
study (Matsuno et al., 2009).

The occurrence of lignin- and neolignan-like metab-
olites (9–12) in roots and seeds suggests the participa-
tion of dirigent protein (DP) in their biosyntheses
(Burlat et al., 2001; Davin and Lewis, 2005; Figs. 1A
and 5C). The coexpression/accumulation network of
lignin- and neolignan-like metabolites and 10 puta-
tive DP genes in Arabidopsis is shown in Figure 6A.
The results indicated that eight DPs correlate re-
dundantly with neolignans that accumulate in
roots (guaiasylglycerol-b-feruloyl esters, 12) and li-
gnans (lariciresionls, 10; Mir Derikvand et al., 2008;
Nakatsubo et al., 2008). In contrast, no correlations
were observed for the two homologs (At4g11180 and
At1g55210), implying functional specialization of
these two genes among DPs. Contrary to the tissue-
nonspecific expression of At1g55210, the gene expres-
sion data indicated that At4g11180 (DP1) is expressed
only in siliques, suggesting a role in neolignan accu-
mulation in seeds (Fig. 6B). To test this hypothesis, the

Figure 5. (Continued.)
Coexpression/accumulation network between hydroxycinnamoylspermidine (blue) and cytochrome P450 genes (orange).
Positive correlations above threshold levels are indicated with connecting lines (r, PCC). A relatively low threshold level (r. 0.5)
was employed to detect weak relationships. F, Coexpression/accumulation network between MS-n-alkylglucosinylates (GSLs;
blue) and all genes (orange). Positive correlations (r . 0.7) are indicated with connecting lines. Gene symbols and metabolite
abbreviations are shown in Supplemental Figure S7.
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Figure 6. A T-DNA insertion mutant of At4g11180
(DP1). A, Coexpression and accumulation network
between lignans (blue) and putative DP genes (orange).
Positive correlations above threshold levels are indi-
cated with connecting lines (r, PCC). A relatively low
threshold level (r . 0.5) was employed to detect weak
relationships. B, Gene expression patterns of DP1
obtained from Bar eFP browser. C, Schematic repre-
sentation of DP1 with the T-DNA insertion mutant
used. The thick black line indicates coding sequence.
The DP1 gene has no intron, and the gene region
containing 5#-untranslated region and 3#-untranslated
region is shown in the figure. Numbers indicate the
position of the T-DNA insertion. LB, Left border; RB,
right border. D, Selected ion chromatograms of seed
extracts from the wild type (Columbia-0, bottom section)
and the homozygous dp1 mutant (top section). The
peak for 3-{4-[2-hydroxy-2-(4-hexosyloxy-3-methoxy-
phenyl)-1-hydroxymethylethoxy]-3,5-dimethoxyphen-
yl}acryloylcholine [SC(4-O-b)G 4#-O-hexoside] is shown.
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knockout T-DNA insertion mutant SAIL_60_D04, des-
ignated dp1, was used for reverse genetic analysis.
T-DNA was inserted between +359 and +395 of the
start codon of DP1 (Fig. 6C). LC-MS analysis revealed
that the homozygous dp1 mutant lacks seed-specific
neolignans such as 3-{4-[2-hydroxy-2-(4-hexosyloxy-
3-methoxyphenyl)-1-hydroxymethylethoxy]-3,5-di-
methoxyphenyl}acryloylcholine (Bottcher et al., 2008;
11; Fig. 6D), suggesting a critical role of DP1 in the
biosynthesis of seed-specific neolignans. Although the
function of the DP1 gene needs to be unequivocally
characterized by further investigation, which is being
undertaken in our laboratory, the approach using At-
MetExpress is feasible for such hypothesis generation
regarding an orphan gene’s function.

BL-SOM analysis also demonstrated that the accumu-
lation ofMet-derivedGSLs (1, 2) was independent of the
control of the biosynthesis-related genes (Fig. 5F). Coex-
pression/accumulation analyses between Met-derived
GSLs and all Arabidopsis genes showed that five MS-
GSLs (1) correlated with 27 genes even when a relatively
higher threshold level was employed (PCC r . 0.7; Fig.
5D). Three of the genes were annotated as lipid transfer
protein type 5 (At2g10940, At1g27950, and At1g55260),
implying a role in aliphatic GSL transport. These results
demonstrated that, despite the small number of data
points for the calculation of G-M correlations (n = 36),
further use of coexpression/accumulation analysis com-
bined with other data should help in identifying novel
genes related to secondary metabolism.

DISCUSSION

The AtMetExpress development LC-MS dataset
obtained in this study consists of metabolic profiling
data of 36 Arabidopsis tissues (Supplemental Table S1)
and MS2T spectral libraries containing 476,120 acces-
sions (Supplemental Table S3). The dataset is designed
to fulfill two purposes required for understanding
metabolic systems in plants. The first is to explore the
structures of metabolites produced in Arabidopsis
using mass spectral information stored in the MS2T
libraries. Structural elucidation is a prerequisite for the
functional characterization of metabolic systems and
its related genes. In this study, structures of 167 me-
tabolites were elucidated through intensive searching
of metabolite databases (Fig. 1A; Supplemental Table
S2). Although the majority of metabolite signals re-
main uncharacterized, the clustering of metabolites
based on MS/MS spectral similarities successfully
demonstrated that one plant species has the capability
of producing metabolites with large structural diver-
sity (Fig. 2; D’Auria and Gershenzon, 2005; Yonekura-
Sakakibara and Saito, 2009). Since the MS2T libraries
created in this study already include MS/MS data of
many unknown metabolites, extending the MS/MS
spectral databases of standard compounds would
accelerate the structure elucidation of a wider range
of metabolites such as alkaloids, polyketides, and
terpenoids (Facchini et al., 2004; Samanani et al.,

2004). For this purpose, we are constructing a MS/
MS spectral database by collecting data reported in the
literature (http://spectra.psc.riken.jp/). However,
MS/MS data are insufficient for the strict identification
of metabolites. Preparation of standard compounds
and their detailed characterization by methods of
natural product chemistry is essential for LC-MS
metabolomics (Nakabayashi et al., 2009).

The second application of the AtMetExpress devel-
opment dataset is an integrated analysis with other
omics dataset, in particular, transcriptome, for an
investigation of how different metabolites are pro-
duced among plant tissues and how transcriptional
control develops distinct metabolite profiles. For this
purpose, the dataset was acquired by an experimental
design compatible with that of the AtGenExpress
development transcriptome dataset (Schmid et al.,
2005). Statistical analyses of the metabolic profile
data indicated that the majority of metabolites accu-
mulated unevenly among tissues (Fig. 4), and many
types of metabolites were produced in a tissue-specific
manner (Fig. 3). Since the metabolic profiling method
employed in this study failed to detected many hy-
drophilic and hydrophobic metabolites such as sugars,
organic acids, lipids, and volatiles (Fig. 1A), the high
degree of tissue specificity does not necessarily reflect
a general trend of plant metabolism. However, the
results have highlighted that each tissue of Arabidop-
sis has distinct states of secondary metabolism. The
accumulation of specific metabolites in reproductive
and underground organs seems rational because these
tissues require special constituents such as pigments
to attract pollinators and toxic metabolites for protec-
tion from herbivores and pathogens (Tanaka and
Ohmiya, 2008). In contrast, rosette leaves appear to
be one of the most prototypic and undifferentiated
organs in terms of secondary metabolism, because few
metabolite signals only accumulated in leaves (Sup-
plemental Fig. S4). This basal phenotype is likely to be
due to differential gene expression since the level of
expression of most genes in leaves is similar to their
overall average (Schmid et al., 2005).

The drastic difference in plant secondary metabo-
lism among tissues suggests a dynamic regulation of
metabolic systems probably by the transcriptional
control of those biosynthesis-related genes. Thus, we
performed a combined analysis of metabolome and
transcriptome data using the BL-SOMmethod to com-
pare modes of regulation in three distinct metabolic
pathways including aromatic amino acid biosynthesis,
the phenylpropanoid pathway, and the Met-derived
GSL biosynthetic pathway (Fig. 5).

It has been recognized that levels of free aromatic
amino acids in plants are under the control of multiple
factors, including protein biosynthesis, feedback reg-
ulation, transport, and distinct expression controls of
each isomer of biosynthesis-related genes (Li and Last,
1996; Liu and Bush, 2006; Lee et al., 2007; Ueda et al.,
2008; Yamada et al., 2008). Indeed, poor similarity
between both G-M and G-G relationships was ob-
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served in BL-SOM results, indicating that expression
of each gene is independently regulated and that other
unidentified factors such as intertissue translocation
play important roles in the regulation of amino acid
levels. The complex and somewhat redundant regula-
tion mechanism seems to contribute to the robustness
of metabolic systems to ensure the stable supply of
amino acids required for the steady growth of plants
under any environment.
In the case of the phenylpropanoid pathway, the

mode of regulation was simpler than that of primary
metabolism since a clear similarity of the expression/
accumulation pattern between G-G and M-M relation-
ships was observed (Fig. 5C). Tissue-dependent pro-
duction of phenylpropanoids was also regulated by
expression of a small number of key enzyme genes
(Figs. 1B and 5C). The simplicity of plant secondary
metabolism is useful nature to generate a hypothesis
regarding novel metabolism-related genes by coexpres-
sion/accumulation analysis as demonstrated for the
cases of CYP98A8, CYP98A9, and DP1 genes in this
study (Figs. 5E and 6). However, scarce G-M similarity
was observed for the Met-derived GSL biosynthetic
pathway despite clear G-G similarities being observed
among the biosynthesis-related genes. This observation
suggests the occurrence of other regulatory components
such as intertissue translocation, especially for the seed-
specific accumulation of MS-GSLs (see Supplemental
Text S1 for details). The identification of these compo-
nents using AtMetExpress development and other data
(Fig. 6F) should uncover the dynamics of the metabolic
system regulating GSL biosynthesis in detail.
As discussed above, roots, flowers, and seeds of

Arabidopsis have distinct and characteristic metabolic
profiles. This implies that some flexibility is needed for
the regulation of secondary metabolism to perform
dynamic control of metabolic activity among the tis-
sues. In this regard, a simple mode of regulation by the
concerted control of expression of a series of genes is
preferable, because complex and redundant systems
such as those used for the regulation of amino acid
contents seems to be too stable to perform dynamic
regulation. On the other hand, such a simple system
should be unstable because a small number of errors
would drastically change the metabolic composition.
Indeed, it has been reported that variation in 3-hydroxy-
n-propyl GSL (3) accumulation in rosette leaves among
several Arabidopsis ecotypes is derived from a single poly-
morphism of a biosynthesis-related gene (Kliebenstein
et al., 2001). This fragility, which in other words
equates to the changeability of metabolic function, is
also likely advantageous because it is presumably an
origin for phytochemical diversity, which contributes
to adaptation of plants to various environments.

CONCLUSION

AtMetExpress development is a dataset that facili-
tates the analysis of metabolic systems responsible for

phytochemical diversity. The detection of novel Arab-
idopsis metabolites from MS2T data will enable us to
find these biosynthesis-related genes by the integrated
analyses of not only metabolome and transcriptome
but proteome aswell (Baerenfaller et al., 2008; Castellana
et al., 2008). These findings could then be applied to
understand the behavior of plant metabolic systems.
The AtMetExpress development LC-MS dataset is a
part of our AtMetExpress project, which is opened to
the public through the PRIMe Web site (http://prime.
psc.riken.jp/).

MATERIALS AND METHODS

Plant Materials

Arabidopsis (Arabidopsis thaliana; accession Columbia-0; Lehle Seeds) was

used in this study. T-DNA-inserted knockout mutants of dp1 (SAIL_60_D04)

were obtained from the Arabidopsis Biological Resource Center. The T-DNA

insertion site was confirmed by sequencing the PCR fragment. The primers

used for this study were DP1f (ACAATGACAAATCAAATCTACAAAC) and

DP1r (GCCAACACACGAAGATCAATC). The primers for LBa1 and RBa1

were designed by following the Arabidopsis Biological Resource Center data

(http://www.arabidopsis.org/abrc/pCSA110.pdf). Arabidopsis seedlings

were grown under the conditions described in Supplemental Table S2.

Collected sample tissues were weighed and stored at 280�C until analysis.

The frozen tissues were homogenized in five volumes of 80% aqueous

methanol containing 0.1% acetic acid, 0.5 mg/L of lidocaine, and d-camphor

sulfonic acid (Tokyo Kasei) using a mixer mill (MM 300, Retsch) with a

zirconia bead for 6 min at 20 Hz. Following centrifugation at 15,000g for 10

min and filtration (Ultrafree-MC filter, 0.2 mm, Millipore), the sample extracts

were applied to an HLB mElution plate (Waters) equilibrated with 80%

aqueous methanol containing 0.1% acetic acid. The eluates (3 mL) were

subjected to metabolome analysis using LC-ESI-Q-TOF/MS.

Metabolome Analysis Using LC-ESI-MS

Metabolome analysis was performed with an LC-ESI-Q-TOF/MS system

equipped with an ESI interface (HPLC: Waters Acquity UPLC system; MS:

Waters Q-TOF Premier) operated under previously described conditions

(Matsuda et al., 2009). In the negative ion mode, the MS conditions were as

follows: capillary voltage: +3.0 keV; cone voltage: 22.5 V; source temperature:

120�C; desolvation temperature: 450�C; cone gas flow: 50 L/h; desolvation gas

flow: 800 L/h; collision energy: 2 V; detection mode: scan (m/z 100–2,000;

dwell time: 0.45 s; interscan delay: 0.05 s, centroid); dynamic range enhance-

ment mode: on. The scans were repeated for 19.5 min in a single run. The raw

data were recorded with the aid of MassLynx version 4.1 software (Waters).

The raw chromatogram data were processed to produce a data matrix

consisting of 1,589 metabolite signals (773 from positive and 816 from negative

ion mode; Supplemental Data S1) using MetAlign (Lommen, 2009). The

parameters used for data processing were as follows: maximum amplitude,

10,000; peak slope factor, 1; peak threshold factor, 6; average peakwidth at half

weight, 8; scaling options, none; maximum shift per scan, 35; select min nr per

peak set, 4. The data matrix generated by MetAlign was processed with in-

house software written in Perl/Tk (Matsuda et al., 2009). By this procedure,

the metabolite signals eluted before 0.85 min and after 12.0 min were

discarded, original peak intensity values were divided with those of the

internal standards (lidocaine: m/z = 235 [M + H]+, eluted at 4.19 min;

camphor-10-sulfonic acid: m/z = 231 [M 2 H]2, eluted at 3.84 min, for the

positive and negative ion modes, respectively) to normalize the peak intensity

values, discarding low-intensity data (under signal-to-noise ratio , 5), and

isotope peaks were removed by employing specific parameters (rthres . 0.8,

DRt = 0.5 s, and Dm/z = 2 D). Metabolite signals were assigned unique

accession codes, such as adn031026 (representing AtMetExpress Development

negative ion mode data, peak number 31026).

MS2T data were acquired from nine tissues of Arabidopsis and processed

to create 36 MS2T libraries using previously described methods (Matsuda

et al., 2009). Each MS2T entry was assigned a unique accession code, such as

ATH10n03690, in which ATH10n is the name of the library and 03690 is the

AtMetExpress: Phytochemical Atlas of Arabidopsis Development
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entry number. A total of 36 MS2T libraries with 476,120 accession codes were

created in this study (Supplemental Table S2). The MS2T libraries contain a

high volume of redundant and low-quality data (Matsuda et al., 2009). Since

the metabolic profile data and the MS2T libraries were acquired using

compatible analytical conditions, a metabolite signal obtained in the profile

can be tagged with MS2Ts obtained from a corresponding metabolite with

identical unit mass eluting at a similar retention time. By this method,

approximately 95% of the metabolite signals were tagged with at least one

MS2T. The mean number of MS2Ts tagged to each metabolite peak was 13.5.

Structure Elucidation of Metabolites

Structures of metabolites were elucidated by the following procedure. The

retention time (3.06 min) and m/z value (420 D) of metabolite peaks

(adn031026) were searched against the data obtained for in-house standard

compounds in our previous study (Matsuda et al., 2009). This peak was

matched with an entry for 4-methylthiobutylglucosinolate due to identical

unit mass numbers and similar retention times (threshold ,0.05 min). In

addition, 58 MS2Ts with identical unit mass numbers and similar retention

times (threshold ,0.15 min) were found from MS2T libraries, providing

putative structural information for adn031026. For each MS2T, the high-

resolution m/z value of the precursor ion was compared with the theoretical

values of metabolites listed in the KNApSAcK database of phytochemicals

(Shinbo et al., 2006; Takahashi et al., 2008). The query was considered to match

a metabolite when the measured data were very similar to the theoretical

value (threshold 10 mD). This process was repeated for all MS2Ts with

results indicating that 43 MS2T queries matched the molecular formula entry

“C12H24N1O9S3:4-Methylthiobutyl glucosinolate;Glucoerucin.” Similarly,

MS/MS spectra data for each MS2T were searched against ReSpect (a

collection of literature and in-house MSn spectra data for plant metabolomics

research) using the dot product method (see below). ReSpect data were

available from our PRIMe Web site (http://prime.psc.riken.jp/; Akiyama

et al., 2008). Among 58 MS2Ts tagged to adn031026, 50 queries matched the

MS/MS spectra “4-methylthiobutyl glucosinolate_Ramp5-45 V” (threshold

for searching, S . 0.8). Since an identical metabolite was suggested by

three different methods, the metabolite signals were identified as 4-MT-n-

butylglucosinolate. In this study, the four levels for metabolite annotation

nomenclature proposed by theMetabolome Standard Initiativewere employed

as follows. (1) Identified: A minimum of two independent and orthogonal data

relative to an authentic compound analyzed under identical experimental

conditions are proposed as necessary to validate nonnovel metabolite identi-

fications; (2) annotated: without chemical reference standards, based upon

physicochemical properties and/or spectral similarity with public/commer-

cial spectral libraries; (3) characterized: based upon characteristic physico-

chemical properties of a chemical class of compounds or by spectral similarity

to known compounds of a chemical class; and (4) unknown: although uniden-

tified or unclassified, thesemetabolites can still be differentiated and quantified

based upon spectral data (Sumner et al., 2007).

In addition, manual annotation using metabolite information from the

literature was also performed. For example, an occurrence of scopolin in

Arabidopsis root has been reported (Kai et al., 2006). Although a scopolin

standard is not commercially available, searching for its predicted MSn spec-

tra data against MS2T using the spectra search function of the AtMetExpress

database (query: 193.05:100;133.0289:20;) indicated that the peak adp009805

(retention time 3.54 min, m/z 355) was annotated as scopolin. To find structur-

ally related metabolites, the similarity of assigned MS2T data was assessed

among metabolite signals using the dot product method (see below for

details; Stein and Scott, 1994). Consequently, adp013943 was characterized as

malonylated scopolin.

All structural data assigned to each metabolite signal can be displayed in

the AtMetExpress database in searchable form (http://prime.psc.riken.jp/).

From a list of search results, a metabolite signal of interest can be selected to

provide detailed information, such as lists of tagged MS2Ts, results of

database searching, final annotation, annotation levels, heat map representa-

tion of metabolite levels in each tissue (Fig. 1), and raw chromatogram data of

representative peaks in all samples (Supplemental Fig. S8).

Evaluation of Structural Similarity

For MS/MS spectra X and Y, a spectral similarity between them, sXY, was

determined by the following equation (dot product method; Stein and Scott,

1994):

sXY ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
+xiyi

p
ffiffiffiffiffiffiffiffiffi
+x2

i

q ffiffiffiffiffiffiffiffiffi
+y2i

q

where xi represents the intensity of a fragment ion detected at m/z = i in MS/

MS spectra X. The m/z values of xi and yi were considered to be the same

when the difference between them was less than 10 mD.

To calculate the structural similarity between two metabolite signals, five

representative MS2Ts with the most intense base peaks were selected for each

metabolite signal. Metabolite signals tagged with less than four MS2Ts were

discarded from the structure similarity calculations. The average dot product

(S) values between two metabolite signals were defined as the mean s of the

total number of 25 MS2T pairs. The metabolite similarity networks were

visualized by means of Cytoscape 2.6 software (Shannon et al., 2003).

Data Mining

Microarray data were downloaded from the Gene Expression Omnibus

Web site (http://www.ncbi.nlm.nih.gov/geo/) and normalized using MAS5

methods. Log2-transformed and Z-scored intensity values of metabolome and

transcriptome data were presented for principal component analysis, per-

formed by MeV4.2 (Saeed et al., 2003, 2006) and for calculation of PCCs. PCC

values between metabolite data were calculated using a total of 144 samples.

The mean intensity value of each tissue was used for the calculation of PCC

between gene expression and a set of metabolite accumulation data (n = 36).

Shannon entropy values (H) were calculated using a previously described

procedure (Schug et al., 2005). For BL-SOM analysis, 10,647 genes annotated

with GO terms by TAIR9 (Poole, 2007), including transporter activity, trans-

ferase activity, transcription factor activity, other metabolic processes, other

enzyme activity, oxygen binding, secondary metabolic process, and hydrolase

activity, were selected as metabolism-related genes. The intensity values were

normalized by dividing the mean intensity value of each tissue with an overall

mean value. BL-SOM analysis was performed with the aid of simple BL-SOM

software (http://kanaya.naist.jp/SOM/; Kanaya et al., 2001; Abe et al., 2003).

The number of cells along the x axis was set to 30. GO categories statistically

overrepresented in a set of genes were investigated with BiNGO 2.3 using

TAIR9 GO data (GOSlim_Plants) and hypergeometric testing with Benjamini

and Hochberg’s technique of false discovery rate correction (Maere et al.,

2005).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Fragmentation patterns of representative MS2T

assigned to metabolite signals and those expression profile among

tissues.

Supplemental Figure S2. Frequency distribution of PCC values.

Supplemental Figure S3. The graph representation of M-M similarities in

terms of accumulation patterns across 36 tissues of Arabidopsis.

Supplemental Figure S4. The nature of tissue-specific phytochemicals.

Supplemental Figure S5. Feature maps of BL-SOM analysis.

Supplemental Figure S6. BL-SOM clustering of metabolites and those

biosynthesis-related genes.

Supplemental Figure S7. Detailed description of gene symbols and

metabolites in Figure 5.

Supplemental Figure S8. A record example of AtMetExpress develop-

mental database.

Supplemental Table S1. List of tissues analyzed in AtMetExpress devel-

opmental dataset.

Supplemental Table S2. List of annotated metabolites.

Supplemental Table S3. Lists of MS2T libraries created in this study.

Supplemental Table S4. Properties of metabolite structural similarity

networks.

Supplemental Table S5. List of GO categories overrepresented in the set of

low-entropy genes.
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Supplemental Table S6. Dummy profile data of eight tissue markers for

BL-SOM analysis.

Supplemental Text S1. An example: GSL metabolism.

Supplemental Data S1. Data matrix of AtMetExpress development

dataset.
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