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ABSTRACT

An analysis of mortality is undertaken in two breeds of pigs: Danish Landrace and Yorkshire. Zero-
inflated and standard versions of hierarchical Poisson, binomial, and negative binomial Bayesian models
were fitted using Markov chain Monte Carlo (MCMC). The objectives of the study were to investigate
whether there is support for genetic variation for mortality and to study the quality of fit and predictive
properties of the various models. In both breeds, the model that provided the best fit to the data was the
standard binomial hierarchical model. The model that performed best in terms of the ability to predict
the distribution of stillbirths was the hierarchical zero-inflated negative binomial model. The best fit of the
binomial hierarchical model and of the zero-inflated hierarchical negative binomial model was obtained
when genetic variation was included as a parameter. For the hierarchical binomial model, the estimate of
the posterior mean of the additive genetic variance (posterior standard deviation in brackets) at the level
of the logit of the probability of a stillbirth was 0:173 0:039ð Þ in Landrace and 0:202 0:048ð Þ in Yorkshire.
The implications of these results from a breeding perspective are briefly discussed.

LITTER size has been under selection in the Danish
pig breeding program since the early 1990s and

this resulted in considerable increase in total number
born and also in the proportion of stillborn piglets
(Sorensen et al. 2000; Su et al. 2007). A number of
studies have reported genetic variation for mortality
with heritabilities ranging from 0.03 to 0.12. These
studies have either assumed normality of the sampling
model for mortality (e.g., van Arendonk et al. 1996) or
based inferences on a variety of threshold models (e.g.,
Roehe and Kalm 2000; Arango et al. 2006), and critical
investigations of the quality of fit of the models used
were not reported.

Mortality data, regarded as a trait of the mother, show
typically a large proportion of zeros (many litters do not
have stillborn piglets). Formal genetic analyses of
mortality in pigs accounting for this feature of the data
are not available in the literature and this article
attempts to fill this gap. The focus here is to study the
quality of fit and predictive ability of a number of
models and to investigate whether they provide statisti-
cal evidence for genetic variation for mortality. The
statistical genetic analysis involves fitting various hierar-
chical models involving three discrete distributions: the
Poisson, the binomial, and the negative binomial.

The statistical analysis of counts based on discrete
parametric distributions has a long and rich history
( Johnson and Kotz 1969). In the case of unbounded

counts, Poisson regression models are standard,
whereas for bounded counts, when the response can
be viewed as the number of successes out of a fixed
number of trials, regression models based on the
binomial distribution are often used (Hall 2000). A
restriction of the Poisson model is that it imposes
equality of mean and variance. Typically the distribution
of counts is overdispersed. In the case of the binomial
model the only free parameter is the probability of
success, which results in a functional relationship
between the mean and the variance. Several possible
alternatives have been suggested to obtain more flexible
models. For example, the negative binomial distribu-
tion has two parameters and allows the mean and
variance to be fitted separately (Lawless 1987). An
application of the negative binomial model in animal
breeding can be found in Tempelman and Gianola

(1996, 1999). In the same spirit, a robust alternative to
the binomial model is the beta-binomial, which is a
mixture of binomials where the unequal probabilities of
success vary according to a beta-distribution. In general,
hierarchical specifications are needed to explain extra
variation that is not accounted for by the sampling
model of the data. These involve assigning a distribution
to the parameters of the sampling model, directly, as in
the case of the negative binomial or beta-binomial
models, or indirectly, by embedding these parameters
in a linear structure that includes random effects as
explanatory variables.

There are situations where overdispersion is partly
associated with an incidence of zero counts that is
greater than expected under the sampling model, as
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in the present study. Hurdle models (Mullahy 1986;
Winkelmann 2000) and zero-inflated models are two
instances of finite mixture models commonly used to
account for this characteristic of the data. In the present
work the excess of zeros is studied using zero-inflated
models that are described in Johnson and Kotz (1969)
and extended by Lambert (1992). Ridout et al. (1998)
provide a review of various zero-inflated models; recent
applications of zero-inflated Poisson models in animal
breeding are in Rodriguez-Motta et al. (2007) and in
Naya et al. (2008). Zero-inflated models assume that the
population consists of two sets of observations. In the
first set, which may include zeros, observations are
realizations from a discrete sampling process indexed
by unknown parameters (this set is often referred to as
the imperfect state); observations from the second set
consist only of zeros and the parameter of interest is the
proportion of these individuals. This set is often re-
ferred to as the perfect state. Either or both sets of
parameters may depend on covariates.

This article is organized as follows. material and

methods describes the data, details of the models, and
their Markov chain Monte Carlo (MCMC) implementa-
tion. This is followed by a presentation of the results
of the analyses and of MCMC-driven explorative tools
for model comparison. The article concludes with a
discussion.

MATERIALS AND METHODS

Data: Data were obtained from an existing database of
performance records collected from nuclear farms of Danish
Landrace and Danish Yorkshire during the period from May
2002 until December 2004. Pedigrees were traced back five
generations or more. For Landrace, the data comprised
records from 5178 litters and a pedigree file of 8800 individ-
uals. The Yorkshire data consisted of records from 3938 litters
and a pedigree file of 7143 individuals. Sows were kept under
commercial conditions and all matings took place using
artificial insemination. At farrowing, the total number of
piglets born per litter and the number of stillborn piglets
per litter were recorded.

Models and posterior distributions: Zero-inflated models
assume that the population consists of two subpopulations but
the subpopulation membership is not observed. At the first
level of the hierarchy of the zero-inflated model, the proba-
bility mass function of the response Yi (number of stillborn
piglets in litter i, i ¼ 1, 2, . . . , n) is given by

PrðYi ¼ yi jhi ; uiÞ

¼ hi 1 f ðYi ¼ 0 j uiÞð1� hiÞ; yi ¼ 0;
ð1� hiÞf ðYi ¼ yi j uiÞ; yi ¼ 1; 2; . . . ; 0 # hi # 1;

�
ð1Þ

where Yi has probability mass function f corresponding to the
Poisson, binomial, or negative binomial distribution indexed
with parameters ui, which is assigned probability mass ð1� hiÞ,
and the degenerate distribution supported at zero is given
probability mass hi. The standard (non-zero-inflated) version
of the models is obtained setting hi ¼ 0 for all i, in the
expressions above.

Standard calculations show that the mean and variance of
the zero-inflated random variable Yi are given by

EðYi jhi ; uiÞ ¼ ð1� hiÞEðYi j uiÞ
and

VarðYi jhi ; uiÞ ¼ ð1� hiÞVarðYi j uiÞ1 hið1� hiÞ EðYi j uiÞ½ �2:

Let h ¼ h1;h2; . . . hnð Þ9, u ¼ u1; u2; . . . ; unð Þ9 . The loglike-
lihood takes the form

lðh; u j yÞ} ln
Y

i:yi¼0
hi1f ðyi j uiÞð1�hiÞ½ �

Y
i:yi .0

ð1� hiÞf ðyi j uiÞ½ �
n o

¼
X

i:yi¼0
ln hi 1 f ðyi j uiÞð1� hiÞ½ �1

X
i:yi . 0

lnð1� hiÞ

1
X

i:yi .0
ln f ðyi j uiÞ: ð2Þ

For the Poisson model, the probability mass function f in
(1), indexed with ui ¼ li, is

f ðYi ¼ yi j liÞ ¼
l

yi

i expð�liÞ
yi !

; li . 0;Yi ¼ 0; 1; . . . ð3Þ

with mean and variance E Yi j lið Þ ¼ Var Yi j lið Þ ¼ li .
For the binomial model, ui ¼ ti ;uið Þ with ti observed,

representing the total number born in litter i, the probability
mass function is

f ðYi ¼ yi j ti ;uiÞ ¼
ti
yi

� �
uyi

i ð1� uiÞti�yi ; Yi ¼ 0; 1; . . . ; ti ;

ð4Þ
where ui is the probability of a stillborn piglet in litter i. The
mean and variance are given by E Yi j ti ;uið Þ ¼ tiui and
Var Yi j ti ;uið Þ ¼ tiui 1� uið Þ, respectively. As is well known,
with ti large and ui small, with their product remaining
constant, the binomial distribution converges to the Poisson
distribution.

For the negative binomial model, ui ¼ ai ;bið Þ, and

f ðYi ¼ yi jai ;biÞ

¼ Gðyi 1 aiÞ
yi!GðaiÞ

1

bi 1 1

� �yi bi

bi 1 1

� �
ai

;

ai ;bi . 0;Yi ¼ 0; 1; . . . :

ð5Þ

The mean is E Yi jai ;bið Þ ¼ ai=bi and the variance
Var Yi jai ;bið Þ ¼ ðai=biÞðbi 1 1Þ=bi . The negative binomial
distribution is the marginal distribution of a Poisson random
variable when the rate parameter li has a Gamma distribution
with parameters ai, bi. In other words, the integralð‘

0
f ðyi j liÞ f ðli jai ;biÞdli ;

where

f ðli jai ;biÞ ¼
b

ai
i

GðaiÞ
l

ai�1
i expð�biliÞ

is the probability density function of the Gamma-distribution
with parameters ai, bi, retrieves (5). The negative binomial
model is more flexible than the Poisson and allows for
overdispersion. The negative binomial approaches the Pois-
son with rate parameter ai/bi as ai/‘, with ai=bi/ constant.
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At the second level of the hierarchy of the model, the
following linear structures are assigned. Let the vector logit
h ¼ logit hif gn

i¼1, where logit hið Þ is the logit of the probability
that the ith observation is a realization from the perfect state.
The linear model for logit h is

logit h ¼ Xbh 1 Zuh 1 Wph; ð6Þ

where bh is the vector containing effects of herd-year (20 in
Yorkshire and 22 in Landrace) and parity (6 in both breeds),
uh is the vector of additive genetic values (7143 in Yorkshire
and 8800 in Landrace), and ph is the vector of permanent
environmental effects (3360 in Yorkshire and 4422 in Land-
race). The known incidence matrices X, Z, and W associate the
relevant vector of location parameters to ln h.

For the Poisson model, define lnl ¼ ln lif gn
i¼1 as the vector

of the natural logarithm of the Poisson parameter associated
with the n litters. As in (6) it is assumed that

ln l ¼ Xbl 1 Zul 1 Wpl; ð7Þ

where location parameters and incidence matrices are as-
signed the same interpretation as in (6). An identical structure
was assigned to logit uð Þ for the binomial model, and to ln b
and to ln a for the negative binomial model.

At the third level of the hierarchy the models for the vectors
of additive genetic values and permanent environmental
effects are assumed to be realizations from the normal
distributions

uh jA;s2
uh
� N ð0;As2

uh
Þ;ul jA;s2

ul
� N ð0;As2

ul
Þ;

uu jA;s2
uu
� N ð0;As2

uu
Þ;ub jA;s2

ub
� N ð0;As2

ub
Þ;

ua jA;s2
ua
� N ð0;As2

ua
Þ;

where A is the additive genetic relationship matrix, s2
uh

, s2
ul

,
s2

uf
s2

ub
, and s2

ua
are additive genetic variance components.

Additive genetic values uh and ux, x¼ l, u, b, a are assumed to
be independently distributed. The permanent environmental
effects pz, z ¼ h, l, u, b, a follow also mutually independent
normal distributions N ð0; Is2

pz
Þ, where I is the identity matrix

and s2
pz

is the appropriate permanent environmental variance
component. The elements of bz are assumed to follow in-
dependent uniform distributions with large absolute values
chosen for the bounds.

At the final level of the hierarchy, all variance components
where assigned proper uniform distributions with support in
the positive real line and large upper bounds.

Denote the collection of data {yi } by y. For the zero-inflated
Poisson model the posterior distribution is

f ðbh;bl;uh;ul;ph;pl;s
2
uh
;s2

ul
;s2

ph
;s2

pl
j yÞ

} f ðy jh;lÞf ðuh js2
uh
Þ f ðph js2

ph
Þ

3 f ðul js2
ul
Þ f ðpl js2

p l
Þ f ðs2

uh
Þ f ðs2

ph
Þ

3 f ðs2
ul
Þf ðs2

pl
Þ f ðblÞ f ðbhÞ; ð8Þ

with

f ðy jh;lÞ ¼
Y

n

i¼1
PrðYi ¼ yi jhi ; liÞ

¼
Y

i:yi¼0
hi 1 ð1� hiÞexpð�liÞ
� �Y

i:yi .0
ð1� hiÞ

l
yi

i expð�liÞ
yi !

;

and

li ¼ expðx9i bl 1 z9i ul 1 w9i plÞ;

hi ¼
expðx9i bh 1 z9i uh 1 w9i phÞ

1 1 expðx9i bh 1 z9i uh 1 w9i phÞ
;

where x9i, w9i , and z9i are the ith rows of X, W, and Z, respectively,
associated with litter i. The binomial and negative binomial
models have the same type of structure as (8).

Model comparison: The models are compared using the
pseudo-log-marginal probability of the data and using a
criterion of the model’s predictive ability. The pseudo-log-
marginal probability of the data is a standard measure of
model comparison (Gelfand 1996) and is defined and
computed as follows. Consider data vector y9 ¼ yi ; y9�ið Þ, where
yi is the ith datum, and y–i is the vector of data with the ith
datum deleted. The conditional predictive distribution has
probability mass function

PrðYi ¼ yi j y�iÞ ¼
ð

PrðYi ¼ yi jqi ; y�iÞ f ðq j y�iÞdq;

q ¼ ðh; uÞ; h ¼ fhign
i¼1; u ¼ fuign

i¼1; ð9Þ

and can be interpreted as the probability of each data point
given the remainder of the data. The actual value of
Pr Yi ¼ yi j y�i

� �
is known as the conditional predictive ordinate

(CPO) for the ith observation. The product of CPOs has been
proposed as a surrogate for the marginal probability of the
data f yð Þ because under mild conditions, the Hammersley–
Clifford theorem establishes that the fully conditional distri-
butions uniquely determine the marginal distribution (Besag

1974). The pseudo-log-marginal probability of the data is
given by X

i

ln PrðYi ¼ yi j y�iÞ; ð10Þ

and the associated pseudo-Bayes factor (PBF) for comparing
two models M1 and M2 (Gelfand 1996) is

PBF12 ¼
Yn
i¼1

PrðYi ¼ yi j y�i ;M1Þ
PrðYi ¼ yi j y�i ;M2Þ

: ð11Þ

A Monte Carlo approximation of the CPO (9) for observa-
tion i is given by (Gelfand 1996)

bPrðYi ¼ yi j y�i ;MkÞ ¼ N
XN
j¼1

1

PrðYi ¼ yi j uð jÞi ;h
ð jÞ
i ;MkÞ

" #�1

;

ð12Þ

where N is the number of MCMC draws, Mk is a label for model
k, and q

jð Þ
i ¼

�
u

jð Þ
i ;h

jð Þ
i

�
is the jth draw from the posterior of qi

under model k corresponding to the ith observation.
Each individual CPO, evaluated at Yi ¼ yi, yields the

probability of observing the datum in question, given the
remainder of the observed data and the model. The pseudo-
log-marginal probability of the data (10) is a measure of the
global fit of a given model. Alternatively, one may be interested
in the ability of a given model to predict the proportion of
litters showing d stillborn piglets, d ¼ 0; 1; 2; 3; 4; . 4ð Þ. One
can imagine a situation in which a model generates higher
conditional probabilities of each datum than an alternative
model, but the latter excels in predicting the proportion of
litters showing d stillborn piglets.

Let I Yi ¼ dð Þ be the indicator function that takes the value 1
if, for litter i, Yi ¼ d, and 0 otherwise. Summing over the n
litters gives the number of litters in which the number of
stillbirths is equal to d. Then the proportion of litters with d
stillbirths is a random variable defined as
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Pd ¼
1

n

Xn

i¼1

I ðYi ¼ dÞ: ð13Þ

The observed proportion of litters with d stillbirths is

pd ¼
1

n

Xn

i¼1

I ðyi ¼ dÞ; ð14Þ

which depends only on the observed data y. A measure of the
predictive ability of a model is given by the expected pro-
portion of litters with d stillborn piglets

EðPd jh; uÞ ¼
1

n

Xn

i¼1

E I ðYi ¼ dÞ jhi ; ui½ �; ð15Þ

which depends on the parameters of the predictive model
h; uð Þ (it also depends on the total number born in litter i, ti, in

the binomial models).
Since parameters are unknown, one can take expectations in

(15) conditional on estimates of the h’s and u’s or use a
posterior predictive analysis (Gelman et al. 1995, 1996) as in
subsection MCMC-based analysis. Using the latter approach,
uncertainty over the parameters of the model is accounted for
by integrating over their posterior distribution. The (posterior)
expected proportion of litters with d stillborn piglets is now

EðPd j yÞ ¼
1

n

Xn

i¼1

ð
E I ðY *

i ¼ dÞ jqi ; y
� �

f ðqi j yÞdqi

¼ 1

n

Xn

i¼1

ð
E I ðY *

i ¼ dÞ jqi

� �
f ðqi j yÞdqi

¼ 1

n

Xn

i¼1

ð
PrðY *

i ¼ d jqiÞf ðqi j yÞdqi ;

¼ 1

n

Xn

i¼1

ð
PrðYi ¼ d jqiÞf ðqi j yÞdqi ; ð16Þ

where Yi* is a random variable with the same probability mass
function as Yi and can be interpreted as a future replication of
datum i. The second line follows because by assumption Yi* is
conditionally independent of Yi given qi, and the third
because E I Yi* ¼ dð Þ jqi½ � ¼ Pr Yi* ¼ d jqið Þ. With MCMC,
(16) is computed as follows. In the kth MCMC round, k ¼ 1,
2, . . . , N, for litter i, extract a draw from ½q k½ �

i j y� and com-
pute Pr(Yi ¼ d jq k½ �

i ) from (1) setting qi ¼ q
k½ �

i . Repeat over the
n litters and calculate 1

n

Pn
i¼1 Pr(Yi ¼ d jq k½ �

i ) to obtain
E Pd jq; yð Þ. Then, averaging over the number of MCMC draws
yields a Monte Carlo estimate of E Pd j yð Þ.

MCMC implementation: Posterior distributions of parame-
ters, excluding variance components, are approximated using
single-site Metropolis–Hastings updates with random walk
proposals. These proposals are uniform distributions centered
at the current values, with upper and lower bounds tuned at
the values 60.1s. For the elements of vector bx,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ux
1 s2

px

q
;

for those of vector ux,

s ¼
ffiffiffiffiffiffiffi
s2

ux

q
and for px,

s ¼
ffiffiffiffiffiffiffi
s2

px

q
; x ¼ h; l;f;b;a:

All variance components are updated using the Gibbs
sampler, from scaled inverted x2 distributions.

Convergence of the MCMC chains was studied informally by
visual inspection of traceplots of several chosen parameters
(not shown). The algorithm showed good mixing properties;
we provide Monte Carlo standard errors of estimates of
posterior means of chosen parameters to give an idea of the
accuracy achieved.

RESULTS

Before reporting results from the Bayesian MCMC
analysis based on the various multi-level models de-
scribed in Models and posterior distributions, results of less
formal analyses are shown to illustrate properties of the
data and the ability of the various models to capture the
most salient features of these properties. The focus here
is to compare the quality of fit of nonhierarchical zero-
inflated and non-zero-inflated versions within the three
models.

Preliminary analysis: The raw means for total number
born for parities 1, 2, 3, 4, and .4 are, respectively, as
follows. For Landrace, 13.41, 15.32, 16.13, 16.49, 15.87,
and for Yorkshire, 12.33, 14.05, 14.50, 14.55, 14.69. The
corresponding raw means for number of stillborn
piglets per litter �xð Þ, the raw average squared deviations
from the mean across litters, within parities, and the
number of litters within parities (S 2, and n, respectively,
in brackets), are, respectively, as follows:

Landrace: 2.35 (5.00;3293), 2.78(6.59; 1110), 3.39(7.64;
492), 3.89(8.87; 181), and 3.95(7.53; 102)

Yorkshire: 1.39(2.98; 2552), 1.45(3.27; 830), 1.94(5.03;
314), 2.53(6.58; 142), and 2.64(7.32; 100).

The averaged squared deviation from the mean is
consistently larger than the mean in all parities in both
breeds. From these figures, the observed proportion of
stillborn piglets in parities 1, 2, 3, 4, and .4 are 0.18,
0.18, 0.21, 0.23, 0.24 in Landrace and 0.11, 0.10, 0.13,
0.17, 0.18 in Yorkshire.

Tables 1 and 2 show observed and predicted propor-
tion of litters with d stillborn piglets (d¼ 0, 1, 2, 3, 4, . 4)
based on all the models for both breeds. The models are
as specified in Models and posterior distributions, excluding
additive genetic values u and permanent environmental
effects p. From a traditional frequentist perspective,
these are ‘‘fixed effects’’ models, with parameters herd-
years and parity. These models that here are loosely
labeled nonhierarchical do not account for the corre-
lated structure of the data due to u and p. The tables
report also the loglikelihood, ln f y jh; uð Þ, averaged over
the MCMC replicates, as a measure of model fit (e.g.,
Dempster 1997).

The observed number of zeros is severely under-
predicted under the nonmixture version of the Poisson
and binomial models. The zero-inflated Poisson model
provides good predictions for the zero class, but in
Landrace underpredicts the proportion of litters with
one stillborn piglet and tends to overpredict in parities
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2 and 3 in both breeds. The negative binomial model fits
the observed data well, with the mixture version showing
a slight advantage in Landrace but not in Yorkshire. The
binomial model with a single common parameter across
litters does not produce good predictions. This changes
substantially when extra variation is accounted for by
inclusion u and p, as shown in subsection MCMC-based
analysis. The results show clearly that within models, in
the absence of additive genetic values and permanent
environmental effects, the zero-inflated versions pro-
vide consistently better fits except for the negative
binomial model in Yorkshire; this is also reflected in
the comparison between the pairs of loglikelihoods
within the three models.

MCMC-based analysis: Results of the model compar-
ison based on the pseudo-log-marginal probability of
the data are shown in Table 3. In both breeds, the data
provide very strong support for the hierarchical bi-
nomial model. In contrast with the remaining models,
the binomial incorporates information on the total
number born in each litter. The hierarchical structure
of the model at the level of the logit of the probability

of a stillborn piglet seems to adequately account for
overdispersion without the need for invoking the extra
distribution supported at zero.

The advantage of the binomial model over the others,
in terms of overall fit, is illustrated in more detail in
Tables 4 and 5, where the CPOs are averaged for litters
with d stillborn piglets d ¼ 0; 1; 2; 3; 4; . 4ð Þ. With the
exception of the class defined by litters with d ¼ 0
stillborn piglets, the binomial model generates the
largest CPOs. The average CPOs of the zero class are a
little higher under the zero-inflated binomial model in
both breeds.

The figures in Tables 6 and 7 show expected pro-
portion of litters with d stillborn piglets based on the
hierarchical models and the observed proportions. The
zero-inflated negative binomial hierarchical model has
the best predictive ability. There is a remarkable improve-
ment in the quality of predictions of the Poisson and
binomial models relative to the nonhierarchical versions.

In conclusion, the best fitting model (in terms of the
pseudo-log-marginal probability of the data) is the
hierarchical binomial model, whereas the model that

TABLE 2

Observed (O) (based on Equation 14) and predicted (based on an MCMC implementation of Equation 16)
proportion of litters with d stillborn piglets in the Yorkshire breed, and the average loglikelihood

(last row), based on the following models: Poisson (P), zero-inflated Poisson (ZIP); negative
binomial (NB), zero-inflated negative binomial (ZINB); binomial (B),

zero-inflated binomial (ZIB)

d O P ZIP NB ZINB B ZIB

0 0.384 0.243 0.370 0.379 0.396 0.237 0.373
1 0.239 0.323 0.268 0.252 0.227 0.324 0.194
2 0.160 0.231 0.195 0.153 0.152 0.237 0.189
3 0.092 0.121 0.101 0.089 0.093 0.123 0.129
4 0.051 0.052 0.042 0.051 0.055 0.051 0.068
.4 0.075 0.030 0.024 0.076 0.077 0.028 0.047
Average

loglikelihood
�7105.4 �6732.2 �6552.6 �6556.8 �6891.1 �6542.7

TABLE 1

Observed (O) (based on Equation 14) and predicted (based on an MCMC implementation of Equation 16)
proportion of litters with d stillborn piglets in the Landrace breed, and the average loglikelihood

(last row), based on the following models: Poisson (P), zero-inflated Poisson (ZIP);
negative binomial (NB), zero-inflated negative binomial (ZINB);

binomial (B), zero-inflated binomial (ZIB)

d O P ZIP NB ZINB B ZIB

0 0.204 0.095 0.199 0.192 0.228 0.091 0.187
1 0.184 0.203 0.177 0.213 0.178 0.198 0.140
2 0.178 0.233 0.206 0.180 0.170 0.235 0.189
3 0.147 0.193 0.172 0.134 0.136 0.200 0.181
4 0.103 0.129 0.115 0.095 0.097 0.134 0.136
.4 0.185 0.147 0.131 0.186 0.191 0.142 0.167
Average

loglikelihood
�11350.5 �10745.8 �10629.9 �10612.8 �10877.3 �10553.1
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best predicts the proportion of litters showing d still-
born piglets is the zero-inflated negative binomial.
These results are a good example of a point made by
Rubin (1984). He argued that one may be interested in
arriving at more than one inference depending on, for
example, whether global fit or prediction of some
features of the data capture the relevant scientific
objectives of a study.

Statistical evidence for genetic variation for mortal-
ity: The model space is restricted to the globally best
fitting model (binomial hierarchical model) and the
best predictive model (zero-inflated negative binomial
hierarchical model). For the hierarchical binomial
model, the MCMC estimates of the means of the
posterior distribution of the additive genetic and perma-
nent environmental variances (posterior standard devia-
tions in brackets) are 0.173(0.039) and 0.341(0.034) in
Landrace and 0.202(0.048) and 0.566(0.051) in York-
shire. The sampling uncertainty of the estimates of the
posterior means in terms of the Monte Carlo standard
errors are 6.0 3 10�4 and 0.8 3 10�4 for the additive
genetic and permanent environmental variances in
Landrace, and 18.54 3 10�4 and 1.46 3 10�4 in Yorkshire.
Within a given hierarchy, the posterior means indicate
that 34 and 26% of the variance is additive genetic in the
two breeds.

For the zero-inflated negative binomial hierarchical
model, the MCMC estimates of the means of the posterior
distribution of the additive genetic and permanent
environmental variances (posterior standard deviations
in brackets) are, respectively, as follows. In Landrace, at
the level of logit h, 0.044(0.019), 1.615(3.643); at the level

of ln a, 0.120(0.019), 0.070(0.025); and at the level of ln b,
0.642(0.313), 2.674(1.654). In Yorkshire, at the level of
logit h, 1.136(0.640), 1.114(1.082); at the level of ln a,
0.121(0.036), 0.230(0.052); and at the level of ln b,
0.627(0.795), 3.550(2.500). There is considerable poste-
rior uncertainty associated with the estimates, with the
exception of the additive variance at the level of ln a in
both breeds.

The problem is investigated further by computing the
pseudo-log-marginal probability of the data under the
full model, and under the model where the genetic
component of variance is excluded (restricted model).
Under the hierarchical binomial model, the pseudo-log-
marginal probability of the data in Landrace is – 10, 162
and – 10, 222, under the full and restricted models,
respectively. In Yorkshire, these figures are – 6, 358
and – 6, 377. For the zero-inflated negative binomial, in
Landrace, these figures are – 10, 657 and – 10, 682,
under the full and restricted models, and in Yorkshire,
– 6, 574 and – 6, 585. For both models and in both
breeds, this analysis supports the existence of genetic
variation for mortality.

DISCUSSION

Mortality data in the two breeds of pigs show over-
dispersion, due to both a high proportion of zeros and
heterogeneity induced by covariation among observa-
tions. The first source of overdispersion can be ac-
counted for postulating zero-inflated versions of various
models for discrete data, and the second invoking a
hierarchical structure. In this study we investigated two

TABLE 4

Average CPO Pr Yi ¼ d j y�i

� �� �
for litters with d stillborn piglets, in Landrace, for the following models:

Poisson (P), zero-inflated Poisson (ZIP), negative binomial (NB), zero-inflated negative
binomial (ZINB), binomial (B), zero-inflated binomial (ZIB)

d P ZIP NB ZINB B ZIB

0 0.196 0.217 0.213 0.236 0.245 0.262
1 0.235 0.231 0.220 0.195 0.249 0.236
2 0.196 0.194 0.188 0.183 0.203 0.196
3 0.145 0.144 0.143 0.146 0.158 0.156
4 0.103 0.101 0.102 0.107 0.119 0.118
.4 0.048 0.048 0.047 0.049 0.063 0.061

TABLE 3

Model comparison for Landrace and Yorkshire based on the sum of the pseudo-log-marginal probability of the
data

P
i ln Pr Yi ¼ yi j y�i

� �� �
for the following models: Poisson (P), zero-inflated Poisson (ZIP);

negative binomial (NB), zero-inflated negative binomial (ZINB); binomial (B),
zero-inflated binomial (ZIB)

Breed P ZIP NB ZINB B ZIB

Landrace �10,775 �10,688 �10,657 �10,630 �10,162 �10,503
Yorkshire �6,681 �6,572 �6,574 �6,570 �6,358 �6,614
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criteria of the quality of a number of models: global fit
and a specific aspect of predictive ability (distribution of
stillbirths). Models may not perform equally well under
both criteria. Here, a hierarchical zero-inflated negative
binomial model was shown to have very good perfor-
mance on the basis of its ability to predict the distribu-
tion of stillborn piglets. On the other hand, the best
global fit, measured by the pseudo-log-marginal proba-
bility of the data, is obtained with the hierarchical
binomial model. The introduction of a hierarchy at
the level of the parameters of the model provides
flexibility enough to account for both sources of over-
dispersion, without the need for invoking a mixture as a
sampling process. The hierarchical structure provides a
natural mechanism to investigate the existence of
genetic variation for the trait. Analysis of mortality data
based on the binomial hierarchical model and on the
zero-inflated negative binomial hierarchical model pro-
vided statistical support for the presence of additive
genetic variation in both breeds.

From an applied animal breeding perspective, in-
terest may lie in improving survival at weaning rather
than focusing on mortality per se. Indeed, Su et al. (2007)
showed that a useful strategy to increase number of
individuals weaned is to select for number of piglets
alive at day 5 after farrowing. This conclusion was based
on an approximate analysis invoking multivariate nor-
mality as a sampling model for survival rate and number
of piglets alive at day 5 after farrowing. This work is less
ambitious from a practical perspective and has focused
on finding a model that formally accounts for the
discrete nature of the data and to study the presence
of genetic variation based on such a model. The amount
of genetic variation disclosed by the hierarchical bi-
nomial model can be exploited to modify the trait by
selection and it is of interest to investigate to what extent
mortality at birth can be reduced by these means on the
basis of this model. The Monte Carlo estimate of the
average logit in Landrace is – 1.5265, which is equal to
an average probability of a stillborn piglet equal to 18%.
The probability of a stillborn piglet among the highest

scoring 10% of the individuals on the basis of their
additive genetic values is equal to 15%. In Yorkshire, the
corresponding figures are 11 and 9%, respectively. The
difference between the mean probabilities among se-
lected individuals and the population mean represents
expected genetic progress after one cycle of selection.
This measure of expected rate of genetic progress is quite
consistent with figures for other traits of economic
importance.

An extension of the hierarchical binomial model (4)
could allow a joint analysis of mortality and litter size, by
invoking a model for t, the number of born piglets,
rather than doing the analysis of mortality conditioning
on it, as was done here. One approach described in
Foulley et al. (1987), based on generalized linear
models, is to assume that litter size is Poisson distributed
and that conditional on litter size, piglet survival, as
opposed to mortality, follows a Bernoulli distribution.
An alternative is to assume the binomial model (4) for
mortality, given litter size t, and to postulate a linear
structure for t, along the lines in (6) or (7) with an extra
(Gaussian) term to account for residual variation. This
would induce normality of the marginal distribution of
t, as has been traditionally practiced in analyses of litter
size in pigs and mice. Otherwise, t can be assigned a
Poisson distribution with parameter l, whose natural

TABLE 6

Observed (O) (based on Equation 14) and predicted (based
on an MCMC implementation of Equation 16) proportions of

litters with d stillborn piglets in Landrace, based on the
following models: Poisson (P), zero-inflated Poisson (ZIP);

negative binomial (NB), zero-inflated negative binomial
(ZINB); binomial (B), zero-inflated binomial (ZIB)

d O P ZIP NB ZINB B ZIB

0 0.204 0.165 0.175 0.183 0.201 0.166 0.174
1 0.184 0.222 0.219 0.211 0.188 0.216 0.209
2 0.178 0.195 0.192 0.187 0.182 0.191 0.188
3 0.147 0.144 0.142 0.141 0.144 0.145 0.145
4 0.103 0.098 0.098 0.097 0.102 0.102 0.103

TABLE 5

Average CPO Pr Yi ¼ d j y�i

� �� �
for litters with d stillborn

piglets, in Yorkshire, for the following models: Poisson (P),
zero-inflated Poisson (ZIP), negative binomial (NB),
zero-inflated negative binomial (ZINB), binomial (B),

zero-inflated binomial (ZIB)

d P ZIP NB ZINB B ZIB

0 0.377 0.432 0.393 0.396 0.405 0.421
1 0.278 0.262 0.262 0.255 0.283 0.255
2 0.162 0.153 0.158 0.160 0.174 0.166
3 0.094 0.089 0.091 0.096 0.110 0.107
4 0.057 0.054 0.054 0.057 0.072 0.068
.4 0.026 0.025 0.023 0.025 0.036 0.029

TABLE 7

Observed (O) (based on Equation 14) and predicted (based
on an MCMC implementation of Equation 16) proportions of

litters with d stillborn piglets in Yorkshire, based on the
following models: Poisson (P), zero-inflated Poisson (ZIP);

negative binomial (NB), zero-inflated negative binomial
(ZINB); binomial (B), zero-inflated binomial (ZIB)

d O P ZIP NB ZINB B ZIB

0 0.384 0.352 0.386 0.373 0.375 0.349 0.366
1 0.239 0.276 0.262 0.259 0.251 0.273 0.253
2 0.160 0.162 0.154 0.156 0.158 0.164 0.162
3 0.092 0.090 0.085 0.088 0.091 0.093 0.095
4 0.051 0.050 0.047 0.049 0.051 0.052 0.053
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logarithm can be modeled as in (7). In either case, the
additive genetic effects at the level of t or of ln l, and of
logit uð Þ are assumed to follow a multivariate normal
distribution. Work along these lines is in progress and
results will be reported on a future date.
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