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Abstract
Background: Gene set enrichment analysis (GSEA) is an analytic approach which simultaneously reduces the dimensionality of 
microarray data and enables ready inference of the biological meaning of observed gene expression patterns. Here we invert the GSEA 
process to identify class-specific gene signatures. Because our approach uses the Kolmogorov-Smirnov approach both to define class 
specific signatures and to classify samples using those signatures, we have termed this methodology “Dual-KS” (DKS).
Results: The optimum gene signature identified by the DKS algorithm was smaller than other methods to which it was compared in 
5 out of 10 datasets. The estimated error rate of DKS using the optimum gene signature was smaller than the estimated error rate of 
the random forest method in 4 out of the 10 datasets, and was equivalent in two additional datasets. DKS performance relative to other 
benchmarked algorithms was similar to its performance relative to random forests.
Conclusions: DKS is an efficient analytic methodology that can identify highly parsimonious gene signatures useful for classification 
in the context of microarray studies. The algorithm is available as the dualKS package for R as part of the bioconductor project.
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Background
Gene set enrichment analysis (GSEA), first described 
by Subramanian et al,1 is an analytic approach 
which simultaneously reduces the dimensionality of 
microarray data and enables ready inference of the 
biological meaning of observed gene expression pat-
terns. GSEA entails grouping genes together into 
either empirically or theoretically defined signatures. 
Combining genes improves the signal to noise ratio 
of the data since the random variation in multiple 
genes tend to cancel each other out. This decrease 
in variability favors smaller sample sizes and more 
efficient study design. Furthermore, to the extent that 
the signatures are defined in some systematic fash-
ion, GSEA facilitates inference as to the biological 
processes that are relevant to the phenotype being 
studied. This approach has been used by ourselves 
and others to identify novel biologic characteristics 
of tumor samples.2–5

Here we extend this analytic methodology to the 
task of tissue diagnosis. We invert the GSEA process 
described above to identify class-specific gene sig-
natures that may subsequently be used for sample 
classification. Rather than looking for bias of a subset 
of genes in an ordered list of expression levels for a 
given sample, we look for bias of a subset of samples 
in an ordered list of samples for a given gene. By 
applying this methodology across the genome, we 
can identify those genes whose expression is most 
strongly biased in a given subset of samples. This 
can be conceptualized as “tissue-set enrichment 
analysis”.

The approach to quantifying gene set enrichment 
described by Subramanian et al utilizes a varia-
tion of the Kolmogorov Smirnov rank-sum statistic 
(KS). KS measures how biased a subset of items 
is in the ordered list of all items.1,6 In the context 
of GSEA, genes are sorted based on expression 
level for a given sample, and then KS measures 
the extent to which the genes in a given signature 
occur early or late in that ordered list as opposed 
to being randomly distributed throughout the list. 
We use tumor subtype to define the subsets and the 
result is a gene signature defining a specific tumor 
class. These signatures can then be applied to clas-
sification of unknown samples using the traditional 
GSEA approach. Since the GSEA approach mea-
sures the extent to which a set of genes is highly 

expressed in a given sample relative to all genes, it 
is important that the selected genes satisfy both of 
the following requirements:

1.	 The selected genes are specific: they are over- 
(or under-) expressed in the class of interest rela-
tive to other classes and

2.	 The selected genes are distinctive: The selected 
genes have the highest (or lowest) expression in 
samples of the class of interest among all over- (or 
under-) expressed genes.

Because our approach uses the KS approach both 
to define class specific signatures and to classify 
samples using those signatures, we have termed this 
methodology “Dual-KS” (DKS). Here we compare 
our algorithm to alternative classification methods 
and also examine the effects of several variations to 
the algorithm. Software implementing the algorithm 
is available as the dualKS package through the bio-
conductor project (http://www.bioconductor.org).

The approach has several advantages. First, it is 
well suited to identifying signatures amenable to 
use for GSEA-style classification. Second, it is non-
iterative and determinant; i.e. it is computationally 
efficient and produces exactly the same gene set from 
run to run. Third, it produces highly parsimonious 
gene signatures amenable to downstream validation. 
Small gene sets are desirable for focusing subse-
quent laboratory investigation, or when clinical assay 
development is contemplated using low- or medium-
throughput assay technologies. Finally, the algorithm 
is well suited to identifying gene signatures that are 
unique to a particular class of samples even where 
more than two classes are considered-the “multi-class 
case”-as is the case, for example, in renal tumors for 
which there are many histological subtypes to be 
distinguished.

Among alternative approaches to discriminant 
analysis and classification, we would like to highlight 
the gene selection methodology described by Diaz-
Uriarte and Alvarez de Andres,7 which is an adapta-
tion of the random forest algorithm first described 
by Breiman.8 This approach also is designed to iden-
tify highly parsimonious gene signatures, including 
unique gene signatures in the multi-class case. They 
have previously benchmarked their algorithm against 
several common alternatives, namely support vector 
machines (SVM),9 K-nearest neighbors (KNN) with 
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and without variable selection,10 diagonal linear 
discrimination analysis (DLDA),10 and nearest 
shrunken centroids (SC).11 We are indebted to their 
thorough treatment of these alternative methodologies 
and we refer here to their benchmarking results for 
comparison.

There are a variety of other alternatives that 
could be considered. A more basic approach to 
discriminant analysis is to use statistical tests such 
as t-tests or wilcoxon rank sum tests to compare 
expression levels of each gene among two groups 
of samples. However, in the multi-class case, it is 
not always obvious which pairwise comparisons 
are biologically most meaningful. For example, if 
classes A, B, and C are to be compared, should the 
comparisons be A vs. C and B vs. C, or A vs. B+C 
and B vs. A+C? And if the former type of compari-
son is made, the identified gene signatures may be 
not be unique since the same gene may distinguish 
both A from C and B from C. More sophisticated 
methodologies such as biclustering12 are well suited 
to the multi-class case, but may likewise identify 
genes characteristic of several (though not all) of 
the possible classes. The COPA algorithm, initially 
developed to identify candidate chromosomal trans-
locations,13 can identify gene pairs that are deregu-
lated relative to normal or other reference samples 
in mutually exclusive subsets of disease related 
samples. However, these subsets have traditionally 
been data driven, i.e. identified based on expression 
levels of the gene pair in question and not based on 
phenotype as identified by the investigator. Presum-
ably the approach could be adapted to sample classes 
fixed a priori by the investigator, in which case the 
approach could identify discriminant gene pairs for 
up to two classes of samples relative to reference 
samples. Finally, the PPST algorithm14 is based on 
quantile scores of gene expression values in nor-
mal and disease tissues. While designed for the two 
class case, this algorithm has the unique feature of 
identifying genes that are very high in a subset of 
the disease samples relative to normal, but very low 
in a separate subset. While we do not benchmark 
DKS against these algorithms (because they do not 
identify unique gene signatures, are not designed to 
address the multi-class case, and/or do not describe 
an unique, analogous methodology for classifica-
tion of new samples after gene selection), each has 

important strengths and represent useful alternatives 
in appropriate experimental contexts.

In the balance of this paper we describe in detail 
our algorithm and its variants. We then estimate its 
error rate and compare it to the previously published 
methods mentioned above. As will become appar-
ent, no single methodology is suitable in every 
circumstance. However, our DKS algorithm can 
efficiently produce extremely small yet highly robust 
gene signatures in many situations and therefore we 
propose that it is worthy of consideration for inclu-
sion in the gene expression analysis workflow.

Results and Discussion
Algorithm
Identification of discriminant genes
Given a G × N gene expression matrix X for G genes 
and N samples and a classification vector Y = (y1, …, yN), 
where yj is the biological classification for sample j, 
we calculate the matrix U, as follows. For each gene i, 
we sort its N expression values in decreasing order to 
identify the degree of upregulation of each gene in each 
class. For each of the N samples ordered from the high-
est to lowest based on their expression values in row i 
we let

	 a

N

N
j l

N

N N

ilj
l

l

=
-

-










,

,
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�

where j is the index of the ordered list of the N expres-
sion values for gene i, and l is the class among K 
unique classes in Y. Nl denotes the number of samples 
of class l in the complete set of N samples. We then 
define the scoring function

	 u max ail ilj
j

N

=
=

∑ .
1

� (1)

The result is a G × K matrix U, such that for each 
gene we have the maximum of the running sum for 
each class. By sorting the genes based on decreasing 
uil for a given class, we can identify those genes that 
are most upwardly biased in a specific class in terms 
of their ordered expression levels.

On the other hand, for each gene i, we sort its N 
expression values in increasing order to identify the 
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degree of downregulation of each gene in each class. 
For each of the N samples ordered from lowest to high-
est based on their expression values in row i we let

	 b
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We then compute the scoring function

	 d max bil ilj
j

N

=
=

∑ .
1

� (2)

Actually, it is not hard to recognize that

	 d min ail ilj
j

N

= -
=

∑
1

�

in the case that the N expression values are sorted in 
decreasing order. The result is a G × K matrix D, such 
that for each gene we have the maximum of the run-
ning sum for each class for the genes sorted in increas-
ing order. By sorting the genes based on decreasing dil 
for a given class, we can identify those genes that are 
most downwardly biased in a specific class in terms 
of their ordered expression levels.

To illustrate the computation of the scoring func-
tions (1) and (2), we let N = 8 and K = 3. Suppose, for 
gene i, i = 1, the 8 expression values are 1088.3, 841.9, 
762.8, 681.2, 744.0, 878.7, 660.1, and 1163.2. These 
8 samples correspond to classes C1, C1, C2, C3, C1, 
C2, C3, and C2, respectively. So N1 = 3, N2 = 3, and 
N3 = 2. By sorting these 8 values in decreasing order 
we have 1163.2, 1088.3, 878.7, 841.9, 762.8, 744.0, 
681.2, and 660.1 corresponding to classes C2, C1, C2, 
C1, C2, C1, C3, and C3, respectively. To compute u11 
which denotes the degree of upregulation of gene 1 in 
class C1, we calculate a11j, j = 1, …, 8. They are -8/5, 
8/3, -8/5, 8/3, -8/5, 8/3, -8/5, and -8/5. Based on 
function (1), for j = 1, …, 8, we have the running sum 
as -8/5, 16/15, -8/15, 32/15, 8/15, 16/5, 8/5, and 0. 
Therefore, u11 is 16/5 which is the maximum of the 
running sum. Similarly, we can compute u12 and u13 
which denote the degree of upregulation of gene 1 
in class C2 and C3 respectively. One can repeat this 
process for all the G genes to get the matrix U.

To compute d11, the gene expression values 
are sorted as 660.1, 681.2, 744.0, 762.8, 841.9, 
878.7, 1088.3, and 1163.2 corresponding to class 
C3, C3, C1, C2, C1, C2, C1, and C2, respectively. 
b11j, j = 1, …, 8 are computed. They are -8/5, -8/5, 
8/3, -8/5, 8/3, -8/5, 8/3, and -8/5. Based on func-
tion (2), for j = 1, …, 8, we have the running sum 
as -8/5, -16/5, -8/15, -32/15, 8/15, -16/15, 8/5, 
and 0. Therefore, d11 is 8/5. By repeating this process 
for all the G genes we can get the matrix D.

One limitation of this approach is that for a given 
gene, some samples of a given class may occur very 
early in the ordered list (leading to an elevated value 
for u), while other samples of that class occur very-
late in the list (leading to an elevated value for d). In 
the worst case scenario, half may occur at the very 
beginning of the list, and half at the very end. This 
is arguably the worst possible classifier. To penalize 
such genes, we can take as our final score the dif-
ference between u and d. Therefore, we denote the 
matrix U   ∆ = U − D = (uil − dil), and for each class l 
select genes with the highest scores in column l of 
the matrix U     ∆. These genes are selected because their 
expression in class l is higher than in other classes.

Likewise, we denote the matrix U   ∆ = D − U = (dil − uil) 
and for each class l select genes with highest scores in 
the column l of this matrix. To guarantee equal weight 
to each class in the classification stage which will be 
described later, we pick equal number of genes for 
each class. We identify the optimum number of genes 
per class through cross validation.

Variation 1: Weighted dualKS score
Another potential pitfall of our approach may occur 
when a gene has high expression in a given class rela-
tive to other classes, but not relative to other genes. 
Since we will subsequently calculate KS statistics 
gene-wise (rather than sample-wise) in the classifica-
tion step, it is important that the selected genes not 
only have biased expression in the class of interest, 
but also be among the highest (or lowest) expressed 
genes. To favor genes that satisfy both requirements, 
as opposed to only the first requirement, we can 
weight each gene according to its average expression 
in a particular class. We defined the weight for gene i 
and class l as:

	
wil

ilR

G
= - log ,

�
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where G is the total number of genes and Ril  is the 
rank of gene i’s average expression in class l among 
the G genes’ average expression values in class l. As 
an illustration, suppose we have the following aver-
age expression matrix with G = 3 and K = 3,

	

C C C1 2 3

1 823 64 777 64 652 38

2 987 77 486 87 878 98

3 678 98 123

g

g

g

. . .

. . .

. .668 268 98.

.



















�

Here, for example for the gene i = 1 and the class 
l = 1, R11 is 2 because in the first column the rank of 
823.64 is 2. Consequently, we have w11 2 3= - log / . 
Bases on this weighting strategy, genes with high-
est absolute expression in a given class are more 
likely to be included in the signature for that class. 
The weighted scoring functions û and d̂  are then as 
follows:

	 û w uil il il= �

and

	
ˆ ( ) .d w dil il il= -1 �

And the corresponding weighted score matrices 
are denoted Û ∆  and D̂∆ .

Variation 2: Rescaled dualKS score
As an alternative to weighting, we also investigated 
the utility of rescaling the calculated KS statistic by 
an empirically determined scaling factor such that the 
range of possible scores is constrained to fall between 
0 and 1. The scaling factor is simply the maximum 
score obtained for a given signature among the train-
ing samples. When the KS statistic is divided by this 
scaling factor, arbitrary differences in the expression 
level between signatures is eliminated.

Classification
Once a suitable gene signature has been described, 
new samples may be classified based on their expres-
sion values x = (x1, x2,…, xn; xn+1, xn+2,…, x2n), where 
(x1, x2, …, xn) and (xn+1, xn+2, …, x2n) denote the 
expression values of upregulated gene signature and 

downregulated gene signature respectively. Here, the 
enrichment score of each class-specific signature is 
determined, and the sample is assigned to the class 
whose signature achieves the highest score for that 
sample. Specifically, for each class l we define the 
signature for that class as the t highest scoring genes 
from U .l

∆  and D.l
∆  (or, for the weighted case, Û l.

∆  and 
D̂.l

∆ ), denoted ul
*  and dl

*  for the up and down regu-
lated genes, respectively. As stated above, to guarantee 
equal weight to each class, we pick equal number of 
genes for each class. Therefore, there exists n = t × K, 
where t is determined empirically.

We then sort the n upregulated gene expression 
values (x1, x2, …, xn) in decreasing order and let

	 ′ =
∈

-
-




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



a
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n
i
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n n
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*if gene

otherwise

u
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where nl is the number of upregulated genes in the 
signature of class l. We then sort the n downregulated 
gene expression values (xn+1, xn+2, …, x2n) in increas-
ing order and let

	 ′ =
∈

-
-










b

n

n
i

n

n n
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*if gene

otherwise

d

�

where nl is the number of downregulated genes in 
the signature of class l. We compute two scoring 
functions

	 ′ = ′
=
∑u max al il
i

n

1
�

and

	 ′ = ′
= +
∑d max bl il
i n

n

.
1

2

�

The enrichment score El is then calculated as the 
sum of the scores for the upregulated and downregu-
lated gene signatures for class l:

	
E u dl l l= ′ + ′ �
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or, for the rescaled case:

	 E
u d

rl
l l

l

=
′ + ′ �

where rl is the rescaling factor for that class. The 
sample is assigned to the class corresponding to the 
maximum El.

Note that classifiers are not necessary to be com-
posed of both of the upregulated and downregulated 
gene signatures. For example, if only upregulated 
gene signature is used, then E ul l= ′  or E u rl ll

= ′/  
rescaled case.

Testing
In order to test our algorithm, we downloaded 
published data6,15–22 that have been used in a previous 

study benchmarking classification methodologies.7 
We used the same error rate estimation algorithm that 
was used in that paper (0.632+ bootstrap),23 allowing 
direct comparison of our algorithm to the algorithms 
tested previously. Error rates were estimated for each 
of the 10 benchmarking datasets using the default, 
weighted, and rescaled versions of our dualKS algo-
rithm, and using upregulated gene signatures ranging 
between 5 and 50 (with an increment of 5) genes per 
class. Note that the range 5–50 and the increment of 
5 were selected for illustration purpose. In fact, the 
range can start from 1 and end at a number different 
from 50 and the best increment should be 1 because 
we use the optimum gene signature to estimate the 
error rate. The reason we use the range 5–50 and the 
increment of 5 in this paper is to make the comparison 
of DKS variants (Fig. 1) clearer. With our selected 

Figure 1. Comparison of DKS variants. For each of the 10 test datasets, the error rate is plotted as a function of upregulated gene signature size 
(number of genes per class) ranging from 5 to 50 with an increment of 5. The three variations (default, weighted KS score, and rescaled KS score) are 
plotted to allow comparison of these methodologies.
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Table 1. Estimated error rates of various classification methods. Comparison of error rates estimated by the 0.632+ 
bootstrap method. Error rates were estimated for the dualKS method (rescaled variant) and compared to previously 
published estimates for the other methods, reproduced in the table.

Data set Classes SVM KNN DLDA SC.l SC.s NN.vs RF DKS
Leukemia 2 1.4 2.9 2.0 2.5 6.2 5.6 5.1 2.2
Breast (2 cl.) 2 32.5 33.7 33.1 32.4 32.6 33.7 34.2 29.1
Breast (3 cl.) 3 38.0 44.9 37.0 39.6 40.1 42.4 35.1 35.7
NCI 60 8 25.6 31.7 28.6 25.6 24.6 23.7 25.2 21.9
Adenocar. 2 20.3 17.4 19.4 17.7 17.9 18.1 12.5 23.9
Brain 5 13.8 17.4 18.3 16.3 15.9 19.4 15.4 14.1
Colon 2 14.7 15.2 13.7 12.3 12.2 15.8 12.7 14.9
Lymphoma 3 1.0 0.8 2.1 2.8 3.3 4.0 0.9 3.4
Prostate 2 6.4 10.0 14.9 8.8 8.9 8.1 7.7 15.8
SRBCT 4 1.7 2.3 1.1 1.2 2.5 3.1 2.1 2.2

range and increment, it is shown that for most of the 
datasets, increasing the size of the gene signature 
above 15 genes per class did not result in an improve-
ment in error rates and in some cases (Fig. 1) larger 
signatures performed more poorly than smaller ones, 
suggesting overfitting. The three variations of the DKS 
algorithm were roughly equivalent in terms of error 
rates for 6 of the 10 datasets. Where differences were 
observed, the rescaled variant always performed well, 
with the default algorithm performing more poorly in 
three of the 10 datasets, and the weighted algorithm 
performing more poorly in three datasets as well.

The estimated error rate of DKS using the optimum 
gene signature was smaller than the estimated error 
rate of random forest in 4 out of the 10 datasets, and 
was equivalent in two additional datasets (Table 1). 
DKS outperformed the other benchmarked algorithms 
to a similar degree.

The optimum gene signature size for each dataset 
was identified as the gene set size that achieved the 
lowest estimated error rate (Table 2). One advantage 
of the random forest algorithm is that it favors 
parsimonious gene signatures. Nevertheless, the opti-
mum gene signature identified by the DKS algorithm 
was smaller than the random forest gene signature in 
5 out of 10 datasets.

Implementation, availability 
and requirements
The DKS algorithm has been implemented in the 
dualKS package for R. The package performs both 

training (gene signature identification) and classifi-
cation. These two steps are separated such that the 
identified gene signatures can be exported for use 
in other applications, and signatures identified by 
other methodologies can be utilized in the KS-based 
classification implemented in the package. The pack-
age also defines a custom plot function to generate 
summary classification plots as shown in Figure 2.

The dualKS package is freely available through 
the bioconductor project (http://www.bioconductor.
org/packages/2.3/bioc/html/dualKS.html). The pack-
age is open source and can run on any operating sys-
tem that is capable of running R.

Conclusions
The DKS algorithm performs discriminant analysis 
based on tissue enrichment analogous to gene set 
enrichment used for classification. As such, it is a 
natural and intuitive choice for defining class-specific 
gene sets to be used in subsequent GSEA-type analyses. 
Furthermore, DKS can efficiently identify highly 
parsimonious gene signatures amenable to downstream 
validation. While no algorithm demonstrates superior 
performance in every context, DKS is an attractive 
methodology worthy of consideration for inclusion in 
microarray analysis workflow
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Table 2. Gene set sizes. Comparison of size of gene signature identified by random forest method and DKS (rescaled 
variant). Since DKS identifies an independent signature for each class, both the genes per class and the total number of 
genes across all classes are listed.

Data set Random Forest DKS (genes per class) DKS (total genes)
Leukemia 2 5 10
Breast (2 cl.) 14 5 10
Breast (3 cl.) 110 10 30
NCI 60 230 10 80
Adenocar. 6 50 100
Brain 22 15 75
Colon 14 20 40
Lymphoma 73 15 45
Prostate 18 10 20
SRBCT 101 5 20

Figure 2. Sample output of dualKS package. Shown is a plot of analysis of the SRBCT dataset generated by the dualKS package implementing the DKS 
algorithm. The data is plotted sorted by each class signature in turn so that the relationship between high and low scoring samples on each class may be 
inspected. The actual and predicted classes of each sample are indicated below the X axis.
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