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Abstract
Background: The inverse-QSAR problem seeks to find a new molecular descriptor from which
one can recover the structure of a molecule that possess a desired activity or property.
Surprisingly, there are very few papers providing solutions to this problem. It is a difficult problem
because the molecular descriptors involved with the inverse-QSAR algorithm must adequately
address the forward QSAR problem for a given biological activity if the subsequent recovery phase
is to be meaningful. In addition, one should be able to construct a feasible molecule from such a
descriptor. The difficulty of recovering the molecule from its descriptor is the major limitation of
most inverse-QSAR methods.

Results: In this paper, we describe the reversibility of our previously reported descriptor, the
vector space model molecular descriptor (VSMMD) based on a vector space model that is suitable
for kernel studies in QSAR modeling. Our inverse-QSAR approach can be described using five
steps: (1) generate the VSMMD for the compounds in the training set; (2) map the VSMMD in the
input space to the kernel feature space using an appropriate kernel function; (3) design or generate
a new point in the kernel feature space using a kernel feature space algorithm; (4) map the feature
space point back to the input space of descriptors using a pre-image approximation algorithm; (5)
build the molecular structure template using our VSMMD molecule recovery algorithm.

Conclusion: The empirical results reported in this paper show that our strategy of using kernel
methodology for an inverse-Quantitative Structure-Activity Relationship is sufficiently powerful to
find a meaningful solution for practical problems.

Background
The structural conformation and physicochemical proper-
ties of both the ligand and its receptor site determine the
level of binding affinity that is observed in such an inter-
action. If the structural properties of the receptor site are
known (for example, there is crystallographic data) then
techniques involving approximations of potential func-
tions can be applied to estimate or at least compare bind-
ing affinities of various ligands [1]. When this

information is sparse or not available, as is the case for
many membrane proteins, it becomes necessary to esti-
mate affinities using only the properties of the ligand. This
ligand-based prediction strategy is often used in applica-
tions such as virtual screening of molecular databases in a
drug discovery procedure.

In a more general setting we strive to establish the quanti-
tative dependency between the molecular properties of a
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ligand and its binding affinity. To restate this goal using
current terminology: we want to analyze the Quantitative
Structure-Activity Relationship (QSAR) of the ligand with
respect to this type of receptor. A common approach for a
QSAR analysis is the use of a machine learning strategy
that processes sample data to learn a function that will
predict binding affinities. The input of such a function is
a descriptor: a vector of molecular properties [2] that char-
acterize the ligand. These vector entries may be physico-
chemical properties, for example, molecular weight,
surface area, orbital energies, or they may describe topo-
logical indices that encode features such as the properties
of individual atoms and bonds. Topological indices can
be rapidly computed and have been validated by a variety
of experiments investigating the correlation of structure
and biological activities.

The inverse-QSAR problem seeks to find a new molecular
descriptor from which one can recover the structure of a
molecule that possess a desired activity or property. Sur-
prisingly, there are relatively few papers providing solu-
tions to this problem [3]. Lewis [4] has investigated
automated strategies for working with fragment based
QSAR-driven transforms that are applied to known mole-
cules with the objective of providing new and promising
drug leads. Brown et al. [5] have studied the inverse QSPR
problem using multi-objective optimization. They used
an interesting partial least squares (PLS) related algorithm
in the design of novel chemical entities (NCEs) that satisfy
a given property range or objective. The physical proper-
ties considered in their paper were mean molecular polar-
izability and aqueous solubility. A problem with the
opposite emphasis has also been investigated: Masek et al.
[6] considered sharing chemical information that is
encoded in such a way as to prevent recovery of the original
molecule (a strategy used in the facilitation of prediction
software while protecting intellectual property rights).

In general, the inverse-QSAR problem is difficult because
the molecular descriptors involved with the inverse-QSAR
algorithm must adequately address the forward QSAR
problem for a given biological activity if the subsequent
recovery phase is to be meaningful. In addition, one
should be able to construct a feasible molecule from such
a descriptor. The difficulty of recovering the molecule
from its descriptor is the major limitation of most inverse-
QSAR methods.

Most of the proposed techniques are stochastic in nature
[7-9], however, a limited number of deterministic
approaches have been developed including the approach
of Kier and Hall [10-13] based on a count of paths, and an
approach based on signature descriptors (see Faulon et al.
[14-17]).

The key to an effective method lies in the use of a descrip-
tor that facilitates the reconstruction of the corresponding
molecular structure. Ideally, such a descriptor should be
informative, have good correlative abilities in QSAR
applications, and most importantly, be computationally
efficient. A computationally efficient descriptor should
have a low degeneracy, that is, it should lead to a limited
number of solutions when a molecular recovery algo-
rithm is applied.

Currently, kernel methods are popular tools in QSAR
modeling and are used to predict attributes such as activ-
ity towards a therapeutic target, ADMET properties
(absorption, distribution, metabolism, excretion, and
toxic effects), and adverse drug reactions. Various kernel
methods based on different molecular representations
have been proposed for QSAR modelling [18]. They
include the SMILES string kernel [19], graph kernels [20-
22] and a pharmacophore kernel [23]. However, none of
these kernel methods have been used for the inverse-
QSAR problem.

In this paper, we investigate the reversibility of our previ-
ously reported descriptor, the vector space model molecu-
lar descriptor (VSMMD) [24]. VSMMD is based on a
vector space model that is suitable for kernel studies in
QSAR modeling. Our approach to the inverse-QSAR prob-
lem consists of first deriving a new image point in the ker-
nel feature space and then finding the corresponding pre-
image descriptor in the input space. Then, we use a recov-
ery algorithm to generate a chemical structure template to
be used in the specification of new drug candidates. Tem-
plate formats will vary with respect to their specificity.
Depending on the nature of the recovery process, a tem-
plate may specify a unique molecule or a family of mole-
cules. In the latter case, molecules meeting the
specification could be obtained by means of high
throughput screening. In the "Methods" section, we pro-
vide a detailed description of our inverse-QSAR approach
using our VSMMD approach. In the "Results" section, we
present the experimental results of our descriptors in the
vector space setting.

Methods
Our inverse-QSAR approach can be described in five steps.
The first two steps perform a QSAR analysis. In the first
step, we generate a VSMMD for each compound in the
training set. Then, in the second step, we use a kernel func-
tion to map each VSMMD to a feature space typically used
for classification. The third step is to design or to generate
a new point in the kernel feature space using a kernel fea-
ture space algorithm (e.g. the center of highly active com-
pounds). In the fourth step, we map this point from the
feature space back to the input space using a pre-image
approximation algorithm. In the last step, the molecular
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structure template will be built by our VSMMD molecule
recovery algorithm. Figure 1 illustrates the overall process-
ing.

Vector Space Model Molecular Descriptor (VSMMD)
The vector space model molecular descriptor (VSMMD)
[24] can be categorized as belonging to the constitutional
descriptors that provide feature counts related to the two
dimensional structure of a molecule. Functionally, our
descriptor bears a resemblance to various other descrip-
tors such as reduced graphs (see Gillet [25]) and circular
fragments (Glenn et al. [26]). One may also see our frag-
ment oriented approach as somewhat reminiscent of the
path count strategy of Kier and Hall [10-13]. In the setting
of inverse-QSAR, we used VSMMD because we were famil-
iar with its capabilities and we had software applications
to do the generation of the descriptors. The primary signif-
icance of the current study is not the formulation of a new
and competitive descriptor but rather the development of
strategies to facilitate the reverse engineering workflow
that one needs to go from feature space point back to the
specification of a new ligand.

The first step in constructing the VSMMD is to identify the
physicochemical properties of each atom in a molecule.
Specifically, we affix labels to atoms and bonds as speci-
fied in Figure 2. It should be noted that triple bonds
would also be labelled as "=". This helps to reduce the

combinatorial explosion of components in the descriptor
at the expense of introducing some degeneracy. Since the
occurrence of triple bonds is rather infrequent, we con-
tend that this low level of degeneracy is much more
acceptable than the drastic and unwanted increase in
component count.

The VSMMD strategy is based on the extraction of molec-
ular fragments that are comprised of small sets of bonded
atoms. The atom count for a fragment is at least two and
at most c, where c is some pre-specified value such as 2, 3,
or 4.

To illustrate the processing of a molecule we describe the
steps that are taken in the processing of a molecule (atom
count for a fragment limited to 2). Figure 3 shows one of
the pyrrole compounds that is a member of the data set
used in reference [27].

The algorithm goes through the following steps:

1. The atoms and bonds are labelled as prescribed by
Figure 2.

2. The molecular descriptor is created by extracting
from the molecule a complete set of small fragments.

Overall concept for the VSMMD inverse-QSAR approachFigure 1
Overall concept for the VSMMD inverse-QSAR approach.
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3. Frequency counts are evaluated for all the fragments
so that a multi-set or bag of fragments can be gener-
ated

When these steps are completed, the multi-set counts are
placed into a vector that has a position for each of the dif-
ferent possible fragments recorded in the dictionary. Note
that all molecules end up with descriptors of the same
length. If fragment size is limited to 2 atoms this vector
would have a dimensionality of 7*7*3 = 147.

VSM and VSMMD compared
The motivation for the VSMMD descriptor comes from
the "bag-of-words" approach [28] that is based on the vec-
tor space model (VSM) used in information retrieval.
Roughly speaking, the atom fragments extracted in the
VSMMD process corresponds to the document words and
phrases extracted in the VSM. The molecule is then analo-
gous to a text document and much of the analysis used in
the bag-of-words strategy can be brought over to the
VSMMD setting.

In practice, we have found that the success of VSMMD is
greatly enhanced by utilizing fragments that contain more
than two atoms, for example, c = 3 or c = 4. This adoption
of a higher level of structure corresponds to the incorpo-
ration of phrase structures in the VSM. From a molecular
perspective, the larger fragment will incorporate informa-
tion related to rotation around a single bond. As the value
of c increases there is a point of diminished returns due to
the combinatorial explosion of fragment possibilities. To
help reduce this "curse of dimensionality", we can remove

the vector entries that have been observed to have fre-
quency counts equal to zero across all molecules under
consideration.

In the VSM, a language dictionary can be defined using
some permanent predefined set of words. In our model,
according to the encoding scheme, the dictionary will be
the collection of all possible atom type (AT) and bond
type (BT) labelled graphs that arise from molecular frag-
ments that are restricted to having atom counts of 2, 3, or
4. Table 1 shows the general format of our dictionary with
c limited to 4. The last entry of this table represents a four
atom fragment in which a central atom is bonded to three
other atoms.

In the most general case, a molecular descriptor is repre-
sented by a bag of fragments, each fragment correspond-
ing to an entry in the dictionary.

Analysis based on VSMMD
We now describe the notation and mathematical setting
used in VSMMD. For each molecule i, a molecular descrip-
tor di can be generated. We represent the descriptor as a
column vector in an m dimensional space using the map-
ping:

where q(fl, di) is the frequency of the fragment fl in the
descriptor di.

φ φL i L i i i m i
md d q f d q f d q f d: ( ) ( ( , ), ( , ), , ( , ))6 "= ∈1 2

T R

(1)

Labels for atoms and bonds in a moleculeFigure 2
Labels for atoms and bonds in a molecule.
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The use of the linear kernel φ L(·) in this last equation is
deliberate since we want to view this mapping as the type
of kernel function that is used in the bag-of-words strategy
described by Shawe-Taylor and Cristianini [28]. Via this
mapping, each molecular descriptor is taken over to an m-
dimensional vector, where m is the size of the dictionary.
Although m could be very large, the typical vector gener-
ated in this way is usually quite sparse (just as vectors in
the VSM are sparse).

Working with n molecules, we can apply the mapping
repeatedly to generate a succession of column vectors: φ
L(d1),φL(d2),...,φL(dn). Computation of the vector space

Processing steps for the VSMMDFigure 3
Processing steps for the VSMMD.

Table 1: General format of the fragment dictionary (AT = Atom 
Type, BT = Bond Type).

Type ID General Fragment Type Atom Count

1) AT BT AT 2
2) AT BT AT BT AT 3
3) AT BT AT BT AT BT AT 4
4) AT BT AT BT AT 4

BT
AT
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kernel is done by calculating the fragment-descriptor
matrix F with rows indexed by the fragments and columns
indexed by the descriptors:

The entry at position (i, j) gives the frequency of fragment
fi in molecule j. Subsequently, we can create the kernel
matrix as:

corresponding to the vector space inner product

In our forward-QSAR experiments [24], the nonlinear
Gaussian kernel [28]

gave the best results. It provides a rich hypothesis space
and is often used in machine learning studies. One param-
eter, σ, had to be evaluated through cross-validation.

With the Gaussian vector space kernel, we can apply a ker-
nel-based method to generate a predictor of any one of
several biological activities, for example: ADMET proper-
ties or affinity of ligands used as therapeutic agents. In our
previous studies [24], we gave empirical evidence to dem-
onstrate that VSMMD can capture important chemical
information allowing it to perform very well in both for-
ward-QSAR studies and the determination of binding
mode information.

The Reproducing Kernel Hilbert Space (RKHS)
Kernel-based learning algorithms work by embedding the
data into a Hilbert space, often called the feature space fol-
lowed by a search for linear relations within this Hilbert
space. Kernels are functions that can be used to formulate
similarity comparisons. They provide a general framework
to represent data, subject to certain mathematical condi-
tions. Data are not represented individually by kernels.
Instead, data are represented through a set of pair-wise
comparisons.

More formally, suppose we have n training data pairs

 where xi ∈ X. The vector space X is referred

to as the input space and each yi is considered to be a com-

ponent in Y, the vector of the output values. In the process
of machine learning, we want to be able to generalize to
previously unseen data points. In the case of binary classi-

fication, given some new input x ∈ X, we want to predict

the corresponding y ∈ {+ 1, -1}. In other words, we want
to choose y such that (x, y) is in some sense similar to the
training examples. In order to achieve this, we require a

similarity measures in X and in Y. Since y ∈ {+1, -1}, to
find the similarity measure in Y is relatively easy. On the
other hand, we require a function to measure the similar-
ity in X:

satisfying, for all x, xi ∈ X: i = 1 .. n,

where φ maps descriptors into an inner product feature
space FS. The similarity function k is called a kernel, and
φ is its feature map. The feature space FS is usually called
the reproducing kernel Hilbert space (RKHS) associated
with k. Figure 4 illustrates the overall mapping concept.

By using a kernel function, the embedding in the Hilbert
space is actually performed implicitly, that is by specifying
the inner product between each pair of points rather than
by giving their coordinates explicitly. This approach has
several advantages, the most important being the fact that
often the inner product in the embedding space can be
computed much more easily using a kernel rather than
using the coordinates of the points themselves.

In machine learning, using kernels is a strategy for con-
verting a linear classifier algorithm into a non-linear one
by using a non-linear function to map the original obser-
vations into a higher-dimensional feature space; this
makes a linear classification in the new feature space
equivalent to a non-linear classification in the original
input space.

For more details about the RKHS, readers can refer to [28].

Designing Molecules Using a Feature Space Algorithm
Suppose we have a set of n molecular descriptors S, desig-
nated as S ={d1, d2,...,dn} where each di is in the input
space X. Let us assume we are using a Gaussian vector
space kernel as defined in equation (5). Under this kernel,
any point di ∈ X, is implicitly mapped to an image φ(di) in
the feature space FS. With this kernel mapping, we can
define the set φ(S) = {φ(d1), φ(d2),...,φ(dn)} ⊂ FS.

F d d

q f d q f d

q f d q f d
L L n

n
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In this sub-section, we will evaluate various properties of
the data set φ(S). We provide a set of elementary algo-
rithms to do various calculations such as distance between
two descriptor image points in the feature space.

The feature space centroid derived from highly active compounds
The norm of φ(d) is given by:

A special case of the norm is the length of the line joining
two images φ(d1) and φ(d2), which can be computed
using:

The norm described by (9) represents the distance
between two descriptor image points in the feature space.
We define the centroid φs of the molecule data set S in the
feature space as:

The norm of the centroid can be calculated using only the
evaluations of the kernel on the inputs:

Note that, the result is the average of the entries in the ker-
nel matrix. The inner product between a descriptor image
point φ(d) and the centroid φs is given by:

φ φ φ φ( ) ( ) ( ), ( ) ( , ).d d d d k d d= = =2 (8)

φ φ φ φ φ φ

φ φ φ φ
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The implicit function  maps points in the input space over to the feature spaceFigure 4
The implicit function φ maps points in the input space over to the feature space.
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Using equation (9), we can calculate the distance between
φ(d) and the centroid φs in the feature space by:

Recall that the kernel-based learning algorithms work by
embedding the data into the feature space, and searching
for a linear relationship within this feature space. With
this linear relationship, it makes sense to derive a new
descriptor image using the centroid point of the highly
active compound's image points which will share the gen-
eral properties of all highly active compounds. If the cen-
troid point can be mapped from the feature space back to
the input space, we can obtain the descriptor of a new can-
didate molecule. Figure 5 illustrates this idea. It should be
stressed that when a nonlinear kernel (such as the Gaus-

sian kernel) is used, then a point in the feature space bears
a nonlinear relationship to the point in the input space.
The centroid in the feature space would rarely, if ever, map
back to the centroid in the input space. We have chosen to
use the centroid in the feature space because there is more
assurance of generating a new point in the feature space
that in some sense represents a point of reasonable inter-
polation in this high dimensional space. Picking an arbi-
trary point in the feature space runs a higher risk of
extrapolation which may be difficult to avoid especially
when a small training set is spread over the higher dimen-
sional feature space in some rarefied manner.

The inverse in the input space is called the pre-image. We
will discuss pertinent details in the pre-image problem
subsection to follow.

There are several studies that use a feature space centroid
to generate new data. Kwok and his colleagues used a fea-
ture space centroid to generate a new data point for hand-
written digit recognition [29] and speech processing [30].
In both applications, the pre-image has been shown to be
robust and meaningful. In the next subsection we describe
another strategy for the derivation of a new feature space
point

Minimum enclosing and maximum excluding hyperspheres
In the last subsection, we derived a new descriptor image
point using the centroid of feature space images derived
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Deriving a new image in kernel feature spaceFigure 5
Deriving a new image in kernel feature space.
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from the highly active compounds. In this subsection, we
use the highly active compounds to derive two hyper-
spheres with the same center. The center of the hyper-
spheres is then mapped back from the feature space to the
input space to generate the descriptor of a new candidate
molecule.

Suppose we can identify a subset G ⊆ S where G contains
the descriptors of molecules in the chemical space with
the highest activity. We let |G| represent the number of
descriptors in G. In an ideal situation, the feature space
images of G will be spherically separable from all the
other descriptor images mapped over from S. With this
assumption, we can derive two hyperspheres, sharing the
same center a, such that the images of all descriptors
derived from highly active molecules are enclosed by the
inner hypersphere H1 and all the remaining images are
excluded by the outer hypersphere H2. Let r1 be the radius
of the inner hypersphere and let r2 be the radius of the
outer hypersphere. Consequently, we have:

Figure 6 illustrates this idea.

Following the development of Liu and Zheng's minimum
enclosing and maximum excluding machine (MEMEM)
[31], we want the inner hypersphere H1 as small as possi-

ble for a good description of the highly active class. In the
meantime, we want the outer hypersphere H2 as large as

possible. In other words, we try to maximize the area
between two hyperspheres H2 and H1. Note that the area

between two hyperspheres H2 and H1 is proportional to

the quantity . Let  and

a d r d G

a d r d G

i i i

i i

− ≤ ∈

− ≥ ∉

φ

φ

( ) ,

( ) .

2 2

2
2
2

for

for
(14)

r r2
2

1
2−( ) Δr r r2

2
2
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Minimum enclosing and maximum excluding hyperspheres in the feature spaceFigure 6
Minimum enclosing and maximum excluding hyperspheres in the feature space.
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, we can formulate the objective func-

tion to have  as small as possible and Δr2 as large as

possible by minimizing the quantity

, or equivalently

Replacing the constant  by η, which controls the trade

off between the importance of the inner hypersphere and
the outer hypersphere, the objective function will
become:

Our analysis will require Lagrange multipliers αi and
labels yi such that

The dual problem of equation (16) can be obtained [31]
as:

In practice, the data may not be separable in this fashion.
By introducing slack variables ζ ≥ 0, equation (16)
becomes:

By using equation (19), we allow some negative samples
inside the inner hypersphere and some positive samples

outside the outer hypersphere. The corresponding dual
problem of equation (19) obtained by [31] is:

where β is the Lagrange multiplier associated with the
constraint Δr2 ≥ 0, and C is some constant to be deter-
mined with a validation data set. The center a of the
hyperspheres is then mapped back from the feature space
to the input space to generate the descriptor of a new can-
didate molecule.

The Pre-image Problem
In RKHS subsection, we illustrated how a point in the
input space is mapped to the feature space via the implicit
function φ. In this subsection, we are interested in finding
how a point in the feature space can be mapped back to
the input space. Formally, this is called the pre-image
problem of reconstructing patterns from their representa-
tion in feature space (see Figure 7).

Let Ψ be a point in the reproducing kernel Hilbert space
(RKHS) FS. The pre-image of Ψ ∈ F is a point d* ∈ X (the
original input space). Formally,

The problem of finding the pre-image d* is equivalent to
the problem of finding the inverse of φ defined in equa-
tion (21):

However, the problem of finding φ-1(·) is typically an ill-
posed problem. A problem is said to be ill-posed if the
solution is not unique, does not exist, or is not a continu-
ous function of the data [32].

One possible way to overcome this problem is to look for

 an approximation of the pre-image such that φ( ) is

as close as possible to Ψ. Formally, we search for  ∈ X,
such that
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Ψ = ∗φ( ).d (21)
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Typically, we will have Ψ defined as some linear combina-
tion of implicit mappings from the input space. Conse-
quently, expanding equation (23), we get:

which can be rewritten as:

Using equation (25), an inversion problem turns out to
be an optimization problem. There are several algorithms
that attempt to solve this optimization problem. Schölko-
pf et al. [33] proposed an iterative fixed point algorithm
strategy. Kwok and Tsang [28] proposed another method
that exploits the correspondence between distances in the
input space and the feature space. Alternatively, a stand-
ard gradient optimization method can be used to find an
approximation of the pre-image [33]. Note that all these
methods are only guaranteed to find a local optimum.

In this paper, we are going to follow Kwok and Tsang [28]
and use their approach to approximate the pre-image.
Their algorithm is based on the notion of distance con-
straints. They assume that there exists a simple relation-
ship between distances in the input space and distances in
feature space. Figure 8 illustrates these relationships. Sup-
pose we have derived the center a of the hyperspheres
using equation (19). It was shown that the center a of the
hyperspheres is a linear combination of the training sam-

ples [31] i.e.: . Recall that η is defined in

equation (16). The norm of the center can be calculated
using only the evaluations of the kernel on the training
sample inputs:

ˆ arg min ( ) ( ) ,d d d
d X

i i

i

n

F

∗
∈

=

= −∑φ α φ
1

2

(24)

ˆ arg min ( , ) ( , ) ( , )d k d d k d d k d d
d X

i i

i

n

i j i j

j

n

i

n
∗

∈
= ==

= − +∑ ∑∑2
1 11

α α α
⎡⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

.

(25)

a y di i i
i

n
=

=
∑1

1
η α φ( )

a a y d y d

y y k d d

i i i

i

n

j j j

j

n

i j i j i j

j

, ( ), ( )

( , )

=

=

= =
∑ ∑1 1

1
2

1 1
η

α φ
η

α φ

η
α α

===
∑∑

11

n

i

n

.

(26)

The pre-image problemFigure 7
The pre-image problem.
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For each training sample di we can derive

 representing the square of the dis-

tance between the training sample image di and the center

a of the hyperspheres:

Using the Gaussian kernel as specified in equation (5) and
an observation made by Kwok and Tsang [29], the corre-
sponding input space distance dista, i, between the center
and training sample di can be found using:

To speed up the algorithm (as observed by Kwok and
Tsang [29]), only the p closest training sample images of a
will be considered. From (27), we can identify the p clos-

est neighbours of a in the feature space. Using (28), we
can convert these p closest neighbour distances in the fea-
ture space to their corresponding input space distances.
Let b be the vector representing these input space dis-
tances with

Their corresponding descriptors in the input space are d1,

d2,...,dp ∈ �m, and the centroid is defined as .

Let D = [d1, d2,...,dp] be an m × p matrix. To establish the

centroid at the origin, we let

where I is a p × p identity matrix, and 1 is a p dimensional
vector with each component equal to 1.

Assuming matrix D is of rank q, we obtain the singular
value decomposition (SVD) of AT as:
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Kwok and Tsang pre-image strategyFigure 8
Kwok and Tsang pre-image strategy.
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where U = [u1, u2,...,uq] is a m × q matrix with orthonormal

columns composed of the ui's, and Z = [z1, z2,...,zp] is a q ×

p matrix with the i-th column zi being the projection of di

onto the uj vectors such that the squared distance of di to

the origin is equal to ||zi||2. Letting b0 = [||z1||2,

||z2||2,...,||zp||2]T the pre-image  of the center a can be

obtained by:

The Need for a Nonlinear Kernel
The nonlinear implicit mapping provided by the kernel
operation allows us to generate an inner product in the
feature space by computing a kernel function that has
arguments taken from the input space. More significantly,
when a nonlinear kernel is used, linear operations in the
feature space correspond to nonlinear operations in the
input space. This is important because the nonlinear map-
ping will involve various cross products of components
within a vector of the input space. As a consequence, lin-
ear structures within the feature space correspond to non-
linear or "warped" structures in the input space.

To illustrate this, we ran a small experiment with the
COX2 training set (described below in the Results sec-
tion): As described earlier, the new feature space point a,
generated by extracting the center of the enclosing hyper-
sphere, was mapped back to the input space to get its pre-

image . We then formed the set of points Sfe in the

input space (taken from the training set) that produced
the ten closest neighbours of a under the kernel mapping.
This set Sfe was compared with the set Sin containing the 10

closest neighbours of  in the input space (these neigh-
bours derived using the Euclidean metric). Because of the
warping effect, pre-images of close neighbours in the fea-
ture space are not necessarily the closest neighbours of the

pre-image  in the input space, in fact, the intersection
of Sin and Sfe is only 3 descriptors. More significant: the

average affinity of molecules in Sin is 8.03 while the aver-

age affinity of molecules in Sfe is 8.73. This provides

empirical evidence that the nonlinear mapping provided
by the kernel function helps us to select input space
descriptors that are more significant when considering
their corresponding affinities.

Recovering the Molecule

In order to solve the recovery problem for chemical struc-
tures, we have to investigate a way to derive a graph repre-

senting the 2D structure of a molecule that has  as its
descriptor. There are several related studies that attempt to
find such a graph, see for example Bakir et al. [34], who
worked with a stochastic search algorithm. However, this
recovery problem is not well studied from a computa-
tional viewpoint. Tatsuya and Fukagawa [35,36] proposed
a dynamic programming algorithm for inferring a chemi-
cal structure from a descriptor. However, the algorithms
are not practical for a large data set. Previous studies
focused on creating a real chemical structure, which
defined too many constraints on the problem due to the
complexity of chemical structure. In our study, we do not
attempt to recover a real chemical structure; instead, we
generate a chemical structure template with physiochem-
ical properties only. This simplifies the problem and
makes it practical for real data sets.

Reversible VSMMD
For illustration and without loss of generality, we will
assume that the atom count associated with the VSMMD
is two, and we further assume all the aromatic rings are
replaced by "super atoms" containing all the rings' physi-
cochemical properties. Figure 9 illustrates a simplified
VSMMD using the same example as in Figure 3.

From Figure 9, we observe that the VSMMD model con-
tains only the physiochemical properties of the chemical
structure. As a result, for the recovery problem, we do not
attempt to recover the entire chemical structure. Instead,
we attempt to generate a chemical structure template with
physiochemical properties only. A chemical structure tem-
plate converted from the molecule shown in Figure 9 is
illustrated in Figure 10.

In the next subsection, we define the notion of a structure
template and show how it can be derived.

Forming the De Bruijn graph
If we consider a molecule to be comprised of molecular
fragments then it is clear that there is a hierarchical organ-
ization of these fragments. A linear fragment with an atom
count of three can be seen as containing two smaller frag-
ments each with an atom count of two and of course the
two fragments overlap in the central atom. If we restrict a
fragment to have an atom count of two, then it will con-
tain two elementary fragments, namely two atoms, each
labelled with their atom types.

Informally: The purpose of a De Bruijn graph is to provide
a data structure that shows how small fragments combine

A USV UZT T= = , (31)

d̂∗

ˆ ( ) .d US V dT∗ −= − − +1
2

1
0b b (32)

d̂∗

d̂∗

d̂∗

d̂∗
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to build larger fragments. Since we wish to handle ring
structures using the simplification of a "super atom", we
will abuse these concepts slightly and consider the frag-
ments under discussion to be fragments within a template
as described in the previous subsection.

Suppose we are dealing with fragments that have an atom
count designated as fa. The De Bruijn graph D is con-
structed in the following way: We provide a vertex for each

fragment that has an atom count equal to fa - 1. In our sim-
plified case, fa = 2 and each vertex will represent an atom
labelled with a physicochemical property. We then add a
bi-directional edge from vertex a to vertex b if the frag-
ments associated with these vertices are within a larger
fragment with atom count equal to fa. Each edge is
weighted with a value representing the number of times
that this larger type of fragment occurs in the template.

Simplified VSMMD with an aromatic ring treated as a super atomFigure 9
Simplified VSMMD with an aromatic ring treated as a super atom.
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An example of a chemical structure templateFigure 10
An example of a chemical structure template.
Note: We use "O" to denote O#O#O#O#O#O and 'OA' to denote O#O#O#O#A.

The De Bruijn graph D for the VSMMD shown in Figure 9Figure 11
The De Bruijn graph D for the VSMMD shown in Figure 9.
Note: We use 'O' to denote O#O#O#O#O#O and 'OA' to denote O#O#O#O#A.
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Although we have been referencing the template in
describing the construction of D, it should be clear that it
is possible to accomplish the generation of D by process-
ing the descriptor that represents this template. Figure 11
illustrates the De Bruijn graph D generated from the
VSMMD shown in Figure 9.

The De Bruijn graph can be expanded by replacing each
edge carrying weight c with c unweighted edges, each with
the same direction as the original edge. Figure 12 illus-
trates this expansion. Let M be the resulting unweighted
De Bruijn graph.

From the VSMMD, we know the exact number of vertices
that should appear in the chemical structure template.
With this information, we can derive a chemical structure
template from the De Bruijn graph by finding an Euler cir-
cuit of M.

All possible Euler circuits
An Euler circuit is a circuit on the graph such that each
edge is traversed exactly once. Each traversal of an edge
corresponds to the consumption of one instance of a com-
ponent in the VSMMD. The problem of finding an Eule-
rian circuit of a graph is well known and there exists a

linear time algorithm for its derivation [37]. The follow-
ing is the pseudo-code of the Euler circuit algorithm.

EULER(q)

1 Path ←none

2 For each unmarked edge e leaving q
do

3 Mark(e)

4 Path A ← EULER(opposite ver
tex(e)) || Path

5 Return Path

Each Euler circuit will represent the extraction of a unique
chemical structure template from the De Bruijn Graph M.
Figure 13 shows a subset of all the Euler circuits that can
be generated. The circuit labelled with a '*' corresponds to
the chemical structure template illustrated in Figure 10.
The total number of possible Euler circuits for the chemi-
cal structure in Figure 9 is 2700.

The Expanded graph MFigure 12
The Expanded graph M.
Note: We use 'O' to denote O#O#O#O#O#O and 'OA' to denote O#O#O#O#A.
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In order to generate all possible chemical structures asso-
ciated with the VSMMD, we have to find all Euler circuits.
Different chemical structure templates correspond to the
different possible orderings when traversing outgoing
edges of each vertex. This produces a factorial explosion
with respect to the number of outgoing edges of each ver-
tex. Thus, finding all Euler circuits is not feasible.

Probabilistic Euler paths
To overcome this, we have developed an algorithm that
generates Eulerian circuits by doing a guided walk of the
graph. During the walk we choose an outgoing edge in a
probabilistic fashion. The choice is dependent on statistics
that are gathered from the descriptors in the training set.
To accomplish this, we have built a statistical model that
is used to estimate the probability of an Euler circuit.

Let E denote a path of N edges, that is, E = e1, e2,...,eN.
Then, by the probability chain rule, we can obtain:

To estimate the conditional probabilities P (ei|e1, e2,...,ei-

1), we need training data consisting of a large number of
Euler circuits each corresponding to some particular
molecular template. One can obtain these conditional
probability distributions from the training data by keep-
ing statistics on the dependency between the next edge to
traverse and the history of the previously traversed edges.
Seen as probabilities of traversal, we of course use normal-
ized values so that the probabilities of all possible "next-
edges" sum to 1.0.

To simplify the statistical model, independence assump-
tions are made so that each edge depends only on the last
t edges. Consequently, we have a Markov model that pro-
vides an approximation of how the fragments, each
labelled with physicochemical properties, are connected
within the template. More precisely, our model predicts
traversal of ei based on previously traversed edges ei-1, ei-

2,...,ei-t. Formally, this is described as:

If we could handle unlimited amounts of training data,
the maximum likelihood estimate of P (ei|ei-t+1,...,ei-1)
would be:

where c(ei-t,...,ei-1, ei) is the number of times the edge
sequence ei-t,...,ei-1, ei is seen in the training data.

As an example, consider Figure 14 with t = 1. In order to
determine the edge to be traversed next when at the node
labelled "R", we consult the associated probabilities: P(R -
O | A - R) and P(R - A | A - R). We traverse the edge with
the largest probability first.

A threshold h can also be used as a cut-off to limit the
number of edges that the algorithm should examine in an
effort to sidestep the factorial explosion that can occur
without this limitation. With this understanding, we can

P E P e P e e ei i

i

N
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Some possible Euler circuitsFigure 13
Some possible Euler circuits.
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compute the overall probability of each Euler circuit using
equation (34).

With t = 1 and h = 2, a total of 102 Euler circuits are gen-
erated. The six Euler circuits with highest probability are
shown in Figure 15. They corresponded to two unique
chemical templates. Templates 1 and 3 are the exact tem-
plates derived from the chemical structure shown in Fig-
ure 10.

There are several related research papers that attempt to
retrieve the order of elements that are part of a larger struc-
ture using Eulerian circuits. Cortes et al. [38] retrieve the
order of words in documents using an Eulerian circuit
approach. Pevzner et al. [39] assembly DNA fragments
using an Eulerian circuit.

As mentioned in [29], in general, there was no exact pre-
image in the input space; The pre-image returned by the
algorithm was an approximation and so it was compro-
mised by approximation errors. Because of these approxi-
mation errors, the following problems may exist:

• The pre-image vector may consist of non-integer
components.

• The pre-image vector may not form a fully connected
De Bruijn Graph.

Our solution to overcome the first problem is to round
the components to obtain integer counts. To deal with the
case where the graph is not connected, the all-possible
Euler circuits algorithm is called at each vertex whose out-
going edges are not all marked. The resulting path is the
concatenation of the paths returned by different calls to
the all-possible Euler algorithm. More precisely, a bidirec-
tional edge with the largest conditional probability based
on previously traversed edges in the path, (using the same

Markov model that we set up in the previous subsection),
is added to connect two Euler paths together.

Consider the pre-image example given in Figure 16(a), the
corresponding expanded De Bruijn Graph is given in Fig-
ure 16(b). The all-possible Euler algorithm is called at
each vertex whose outgoing edges are not all marked. The
highest probability Euler circuits for the disjoint De Bruijn
Graph are given in Figure 16(c). To determine the concate-
nation location of the two Euler circuits, our algorithm
considers all the possible connections between the two
disjoint parts of the graph. All the possible connections
are illustrated in Figure 16(d). These possible connections
are evaluated using the same Markov model that we set up
before to calculate the Euler circuits. Among all the possi-
ble connections, the P(R-O|R-R) value gives the highest
probability. Thus a bi-directional edge between node 'R'
and node 'O', is added to connect the two disjointed parts
together. The final De Bruijn Graph, the concatenated
Euler circuit and the corresponding graph template are
shown in Figure 16(e).

Results
Data
In our previous work [24], eight different data sets were
used to test the ability of the VSMMD to predict biological
activities. All these data sets contain real valued QSAR
inhibitor data. The eight QSAR data sets are from Suther-
land et al. [27]. We chose one data set from these eight
data sets to demonstrate the effectiveness of the recovery
algorithm when applied to our VSMMD.

The data set we chose contains 322 cyclooxygenase-2
(COX2) inhibitors collected by Seibert and colleagues
[40] and subsequently utilized in a QSAR study by Cha-
vatte et al. [41] with each inhibitor having pIC50 values
ranging from 5.5 to 8.9. We chose this data set because
training samples in the COX2 data set were presented
using diagrams of molecular structures. This allowed us to

An example in edges traversalFigure 14
An example in edges traversal.
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compare our generated chemical structure templates with
the given molecules in the data set. It should also be noted
that, despite the similarity of molecules displayed in Fig-
ure 17, the entire set of 322 COX2 inhibitors is spread
over 20 different scaffolds and so the training set has a rea-
sonable structural diversity.

The same inverse-QSAR procedure was applied to the
remaining seven data sets; the closest matching molecule
in the test set for the generated chemical template is
shown in the last subsection.

In our experiments, the data were separated into the same
training and testing sets as specified by Sutherland et al.
[27].

Implementation Details
To identify the physicochemical properties of each atom,
we implemented our descriptor generation program with
help from the chemical development kit (CDK) [42,43]

programmed in Java. As illustrated in Figure 3, descriptors
were calculated and the kernel matrix K was generated in
a few seconds for each complete data set. For the pre-
image algorithm and the feature space algorithm, we used
MATLAB to perform the required calculations. For the
recovery phase, we implemented the Probabilistic Euler
Paths algorithm in Java.

Verification of the Inverse Mapping – Test Result
To verify our proposed inverse approach, we picked one
molecule in the COX2 training set randomly as shown in
Figure 18(a). We then generated the VSMMD for each of
the compounds in the training set. The corresponding
VSMMD for the chosen molecule is shown in Figure
18(b). Next, we implicitly mapped this VSMMD to the
kernel feature space using a Gaussian kernel function as
stated in equation (5). Instead of generating a new point
in the feature space, we used the pre-image approximation
algorithm to compute the pre-image of this feature space
point. The corresponding pre-image is shown in Figure

Six highest probability Euler Circuits for VSMMD shown in Figure 9 and the corresponding chemical structure templatesFigure 15
Six highest probability Euler Circuits for VSMMD shown in Figure 9 and the corresponding chemical structure 
templates.
Note: We use 'O' to denote O#O#O#O#O#O and 'OA' to denote O#O#O#O#A.
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A case where the pre-image vector did not form a fully connected De Bruijn GraphFigure 16
A case where the pre-image vector did not form a fully connected De Bruijn Graph.
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18(c). Finally, we applied our VSMMD recovery algorithm
to obtain a chemical template. With t = 1 and h = 3, we
generated the Euler circuit with the highest probability
and the corresponding chemical structure templates are
shown in Figure 18(d). From this result, we observed that
our approach is able to generate a chemical template cor-
responding to the original chosen molecule.

Inverse-QSAR Test Results
Recall that our inverse-QSAR approach contains five steps.
The first two steps are to perform QSAR analysis. In the
first step, we generated the VSMMD for the compounds in
the training set. Then, in the second step, we implicitly
mapped the VSMMD to the kernel feature space using an
appropriate kernel function for classification. The results
of the forward QSAR can be found in our previous paper
[24].

The third step was to design or to generate a new point in
the kernel feature space using a kernel feature space algo-
rithm. To demonstrate our approach, we formed a new
point in the feature space by using the ten highest active
compounds in the training set. The center of the mini-
mum enclosing and maximum excluding hypersphere
was obtained using equation (19). Figure 17 shows these
ten compounds.

In the fourth step, we mapped the feature space point back
into the input space using the pre-image approximation
algorithm. In this case, we used the Kwok and Tsang algo-
rithm [29] described in the pre-image problem subsection
to map the center of the minimum enclosing and maxi-
mum excluding hypersphere back into the input space.
Figure 19 illustrates the derived VSMMD.

The last step concerned building the molecular structure
template using our VSMMD recovery algorithm described
in the recovery subsection. Since the center of the mini-
mum enclosing and maximum excluding hypersphere
was derived from the ten highest active compounds in the
training set, we assumed that the new derived compounds
should look similar to these ten compounds. With this
assumption the path probability was calculated. Setting t
= 1 and h = 3, we generated two Euler circuits and the cor-
responding chemical structure template is shown in Fig-
ure 20.

Notes on Test Results
In order to investigate whether the pre-image VSMMD is
reasonable, we performed a more detailed analysis of the
COX-2 data set. In the pre-image VSMMD as shown in Fig-
ure 20, the cyclopentene ring can be found in one of the
descriptors. From medicinal chemistry studies, we know

Ten highest active compounds in the COX-2 training setFigure 17
Ten highest active compounds in the COX-2 training set.
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that cyclopentene derivatives are one of the first series of
diaryl-substituted cycles that have been well known as
COX-2 inhibitors [44,45]. This empirical evidence dem-
onstrates that our generated pre-image VSMMD is able to
capture important properties of the ten most active mole-
cules.

When we performed a high throughput screening on the
test set using the generated chemical structure template,
the following molecule was identified as an exact match to
the template.

The molecule in Figure 21 has a pIC50 value of 8.52, and
it was one of the highest active molecules in the testing set.
From this result, we demonstrated that our strategy was
able to generate a high affinity molecule using only data
in the training set. We were able to claim that the gener-
ated molecule was a high affinity molecule because it
appeared as such in the testing set. In practice, the success
of the algorithm would have to be assessed by using a wet
lab procedure to determine the affinity of the generated
molecule.

Verification test resultFigure 18
Verification test result.
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The inverse-QSAR procedure was applied to all eight data
sets; the closest matching molecule in the test set for the
generated chemical template across 8 data sets is shown in
Figure 22. A quantitative evaluation of the generated mol-
ecules was performed by implicitly mapping the VSMMD
of each molecule to the kernel feature space for regression
analysis. The regression results are also shown in Figure
22.

Discussion
In kernel-based learning, the usual assumption is that the

data pairs , in the training set, come from a

source that provides these samples in an independent
identically distributed (i.i.d.) fashion according to an
unknown probability distribution P(x, y). Furthermore,
the test examples are assumed to come from the same dis-
tribution [46]. In an ideal situation, the collection of

molecular descriptors in the training set follow a proba-
bility distribution that is only determined by the interac-
tions between ligands and the binding site. In practise this
does not happen. The selection of members in the train-
ing set may involve a significant amount of bias due to
human involvement in its creation:

• Selection of members of the training set may be
restricted by rules that exclude molecules that are not
"drug like".

• Since the training set involves molecules that have
been assessed for binding affinity, they had to be syn-
thesized and may be part of a suite of molecules for
which the synthesis was not overly complicated.

• Furthermore, the molecular descriptors in the train-
ing set may show various types of repetition, (for

x yi i i

n
,( ){ } =1

The pre-image VSMMD of the center of the minimum enclosing and maximum excluding hyperspheresFigure 19
The pre-image VSMMD of the center of the minimum enclosing and maximum excluding hyperspheres.

Two Euler circuits with the highest probability for the pre-image VSMMD in Figure 19 and the corresponding chemical struc-ture templatesFigure 20
Two Euler circuits with the highest probability for the pre-image VSMMD in Figure 19 and the corresponding 
chemical structure templates.
Note: We use 'O' to denote O#O#O#O#O#O and 'R*' to denote the cyclopentene ring.
Page 23 of 27
(page number not for citation purposes)



Journal of Cheminformatics 2009, 1:4 http://www.jcheminf.com/content/1/1/4
example, the repeated occurrence of some type of scaf-
fold). This may or may not be intended.

As a consequence of these issues, the learning algorithm
will produce a predictor that is taking into account both a
biological process and the human activity intrinsic to the
formation of the training set. More significantly, there is
the demand that future test molecules come from the
same probability distribution. Statistical learning theory
will guarantee certain generalization bounds, but only if
these demands are met. In effect, the theory tells us that if
test samples come from a source, such as a virtual screen-
ing library that is not characterized by the same rules of
formation as the training set – then all bets are off.

In the constructive approach that has been described in
this paper, it is clear that we are also limited by the infor-
mation that is intrinsic to a training set. But beyond this,
the strategy significantly differs from virtual screening.
Instead of trying to find a new molecule in a database that
should exhibit the same P(x,y) characteristics, we side step
this requirement (which may be difficult to guarantee)
and we build a new drug candidate using only the infor-
mation that is strictly contained in the training set itself.

Conclusion
While molecular fragments have been used in research
studies for dealing with quantitative structure-activity
relationship problems, we have further evolved this strat-
egy to include a reverse engineering mechanism.

These mechanisms include:

1. the use of a kernel feature space algorithm to design
or modify descriptor image points in a feature space

2. the deployment of a pre-image algorithm to map
the descriptor image points in the feature space back
to the input space of the descriptors, and

3. the design of a probabilistic strategy to convert new
descriptors into meaningful chemical graph templates

As reported in earlier papers, our modeling has produced
very effective algorithms to predict drug-binding affinities
and to predict multiple binding modes [24]. We have now
extended our modeling approach to the development of
algorithms that derive new descriptors and then facilitate
the reverse engineering of such a descriptor. This is a very
desirable capability for a molecular descriptor [3].

The most important aspect of our research is the presenta-
tion of strategies that actually generate the structure of a
new drug candidate. This is substantially different from
methodologies that depend on database screening to get
new drug candidates. While our approach can support
such an endeavour, it is not our primary goal. In fact, we
are quite concerned that database screening, done using a
predictor derived from a statistical learning algorithm, is
subject to procedural demands that may be difficult to
maintain. We are referring to statistical learning theory
that guarantees the success of a predictor, but only when
the test sample is drawn from a data source that has the
same probability distribution as that characterizing the
training set.

In the applications of statistical learning to database
screening, the predictor may be applied to test molecules
that have very little relationship to the training data. In
these cases, the predictor is optimistically treated as if it
actually incorporates an algorithm that has some firm and

Matching molecule in the test setFigure 21
Matching molecule in the test set.
Note: We use 'O' to denote O#O#O#O#O#O and 'R*' to denote the cyclopentene ring.
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direct relationship to the biological context of the prob-
lem. As mentioned by Good et al. [47], the conclusion of
a QSAR analysis can be profoundly altered by how the test
set was derived. Traditionally, this concern was usually
addressed through the design of complicated and time
consuming validation experiments [48] to ensure that the
predictor will not generate a misleading conclusion. In
our approach, we have avoided such concerns. While the
training set is still used to generate a new image point in

the feature space, the reverse engineering just described
allows us to develop a template for a new drug candidate
that is independent of issues related to probability distri-
bution constraints placed on test set molecules.
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The closest matching molecule in the test set for the generated chemical template across 8 data setsFigure 22
The closest matching molecule in the test set for the generated chemical template across 8 data sets.
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