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The current generation of biomathematical 
models of sleep and performance are broad-
ly based on the physiological principles  
represented in the two-process model of sleep regulation.1,2 In 
accordance, the structure and timing of the sleep/wake cycle 
is regulated by the interaction of two basic physiological pro-
cesses: (1) a homeostatic process, that minimizes deviations 
from a basal quantity of sleep required for optimal neurobe-
havioral functioning; and (2) a light-sensitive circadian pro-
cess, that determines oscillations in the propensity for sleep. 
The two-process model was originally conceived as an investi-
gative tool—serving to generate and test hypotheses about the 
physiological mechanisms that regulate the sleep-wake cycle.3 
Elaborated versions have since been developed to account 
for nonlinear interactions between the homeostatic and circa-
dian processes,4 ultradian dynamics of electroencephalograph 
(EEG) slow wave activity,5,6 photic entrainment of the circa-
dian pacemaker,7,8 and regulation of alertness during wake.9,10 
In conjunction with these developments, researchers have also 
extended the scope of their models to predict the performance 
impairment (or fatigue) that arises in connection with sleep loss 
and circadian disruption in industrial shiftwork settings.

The characteristic elements of two major types of biomath-
ematical models that have been developed for use in field-based 
settings are depicted in Figure 1. One-step models, shown in 
the left panel, estimate fatigue based on user-inputted work and 
sleep times.11,12 The need to input observed sleep times limits 
the utility of one-step models to post hoc analyses or to highly 
specialized populations in which sleep times can be monitored 
continuously. To overcome this restriction, 2-step models, 
shown in the right panel, incorporate intermediary algorithms 
to estimate sleep times—thus allowing fatigue levels to be es-
timated on the basis of work schedule inputs alone.13-15 Obtain-
ing good estimates of sleep is critical to the utility of all 2-step 
model simulations. Predictive errors have the potential to preju-
dice subsequent estimates of fatigue and may compound across 
successive iterations where simulations require recursive input 
of previously estimated values.

Models describing the physiological processes contributing 
to sleep and wakefulness have been developed based on data 
collected in experimental protocols. In view of this heritage, 
the predictions made by these models correspond remarkably 
well with sleep times observed in laboratory conditions.2,5,12,16 
Sleep homeostasis and circadian rhythmicity also exert con-
trol on sleep timing and duration in naturalistic settings, but 
may be subject to mediation by social factors and rational 
decisions.17,18 Individuals may adjust the timing of sleep-
wake cycles in response to non-work social zeitgebers,19-21 
and therein bias exposure to light-dark conditions. The time 
course of sleep homeostasis may be mediated by decisions to 
abstain from, or otherwise restrict, sleep in view of social ac-
tivities.22 Employees may also adopt anticipatory, as opposed 
to reactionary, sleep strategies as a means of balancing work 
and social commitments.23 These decisions are usually con-
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comitant with the use of volitional countermeasures such as 
alarm clocks, stimulants, and social interaction.

Field-based studies conducted in the aviation industry in-
dicate that most pilots adjust the timing of main sleeps in ac-
cordance with local zeitgebers during international layovers, 
independent of flight direction or the number of time zones 
crossed.24-29 Only a minority are reported to maintain a sleep/
wake cycle in phase with the domicile time zone while resting 

in an alternate time zone.24-29 Pilots often facilitate these strat-
egies by initiating short recovery and/or anticipatory sleeps 
around arrival and departure times.25-28 The consistency of 
these observed sleep/wake patterns cannot be explained solely 
on the basis of sleep physiology—especially given that circa-
dian adaptation to local zeitgebers is not instantaneous. Thus, 
it is our premise that strategic decisions, motivated by duty 
schedule constraints, local social and geophysical zeitgebers, 
and sleep physiology, are the main drivers of the sleep/wake 
cycles exhibited by pilots during layovers.

The primary aim of this study was to parameterize and vali-
date a general model to estimate average sleep times for long-
haul aviation pilots during layovers of international flight and 
duty patterns. The intention was to parameterize equations 
that could be incorporated into any 2-step biomathematical 
model of human fatigue and performance. To this end, the pre-
dictors were restricted to prospective variables that could be 
obtained or estimated from flight and duty schedules or on the 
basis of previous empirical research. However, in contrast to 
the traditional deterministic biological models of sleep, our 
objective was to model the probability of an individual being 
asleep within a given time period. This objective is consistent 
with our premise that volitional decision-making processes 
influence sleep timing and duration.

Description of the Model

Equation 1 – Baseline regression equation
The initial objective was to define a regression equation to 

model sleep probability quotients at time, t, under normal, or 
baseline, sleep/wake conditions. The criterion of normality was 
based on the ideal scenario that sleep/wake data were sampled 
from participants who were not sleep deprived, who were en-
trained to the exogenous day-night cycle, and whose sleep/wake 
times were not restricted by scheduled duty periods. A modified 
form of a standard cosine equation was defined to model base-
line sleep probability quotients. This function is described in 
Equation 1 below:

Given that observed sleep probability quotients have, a pri-
ori, a maximum value of 1.0 and a minimum value of 0.0, the 
MESOR, M, and the amplitude, A, were assigned constant val-
ues of 0.5. The phase offset parameter, P, and the exponential 
parameter, S, determine the timing of the acrophase/nadir and 
slope of the distribution respectively. The transformational sig-
nificance of modifying the P and S parameters is demonstrated 
in Figure 2. Variations in these parameters produce transforms 

Figure 2—Effect of modifying the P (top panel) and S (lower panel) pa-
rameters of the baseline regression equation (Equation #1). Continuous 
lines represent distributions for any given value of P and S, respectively. 
Broken lines represent the curve translations that result from adding or 
subtracting from the given values.
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where:
f(t) = predicted sleep probability quotient at time of day, t

t = independent variable representing time of day
M = parameter representing the midline-estimating statistic of the 

rhythm (MESOR) of the cosine function
A = parameter representing the amplitude of the cosine function
P = parameter representing the phase of the cosine function
S = parameter representing the slope of the distribution
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Figure 1—One-step and 2-step biomathematical models of human 
fatigue and performance. Continuous lines represent the passing of 
known values, while broken lines, the passing of estimated values. One-
step models, represented on the left-side panel, generate outputs via 
predictive algorithms that require input of known work-rest and sleep-
wake times. Two-step models, represented on the right-side panel, 
include intervening algorithms to estimate sleep-wake times based solely 
on known or planned work-rest times.
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that are orthogonal to each other and to the minimum and maxi-
mum values of the fitted distribution.

Equation 2 – Transmeridian regression equation
Empirical observations of pilots’ sleep during layovers in for-

eign destinations indicate that the timing of main sleep periods 
has a biphasic distribution. A certain proportion of pilots, W, 
initiate main sleeps during the local night, while the remainder, 
1-W, initiate main sleeps at the appropriate circadian phase/do-
micile time. The function to model sleep probability quotients 
during international layovers may be stated as:

Equation 2 describes a proportionate weighting of two jux-
taposed distributions. The first, ƒ(t), represents “local-time 
sleepers” while the second, ƒ(c), represents “biological-time 
sleepers.” The phase relationship between ƒ(t) and ƒ(c) is de-
pendent on the time zone difference between domicile and 
layover locations and the rate of circadian adaptation. Two an-
cillary formulae, presented below, describe the procedures used 
to estimate circadian phase and to account for the contribution 
of sleep loss and anticipatory behavior to sleep probability quo-
tients.

Ancillary Equation 1 – Circadian phase estimates
Circadian adaptation to local zeitgebers following transme-

ridian travel has been studied across all flight directions and a 
multitude of time zone displacements.29-34 These studies suggest 
that the time course of circadian resynchronization can be rep-
resented as a nonlinear, asymptotic function between the initial 
circadian phase and time of day in the destination time zone. A 
pre-existing model was used to estimate circadian resynchro-
nization:35

The α parameter was assigned a value of 0.5. This equates 
to a phase shift per day of approximately 50% of the required 
remaining shift for both phase delays and advances. This pro-
vides a rough estimate of the time course of circadian adapta-

tion following transmeridian flight.34,35 Given a value for R(te), 
the function to estimate circadian phase, c, at a given local time, 
t, is thus be given by:

Ancillary Equation 2 – Sleep homeostasis and anticipatory 
sleep/wake behavior

To incorporate sleep homeostatic and anticipatory sleep be-
havior, the S parameter of the baseline model was substituted 
for an independent variable, s. The equation represents the sum 
of sleep obtained in the 12 h before, and 12 h after, a given 
epoch, t. The value is expressed as a proportion of the sum of 
sleep probability quotients derived from the 24-h baseline mod-
el (see Equation #1). As sleep in the prior 12 h and intended 
sleep in the ensuing 12 h increase or decrease, so too the value 
of s. In turn, variation in the value of s inversely modifies pre-
dicted sleep probability quotients. The algorithm to calculate 
the s variable is given by:

The s variable is based on the notion that the probability of 
being asleep at any point in time is: (1) inversely related to the 
amount of sleep obtained in the immediate past, via the bio-
logical process of sleep homeostasis; and (2) inversely related 
to the amount of sleep expected to be obtained in the imme-
diate future, via an anticipatory process based on training and 
experience. For example, recovery sleeps taken on arrival in 
a destination location partly reflect the influence of sleep ho-
meostasis. Conversely, anticipatory sleeps taken just prior to 
departure partly reflect an intention to sustain alertness during 
ensuing flights by minimizing prior wakefulness and increasing 
prior sleep.

To calculate sleep in the 12 h prior to time, t, previously 
simulated sleep probability quotients, f (t-i), are recursively 
input back into the simulation and summed accordingly. Con-
versely, to calculate sleep in the 12 h after to time, t, expected 
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where:
te = elapsed time since arrival, in days

R(te ) = the difference between circadian phase and local time at the 
elapsed time, te , in hours

ΔΦ = the difference between circadian phase and local time when 
te = 0

α = constant representing the rate of adaptation
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where:
c = circadian phase at local time, t
t = time of day in the destination time zone

 

∑

∑∑

=









=
++

=
−

=
23

0
)(

12
1

)(
12

1
)(

i if

i itfi itf
Ss

 
where:

s = derived variable representing the effect of sleep 
homeostasis and sleep anticipation on sleep 
probability

S = constant value representing the parameter estimate 
obtained for S of Equation #1
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= the sum of expected sleep probability quotients in 
the 12 hours after time, t
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derived from Equation #1 over the time  
interval

 
 [ ]23,0∈T

 ( ) ( ) ( )ss
I cfWtfWtf .−+.= 1)(

 
(2)

where:
ƒI(t) = predicted sleep probability quotient at time, t
ƒ(t) = cosine function using local time, t, as an independent variable
ƒ(c) = cosine function using circadian phase, c, as an independent 

variable (see Ancillary Equation 1)
s = independent variable representing the impact of sleep on sleep 

probability (see Ancillary Equation 2)
W = constrained weighting parameter (0 ≤ W ≤ 1) representing the 

proportion of pilots who adjust the timing of sleep/wake cycles 
in accordance with local zeitgebers
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Parameterization and Validation Data Sets
The transmeridian regression model was parameterized using 

sleep/wake records from 41 data sets collected during 2 types 
of flight and duty patterns: (1) Australia - Bangkok - London - 
Singapore - Australia (LHR-p, n = 25); and (2) Australia - Los 
Angeles - Auckland - Australia (LAX-p, n = 16). The param-
eterized version of the transmeridian regression model was 
validated using sleep/wake records from 71 data sets collected 
during 4 types of flight and duty patterns: (1) Australia - Sin-
gapore - London - Singapore/Bangkok - Australia (LHR - v, 
n = 23); (2) Australia - Auckland - Los Angeles - Australia 
(LAX-v, n = 17); (3) Australia - Los Angeles - New York - Los 
Angeles (JFK-v, n = 18); and (4) Australia - Johannesburg - 
Australia (JNB-v, n = 13). The number of data sets is greater 
than the number of participants because some participants con-
tributed more than one data set.

All flight and duty patterns commenced and terminated in 
Australia in the UTC +10 time zone—in Sydney, Melbourne, or 
Brisbane. The initial outbound flights from Australia departed 
either in the morning (LAX-p, LAX-v, and JNB-v) or early-to-
mid afternoon (LHR-p, LHR-v, and JFK-v). The 2 days/nights 
directly preceding the initial departure times were classified as 
the “pre-pattern” rest period for each of the data sets. The ter-
minal inbound flights to Australia arrived either in the morning 
(LHR-p, LAX-p, LHR-v, LAX-v, and JFK-v) or mid-afternoon 
(JNB-v). The 2 days/nights directly following the final arrival 
times were classified as the “post-pattern” rest period for each 
of the data sets. The time zone and the mean duration and tim-
ing of layovers for the parameterization and validation data sets 
are provided in Table 1.

Separate sleep probability distributions were calculated 
for each layover and pre- and post-pattern rest period of each 
flight and duty pattern. This was done by dividing the total 
number of pilots who were asleep by the total number of pilots 
at rest (not on duty) for every 1-min epoch of the given rest 
period.

Data Collection Protocol
Participants recorded the timing and origin and destination 

locations of all flight and duty periods on a flight and duty time 
diary. Participants’ sleep/wake behavior was determined be-
fore, during, and after international flight/duty patterns using 
activity monitors (Respironics) in conjunction with sleep dia-
ries. Activity monitor records were collected in 1-min epochs 
and subsequently analyzed using Actiware-Sleep algorithms 
with sensitivity set at “medium” (threshold activity value of 
40). Sleep was classified as the time in between sleep onset and 
sleep offset (sleep period duration) for all descriptive and infer-
ential analyses of sleep.

Statistical analyses
Development of the sleep probability model occurred in a se-

ries of 4 stages: (1) parameterization of the baseline regression 
equation; (2) parameterization of the transmeridian regression 
equation; (3) simulation to validate the parameterized transme-
ridian model; and (4) assessment of goodness-of-fit for indi-
viduals. Statistical analyses were performed using Statistical 
Package for the Social Sciences (SPSS) for Windows version 
14.0.0.

sleep probability quotients, f(t+i), are pre-calculated using the 
transmeridian model equation where, to avoid circularity, the S 
parameter is substituted in place of the relative sleep loss vari-
able, s. Note, that for the purpose of estimating parameters, the 
s variable is calculated using observed rather than simulated 
values.

Importantly, the algorithm does not regard duty times as sleep 
opportunities and fully discounts any sleep that pilots might be 
expected to obtain in-flight. The primary reasons for this are 
that: (1) the model is intended as a tool to predict sleep times for 
layovers in advance of actual operations before in-flight sleep 
times are known; and (2) the factors which contribute to the 
timing of in-flight and the relative recovery value of in-flight 
sleep are uncertain.

METHODS

Ethics
Ethical approval for conducting the studies was granted by 

the Human Research Ethics Committee of the University of 
South Australia. All potential recruits were informed that par-
ticipation was voluntary, that any information collected would 
be de-identified and confidential, and that non-participation or 
withdrawal from the study would not influence future employ-
ment conditions. No financial remuneration was offered to or 
received by participants for taking part in the study.

Participants
A total of 306 pilots were sampled from a commercial pas-

senger airline based in Australia. Each participant collected 
data across successive flight and duty patterns for at least 2 
weeks during the course of normal international commercial 
operations. The baseline regression equation was parameter-
ized using data collected from 217 pilots (76 Captains, 86 First 
Officers, and 55 Second Officers). The transmeridian regression 
equation was parameterized using data collected from 36 pilots 
(14 Captains, 15 First Officers, and 7 Second Officers) and then 
validated using data collected from 59 pilots (25 Captains, 22 
First Officers, and 12 Second Officers).

Baseline Data Set
The baseline regression equation (see Equation 1) was pa-

rameterized using 1,571 sleep periods collected in 387 domicile 
rest periods. Rest periods had a mean (± standard deviation) 
of 133.2 (± 44.9) h, but the distribution was positively skewed 
because only rest periods ≥ 96 h were selected for analyses (me-
dian = 120.9 h; 95% confidence interval = 96.8 to 238.6 h). 
To minimize the influence of flight/duty periods and circadian 
desynchronization on sleep/wake behavior, data in the initial 
and final 24 h of each rest period were excluded from all further 
consideration. The truncated rest periods were used to calculate 
a baseline sleep probability distribution using waveform educ-
tion, wherein sleep probability quotients were calculated by di-
viding the total number of pilots who were asleep by the total 
number of pilots at rest (not on duty) for every 1-min epoch of 
the “24-hour” clock. This procedure yields a waveform whose 
sum (i.e., sum of the sleep probability quotients) is equivalent 
to the average amount of sleep obtained by the constituent 
sample/24-h period.

Predicting Sleep After Multiple Time Zone Crossings—Darwent et al
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Assessment of Goodness-of-fit for Individuals
The purpose of the model was to predict average sleep/wake 

behavior, rather than the sleep/wake behavior of individuals. 
However, goodness-of-fit for individual pilots was also assessed 
by converting estimated sleep probability distributions to dis-
crete sleep periods for every individual data set. The analysis 
took into account the minor variations in flight arrival and depar-
ture times across the sample and generated a unique set of pre-
dicted sleep periods for each individual data set. Importantly, the 
procedure used the parameter estimates obtained for the average 
model, and no inter-individual predictors were included. Thus, 
the purpose of this analysis was not to generate sleep patterns for 
individual pilots per se, but rather to describe the representative-
ness of the predicted sleep/wake times generated by the average 
model. Goodness-of-fit was quantified by calculating the total 
variance explained (R2) by the predicted sleep periods across the 
observed sleep periods for all individual data sets.

Estimated sleep probability distributions were converted to 
discrete sleep periods using the stepwise optimization procedure 
(method of steepest descent) illustrated in Figure 3. The proce-
dure was carried out separately for every individual participant 
in each of the validation data sets. In accordance, the intersec-
tion of points of the horizontal line (optimized line) and the 
sleep probability distribution demarcate sleep onset and sleep 
offset times. Adjusting the height of the line modifies the rela-
tive length of sleep and wake periods. Optimization is achieved 
when the sum of the sleep period(s) approximates the sum of 
the sleep probability distribution (i.e., area under the curve) for 
a given rest period. For each of the validation data sets, the sum 
of the respective estimated sleep probability distributions were 
used to determine the height of the optimized line.

Parameterization of the Baseline Regression 
Equation

A nonlinear regression was performed using 
the Levenberg-Marquardt optimization proce-
dure to estimate the phase, P, and the slope, S, 
parameters of the baseline equation. The observed 
baseline sleep probability quotients were used as 
the dependent variable and local clock-time, t, as 
the independent variable. Goodness-of-fit for the 
baseline model was determined by calculating R2 
and mean square error.

Parameterization of the Transmeridian Regression 
Equation

The parameter estimate obtained for P, as 
described above, was substituted into the trans-
meridian regression equation and treated as a con-
stant value. The parameter estimate for S and the 
sum of the “fitted” baseline distribution were used 
to derive an independent variable, s, representing 
the relative degree of accumulated and anticipated 
sleep loss/gain (see Ancillary Equation 2). A sep-
arate global nonlinear regression was performed 
to estimate the W parameter of the transmeridian 
regression equation. The observed sleep probabil-
ity quotients derived from the 2 parameterization 
data sets (LHR-p, LAX-p) were used as a depen-
dent variable. Estimated circadian phase (see An-
cillary Equation 1), local time, and sleep loss/gain (i.e., the s 
variable) were used as independent variables. Since W was a 
constrained parameter, the sequential quadratic programming 
option in the SPSS nonlinear regression module was used to 
optimize the procedure.

Simulation To Validate the Parameterized Transmeridian Model
A simulation program based on the parameterized transme-

ridian equations was developed in Microsoft Excel 2003 to 
validate the model. Simulated values were calculated solely 
on the transmeridian model equations, the parameter esti-
mates obtained in the baseline and transmeridian regression 
analyses, and inputted flight and duty schedules. To validate 
the transmeridian model, the flight and duty schedules associ-
ated with the 2 parameterization data sets were inputted into 
the simulation program. For each rest period, the observed 
and simulated sleep probability quotients were correlated to 
assess the external validity of the model. Goodness-of-fit for 
the group average information provided by the model was 
determined by calculating r2 and mean square error for the 
observed and simulated data. To further validate the model, 
similar procedures to those described above were applied to 
the 4 independent validation data sets. Specifically, the ob-
served and simulated sleep probability quotients were cor-
related for each rest period to assess the external validity of 
the model. Goodness-of-fit for the group average information 
provided by the model was determined by calculating r2 and 
mean square error for the observed and simulated data. In ad-
dition to the fit of the waveform itself, the sum of the ob-
served, fitted, and simulated sleep probability distributions are 
also presented for comparison.

Table 1—The time zone and the duration and local timing of layovers for the parameteriza-
tion and validation data sets

Flight and Duty 
Pattern

Time 
Zone

Arrive Time 
(time ± min)

Rest Duration 
(hours ± min)

Depart Time 
(time ± min)

LHR-p (n = 25)
Bangkok +8 23:51 ± 17 23.8 ± 27 23:38 ± 24
London +0 7:32 ± 48 61.7 ± 28 21:07 ± 33
Singapore +7 19:10 ± 46 47.9 ± 38 19:05 ± 21

LAX-p (n = 16)
Los Angeles −8 8:34 ± 69 35.9 ± 65 20:29 ± 41
Auckland +12 6:15 ± 42 23.7 ± 52 5:57 ± 29

LHR-v (n = 23)
Singapore +7 22:05 ± 39 24.0 ± 49 22:07 ± 40
London +0 6:04 ± 40 39.0 ± 41 21:04 ± 32
Singapore/Bangkok +7 17:39 ± 73 48.2 ± 37 17:52 ± 47

LAX-v (n = 17)
Auckland +12 16:58 ± 85 24.6 ± 81 17:36 ± 34
Los Angeles −8 11:30 ± 43 35.1 ± 37 22:35 ± 19

JFK-v (n = 18)
Los Angeles −8 10:36 ± 29 45.3 ± 18 7:55 ± 22
New York −5 18:09 ± 57 72.0 ± 52 18:07 ± 21
Los Angeles −8 22:59 ± 45 46.6 ± 35 21:36 ± 26

JNB-v (n = 13)
Johannesburg +2 16:21 ± 36 72.7 ± 34 17:04 ± 10
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asleep between 18:00 and 20:00 (minimum = 0.003). A minor 
secondary rise in sleep probability was evident in the post-lunch 
period (local maximum = 0.027 between 14:00 and 16:00). In 
total, only 4% of sleep was obtained in the daytime/evening 
period extending from 10:00 until 22:00.

Layovers
During the layovers of the 6 flight and duty patterns, par-

ticipants exhibited highly fragmented, polyphasic sleep/wake 
cycles (i.e., multiple sleep periods/24-h period). Participants 
initiated a mean of 1.74 (± 0.49) sleep periods/24-h period of 
each layover. These sleep periods were associated with a mean 
of only 5.71 (± 1.87) h in bed and 5.38 (± 1.85) h of sleep. 
Despite the relatively short duration of sleeps, the polyphasic 
sleep/wake cycles meant that participants were able to obtain 
a mean total of 9.25 (± 1.72) h in bed and 8.67 (± 1.69) h of 
sleep/24-h period of the layovers.

A variety of sleep patterns were evident during the layovers 
of each flight and duty pattern. To illustrate, the sleep/wake 
cycles adopted by participants in the LAX-p (eastbound) and 
JNB-v (westbound) data sets are depicted in Figure 5. Frag-
mented sleep patterns and the wide range of sleep period du-
rations obfuscated the conventional distinction between main 
sleeps and naps. The majority of participants initiated relatively 
long sleeps during the local nights (gray-shaded areas) and 
shorter sleeps during the domicile nights (dotted outline areas), 
while a minority appeared to favor the converse strategy. Nota-
bly, sleep periods tended to cluster into particular time periods 
of each layover, irrespective of specific sleep strategies. These 
included: (1) the local nights; (2) the domicile nights; and (3) 
the time periods shortly before and after duty periods. These 
basic descriptions were also characteristic of the sleep patterns 
exhibited by participants in the LHR-p, LHR-v, LAX-v and 
JFK-v data sets (not shown).

Parameter estimates

Baseline Model Parameter Estimates
The baseline regression model was highly significant, R2 = 

0.98, P < 0.001 (mean square error = 0.002). The parameter 
estimate and asymptotic 95% confidence intervals (CI) for the 
phase, P, was 5.365 (95% CI = 5.358 to 5.370) and for the 
slope, S, was 2.810 (95% CI = 2.776 to 2.844). The observed 
and fitted baseline curves are presented in Figure 4. The sums 
of observed and fitted distributions were 7.77 h and 7.73 h, 
respectively.

Transmeridian Model Parameter Estimates
The global nonlinear regression for the transmeridian 

model was significant, R2 = 0.72, P < 0.001 (mean square er-
ror = 0.033). The parameter estimate and asymptotic 95% CI 
for the weighting coefficient, W, was 0.640 (95% CI = 0.632 
to 0.647). Squared product-moment correlations between 
the observed and fitted sleep probability distributions were 
moderate-to-strong for both the LHR-p (r2 = 0.84, P < 0.01, 
mean square error = 0.022) and the LAX-p (r2 = 0.81, P < 
0.01, mean square error = 0.025) data sets. Goodness-of-fit 
statistics and mean sleep quantities for the observed and fitted 
distributions for each rest period of the parameterization data 

RESULTS

Sleep Behavior

Domicile Location
The great majority of participants exhibited normal mono-

phasic sleep/wake cycles while resting at home for extended 
periods (≥ 96 h) in between flight and duty patterns. On av-
erage, sleeps sampled in the baseline dataset were associated 
with 7.38 (± 2.49) h in bed and 7.00 (± 2.48) h of sleep. The 
sleep probability distribution for this data set (Figure 4) reveals 
that the greatest proportion of participants were asleep between 
04:00 and 06:00 (maximum = 0.946), while the fewest were 

Figure 3—Pictograph showing the optimization process used to convert 
a sleep probability distribution into sleep (S) and wake (W) periods. Op-
timization is achieved when the sum of the derived sleep periods is ap-
proximately equal to the sum of the area beneath the sleep probability 
distribution.

Figure 4—Observed and fitted sleep probability distributions for sleeps 
initiated during extended (≥ 96 h), domicile-based rest periods.
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of agreement between observed and simulated values was 
moderate-to-strong. Agreement was greatest for the pre- and 
post-pattern rest periods, and weakest in the post-arrival and 
pre-departure phases of the layovers.

The model tended to underestimate the amount of sleep ob-
tained in the post-arrival and pre-departure phases of the lay-

sets are presented in Table 2. For comparison with the fitted 
values, Table 2 also reports goodness-of-fit statistics and mean 
sleep quantities for the simulated distributions that were cal-
culated based on the flight and duty times in the LHR-p and 
LAX-p data sets.

Validation Simulations
For the 4 validation data sets, squared product-moment cor-

relations between the averaged observed and simulated sleep 
probability distributions are presented in Table 3 (range = 0.73 
to 0.85). The total variance explained by the average simulation 
model across the data sets provided by individual participants 
is also reported for each validation data set (range = 0.28 to 
0.42). Goodness-of-fit statistics and mean sleep quantities for 
the observed and simulated distributions for each rest period 
of the validation data sets are presented in Table 4. Observed 
and simulated sleep probability distributions for the LHR-v and 
JFK-v validation data sets are presented in Figure 6 and 7 re-
spectively.

DISCUSSION
The primary aim of this study was to parameterize and vali-

date a model to estimate sleep probability distributions for long-
haul pilots during layovers in international flight/duty patterns. 
The model is based on the premise that local social and geo-
physical zeitgebers exert a robust influence on pilots’ volitional 
decisions of when to sleep. The premise was initially suggested 
by observations that the majority of pilots adjust the timing of 
their sleep/wake cycles to coincide with the local night after 
rapid travel across time zones.24-29 Evidence of the validity of 
the model premise was provided by the moderate-to-strong 
goodness-of-fit estimates obtained between the model simula-
tions and pilots’ observed sleep/wake times. In our estimate, 
therefore, the observed predictive error resulted from the limits 
of the mathematical representation rather than any fundamental 
fault with the premise itself.

Parameter estimates for the models were obtained by conduct-
ing two successive nonlinear regression analyses, such that pa-
rameterization of the second regression was reliant on parameter 
estimates obtained from the first. The variance accounted for in 
the baseline model parameterized in the first regression was very 
high, and its parameters had narrow asymptotic 95% confidence 
intervals. This indicates that a priori biases in the ultimate trans-
meridian models were minimal. This was important given that 
models parameterized via a sequence of preliminary regressions 
are sensitive to the predictive power of the precursor models.

For the transmeridian model, there was a moderate-to-strong 
level of agreement between observed and fitted sleep probabil-
ity values, indicating that the basic formulation of the model 
had reasonable veracity. In support of this, peaks and troughs 
of the fitted distributions aligned reasonably well with those of 
the observed distributions. Agreement between observed and 
fitted values was greatest for sleep probabilities in the pre- and 
post-pattern rest periods. This is not surprising given the ex-
planatory power of the baseline model and the tendency for pi-
lots to keep habitual sleep-wake cycles while at home between 
international flight patterns.26 The comparisons of observed and 
simulated sleep probability values produced similar results to 
the comparisons of the observed and fitted values. The level 

Figure 5—Raster plots depicting the sleep periods (white boxes), duty 
periods (black boxes), and local (grey-shaded areas) and domicile (areas 
within dotted outlines) nights from 21-07 h for 2 flight and duty patterns. 
The X symbol indicates missing data. The upper panel represents the 
16 records for the eastbound Australia-Los Angeles-Auckland-Australia 
(LAX-p) pattern. The lower panel represents the 13 records for the west-
bound Australia-Johannesburg-Australia (JNB-v) pattern. For each plot, 
the upper x-axis indicates the day of the flight and duty pattern (i.e., the 
number of days extending from 48 h prior to departure from Australia until 
48 h following arrival back in Australia), while the lower x-axis indicates 
location.
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sleep probability distributions with a pre-defined amount of 
sleep. These pre-defined values would be estimated on the ba-
sis of a standard linear regression, using descriptive features of 
flight and duty patterns as dependent variables.

With the exception of the layover in New York, agreement 
between the observed and simulated values for layovers be-
came weaker as the time zone difference between domicile 
and local time increased. One possible explanation for this 
outcome relates to our assumption that the proportion of pilots 
who sleep during local night is a fixed percent (represented by 
the W parameter in the model). It has previously been reported 
that the proportion of pilots who sleep at local time varies de-
pending on the direction of travel.36 The extent to which this 
reported directional asymmetry demonstrates a generalized 
change in pilots’ preference for sleeping at local time is un-
clear. The majority of studies show that pilots exhibit a robust 
preference for sleeping at local time, despite directional asym-
metries in sleep staging and sleep pattern fragmentation.25-28 
Nevertheless, separate parameter estimates for eastward and 
westward travel would improve the capacity for the model to 
account for these asymmetries.

Trait-like inter-individual differences in circadian rhythmic-
ity,37,38 sleep need,39,40 and vulnerability to sleep loss41,42 have 

overs. This is potentially due to the formulation of the equation 
that accounts for the impact of sleep homeostasis and anticipa-
tory behavior on sleep probability (i.e. Ancillary Equation 2). 
In particular, values close to the nadir (0) and acrophase (1) 
were less sensitive to changes in the power quotient (provided 
by Ancillary Equation 2) than values close to the MESOR. The 
sleep loss required to produce an appreciable change in an un-
derlying probability quotient close to zero would have to be 
near total (i.e., sum of sleep obtained in the 12 h before and 
after a given epoch ≈ 0). However, in a model dealing with 
averaged, population-based data, this level of sleep loss is un-
likely to eventuate.

The tendency to underestimate sleep during layovers is a 
limitation of the model. In the existing algorithms, there is no 
mechanism to directly predict the amount of sleep that occurs 
across an entire rest period. The total amount of sleep that is 
estimated for a given rest period is merely the emergent sum of 
the epoch-by-epoch prediction of sleep probability quotients. 
For applied use, underestimates of sleep amount have the po-
tential to produce corresponding overestimates of fatigue-risk 
in 2-step biomathematical models of human performance (or 
fatigue), and vice versa. To address this limitation, our research 
group is currently developing modified algorithms to generate 

Table 4—Relationships between the observed and simulated sleep 
probability curves for the validation data sets

Pearson 
Correlation (r)

Mean Sleep Quantity  
per Rest Period (hours)

Observed × 
Simulated Observed Simulated

LHR-v
Pre-flight 0.98 15.7 15.5
Singapore 0.92 9.2 8.6
London 0.65 12.4 12.3
Singapore/
Bangkok 0.95 17.1 15.6

Post-flight 0.85 19.2 18.5
LAX-v

Pre-flight 0.97 13.1 14.7
Auckland 0.92 10.2 7.8
Los Angeles 0.69 12.1 9.7
Post-flight 0.91 16.5 16.3

JFK-v
Pre-flight 0.94 15.3 15.6
Los Angeles 0.74 17.4 14.9
New York 0.95 24.5 23.4
Los Angeles 0.75 16.8 15.8
Post-flight 0.91 16.6 16.5

JNB-v
Pre-flight 0.92 12.5 15.1
Johannesburg 0.79 24.4 23.0
Post-flight 0.88 15.9 15.3

All correlations were significant at the 0.01 α level.

Table 3—Goodness-of-fit statistics for validation data sets (observed × 
simulated)

Validation 
Data Sets

Pearson 
r2 

(Group)

Mean 
Square Error 

(Group)

Explained 
Variance R2 
(Individuals)

London (LHR-v) 0.85 0.023 0.42
Los Angeles (LAX-v) 0.79 0.026 0.35
New York (JFK-v) 0.80 0.031 0.31
Johannesburg (JNB-v) 0.73 0.030 0.28

All correlations were significant at the 0.01 α level.

Table 2—Relationships between the observed, fitted, and simulated sleep 
probability curves for the parameterization data sets.

Pearson Correlation  
(r)

Mean Sleep Quantity  
per Rest Period (hours)

Observed ×  
Fitted

Observed × 
Simulated Observed Fitted Simulated

LHR-p
Pre-pattern 0.97 0.97 15.9 14.9 15.2
Bangkok 0.83 0.88 8.8 7.1 8.3
London 0.77 0.81 19.5 17.9 19.5
Singapore 0.92 0.93 18.2 14.1 15.7
Post-pattern 0.79 0.88 10.4 8.8 9.3

LAX-p
Pre-pattern 0.94 0.95 14.2 15.2 14.9
Los Angeles 0.74 0.74 13.1 9.3 10.6
Auckland 0.66 0.77 9.8 7.1 8.2
Post-pattern 0.96 0.98 8.9 8.7 8.5

All correlations were significant at the 0.01 α level.
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differences in the sleep behavior of airline pilots during interna-
tional flight and duty patterns.

The purpose of the transmeridian model was to predict aver-
age sleep/wake behavior, but the output sleep probability distri-
butions can also be used to estimate discreet sleep periods for an 

been well documented. These findings, in conjunction with 
advances in the availability of statistical techniques to model 
individual behavior,43,44 suggest that the next generation of 
biomathematical models of sleep and performance may have 
the potential to generate predictions for specific subpopula-
tions and/or individuals. The success of these “individualized” 
models will depend greatly on the availability of algorithms to 
predict sleep behavior for these specific subpopulations and/or 
individuals. However, to date, there does not appear to be any 
analogous research investigating the stability of inter-individual 

Figure 7—Observed and simulated sleep probability distributions for a 
flight pattern between Australia (AUS; Sydney, Melbourne, or Brisbane), 
Los Angeles (LAX), and New York (JFK). The vertical dotted box extend-
ing down each day of the plot indicates the night-time period from 21-07 
h in the domicile time zone.

Figure 6—Observed and simulated sleep probability distributions for a 
flight pattern between Australia (AUS; Sydney, Melbourne, or Brisbane), 
Singapore (SIN), and London (LHR). The vertical dotted box extending 
down each day of the plot indicates the night-time period from 21-07 h in 
the domicile time zone.
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ence) exert meaningful influences on sleep/wake behavior.

The results of this study indicate that it is possible, with a 
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