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Purpose: To develop a population-based model of surface segmentation uncertainties for
uncertainty-weighted surface-based deformable registrations.
Methods: The contours of the prostate, the bladder, and the rectum were manually delineated by
five observers on fan beam CT images of four prostate cancer patients. First, patient-specific
representations of structure segmentation uncertainties were derived by determining the interob-
server variability �i.e., standard deviation� of the structure boundary delineation. This was achieved
by �1� generating an average structure surface mesh from the structure contours drawn by different
observers, and �2� calculating three-dimensional standard deviation surface meshes �SDSMs� based
on the perpendicular distances from the individual boundary surface meshes to the average surface
mesh computed above. Then an average structure surface mesh was constructed to be the reference
mesh for the population-based model. The average structure meshes of the other patients were
deformably registered to the reference mesh. The calculated deformable vector fields were used to
map the patient-specific SDSMs to the reference mesh to obtain the registered SDSMs. Finally, the
population-based SDSM was derived by taking the average of the registered SDSMs in quadrature.
Results: Population-based structure surface statistical models of the prostate, the bladder, and the
rectum were created by mapping the patient-specific SDSMs to the population surface model.
Graphical visualization indicates that the boundary uncertainties are dependent on anatomical lo-
cation.
Conclusions: The authors have developed and demonstrated a general method for objectively
constructing surface maps of uncertainties derived from topologically complex structure boundary
segmentations from multiple observers. The computed boundary uncertainties have significant spa-
tial variations. They can be used as weighting factors for surface-based probabilistic deformable
registration. © 2010 American Association of Physicists in Medicine. �DOI: 10.1118/1.3284209�
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I. INTRODUCTION

Surface-based deformable image registration �DIR� algo-
rithms compute the three-dimensional �3D� displacement
vector field by matching corresponding structure surfaces
that are delineated automatically or manually.1 The object
boundary uncertainty introduced by observers is one of the
major sources of the registration uncertainty. For example, in
prostate cancer treatment, the boundary of a structure of in-
terest �SOI� �e.g., bladder, prostate, or rectum� is delineated
manually or semiautomatically by a physician on computed
tomography �CT� images. Because of the poor soft tissue
contrast for CT imaging, large uncertainties can exist on the
structure boundaries, e.g., near the seminal vesicles and apex
of the prostate.2 We hypothesize that surface delineation un-
certainties will have a significant nonuniform distribution
over the surface of a SOI that is dependent on anatomical
location and that surface-based DIR will have errors that are
spatially distributed in the same way as the surface uncer-
tainties. We therefore propose to use models of surface un-
certainty to weight the DIR cost function in such a way that

regions of large uncertainty have reduced influence on the
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registration process. To enable this, we have developed a
procedure to make population-based models of the surface
uncertainty for each structure that will be used in deformable
registration.

Remeijer et al.2 proposed to use polar maps for objec-
tively quantifying uncertainties of structure boundaries that
were delineated from multiple observers. However, their
method requires the shape of the SOI to be approximately
spherical or cylindrical. Topologically more complex struc-
tures such as the rectum cannot be parametrized correctly
using this method. In this paper, we present a more general
method that can be used to describe topologically more com-
plex surfaces. This model can then be used to map the
weighting factors to an individual CT for an uncertainty-
weighted probabilistic deformable registration algorithm.

An important issue in the construction of a population-
based surface segmentation uncertainty model is how to
compute the population-averaged �root� structure surface. In
recent years, extensive studies have been carried out in the
context of the brain atlas construction. Guimond et al.3 used

an iterative method of registration to obtain an atlas repre-
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senting the average of the population. Lorenzen et al.4 im-
proved this framework to cope with transformations includ-
ing large deformations. Bhatia et al.5 found the unbiased
average of the population by simultaneously registering all
subjects in a population to a common reference frame. Oth-
ers have relied on the selection of a reference image from the
population that minimized the sum of distances6 or the bend-
ing energy.7 All these methods require deformable registra-
tion procedures. In this paper, we used a simple method to
build the average population structure that does not require a
deformable registration algorithm. The simplification can be
justified by the following reasons. First, for our application,
the accurate anatomical alignment is difficult. The images
acquired using CT in this study have much lower soft tissue
contrast compared to the brain images acquired using mag-
netic resonance imaging �MRI�. The structure surfaces, espe-
cially for the prostate, do not have clearly defined anatomical
features. In contrast, anatomical features, such as gray mat-
ter, white matter, lobes, and gyri, can be clearly identified in
the MRI images of the brain. Second, accurate anatomical
alignment is not required for our study. The average popula-
tion surface is only used as the base surface map to carry the
surface segmentation uncertainty information. The model
will be used as the weighting factors to drive a probabilistic
deformable registration. The location of the average surface
is not as critical as those for brain atlases which are used for
automated segmentation.

II. METHODS AND MATERIALS

II.A. Patient data

The fan beam computed tomography �FBCT� images of
four prostate cancer patients undergoing primary external
beam radiotherapy were used in this IRB-approved study.
The tumors of the patients were all confined to the prostate
and their clinical stages according to the TNM classification
were as follows: T1cN0M0, two patients; T2aN0M0, one
patient; and T3aN0M0, one patient.8 The FBCTs of the pel-
vis were acquired with continuous 1.5 mm slices on a 16
slice scanner with a 60 cm field of view �140 kV, 350 mA s,
Brilliance Big Bore, Philips Medical Systems, The Nether-
lands�. A 512�512 matrix size was used in the transverse
plane. All imaging was performed without intravenous con-
trast. Patients were instructed to have a comfortably full
bladder and to empty their bowels prior to imaging. No spe-
cific dietary measures were recommended.

II.B. Structure delineation

The prostate, bladder, and rectum were delineated inde-
pendently by five medically experienced personnel using
commercially available treatment planning software
�PINNACLE version 8.1, Philips Medical Systems, Milpitas,
CA�. Contouring of FBCT images was performed indepen-
dently without referring to other observers’ contours.

A detailed contouring protocol was used which instructed
the observers on the anatomical position of the three struc-

tures in the pelvis. In particular, it included a description of
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the topographical anatomy of the prostate relative to bony
anatomy and other soft tissue structures, e.g., the pelvic dia-
phragm and the penile bulb. Observers were instructed to use
the default pelvis window settings for contouring �window
width 50, window level 75�. Observers were asked to include
only the prostate itself without seminal vesicles, neurovascu-
lar bundles, venous plexus, or levator muscles. For the rec-
tum, the upper border was uniformly defined as the lower
edge of the sacro-iliacal joints and the lower border as the
lower edge of the ischial tuberosities. The whole rectal wall
was required to be included, but no sphincter muscles. All
parts of the bladder wall were to be included. Observers were
asked to include areas affected by partial volume effects.

II.C. Computation of the patient-specific average
structure surface mesh

The sequence of procedures involved in this section is
shown schematically in the top half of the Fig. 1�a�. To cal-
culate the patient-specific average �i.e., average per patient�
structure surface mesh, an isocoverage voting approach simi-
lar to that used by Deurloo et al.9 was adopted. First, a binary
image that represented the coverage of the structure was gen-
erated from the contour for each segmented structure bound-
ary surface. Any voxels inside the structure surface had the
value 1 and any voxels outside had the value 0. Each voxel
was a 1 mm3 cube. Then a composite image was created by
adding the binary images that represent the same structure.
The average boundary was determined by finding the 50%
isosurface of the composite image using the marching tetra-
hedron algorithm.10 The output average surface from this al-
gorithm was represented by a triangle surface mesh. Since
the structure surfaces can be very irregular with sharp edges
and spikes, a 3D Gaussian smoothing filter was applied to
the composite image before running the marching tetrahe-
dron algorithm. The effect of the smoothing filter is shown in
Figs. 2�a� and 2�b� for a rectum surface with and without the
Gaussian smoothing, respectively.

II.D. Computation of the patient-specific structure
boundary standard deviation surface meshes
„SDSMs…

The patient-specific SDSM is a boundary surface mesh
that carries the standard deviations �SDs� of the individual
structure delineations from the patient-specific average sur-
face. The calculation of the SDSM depends on the perpen-
dicular distances from the patient-specific average surface to
each individual surface. The SDSM was calculated by taking
the following steps: �1� As shown in the bottom half of the
Fig. 1�a�, the individual surface meshes were exported from
the treatment planning system as triangle meshes. �2� The
direction vectors, which are defined on each vertex on the
average surface mesh, were calculated by taking the average
of the normal vectors of the triangles that share the vertex.
�3� For each direction vector on the average surface, the
distances from the average surface �i.e., the base of the di-
rection vector� to the intercept point with the individual sur-

face were calculated. Note that the distance takes a negative
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value if the intercept point is located in the negative direction
of the vector. �4� The SDs of these distances were computed
and saved as vertex values of the patient-specific structure
boundary SDSM.

II.E. Computation of the population-based root
structure boundary surface

As shown in Fig. 1�b�, to create a population-based root
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FIG. 1. Flowchart of the procedures involved in the calculation of the
population-based SDSM. �a� Procedures for the calculation of a patient-
specific SDSM. �b� Procedures for the calculation of the population-based
surface. �c� Procedures involved in the calculation of the population-based
SDSM.
structure boundary surface, the simple isocoverage voting
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approach as described in Sec. II C was used. But before the
calculation of the composite bitmap image, the structures
from different patients had to be brought to a common frame,
e.g., an affine transformation could be used. However, unlike
the problem of atlas construction using brain images in
neuroscience,3–7 the images of the structures in our study
have very low contrast and they do not have well defined
anatomical features �e.g., lobes, white matter, and gray mat-
ter for the brain�. This makes it difficult to constrain a six-
degree-of-freedom rigid registration. For example, the regis-
tration of the average surfaces between patient 1 and patient
2 �i.e., the first two images in column 6 in Fig. 3� could result
in a rotation of nearly 90° along the axis perpendicular to the
paper. To avoid such unrealistic results, the affine transfor-
mation was limited to translation plus uniform scaling
�TUS�.

Before the registration using the TUS transform was car-
ried out, the patient-specific average surface meshes were
converted into binary images whose voxel values take “1” if
inside a mesh and “0” otherwise. The binary images had
volumes with physical sizes about 40% larger than the larg-
est SOI for all patients in all dimensions. Each voxel was a
1 mm3 cube. The sum of square difference was used as the
similarity measure and the Insight ToolKit �ITK� �www.it-
k.org� regular step gradient descent �RSGS� optimizer was
used for the registration. The RSGS optimizer advanced pa-
rameters in the direction of the gradient and a bipartition
scheme was used to compute the step size. The linear inter-
polation method was used to estimate the value of the data
on noninteger coordinates.

II.F. Computation of the population-based structure
boundary SDSM

As shown in Fig. 1�c�, in the first step, the population-
based surface mesh and the patient-specific average surface
meshes were converted into binary images using the same
method as described in the Sec. II E. However, the slice

FIG. 2. Patient-specific average surfaces that were extracted from the com-
posite bitmap image �a� without and �b� with Gaussian smoothing.
plane dimension was fixed to 64�64 in order to reduce the
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computation time of the subsequent deformable registrations.
The voxel size was computed according to the size of the
SOI. Then the patient-specific binary images were preregis-
tered to the population binary image using the TUS trans-
form. Again, rotations were deliberately excluded from the
preregistration stage for the same reason as described in the
Sec. II E.

In the second step, the preregistered binary images for
each patient were deformably registered to the population
binary root image using a B-Spline deformable registration
algorithm.11 The mean square difference was used as the
similarity measure and the ITK regular step gradient descent
algorithm was used as the optimization method. A 5�5�5
array of internal control points were uniformly distributed
within the image volume. The deformable registration step
effectively accounts for any rotations that were present but
ignored in the preliminary rigid registration.

In the third step, the B-Spline deformable transform cal-
culated from the deformable registration was used to deform
the SDSMs of each patient to produce registered SDSMs.
The linear interpolation method was used to estimate the
value of the data on noninteger coordinates in both the pre-
registration and the deformable registration.

In the next step the normal vectors from each vertex on
the population-based surface mesh were used to sample the
registered SDSMs of each patient. The SD values of the
interception points between the sampling normal vector and
the mesh surface of the registered SDSM were computed
using the linear interpolation method.

Finally, for each vertex on the population-based surface

FIG. 3. Intermediate structures that were generated wh
mesh, the root mean square of all the sampled SD values of
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its corresponding normal vector was computed to give the
SD value �i.e., the vertex value� of the population-based
SDSM.

II.G. Statistical significance of the delineation
variability at each point on the surface of the average
structure

At the completion of the above analysis we had
population-based SDSMs for each organ, consisting of spa-
tially varying standard deviations ��x� distributed over the
organ surface. We wanted to know where this variation was
statistically significant—i.e., where the local ��x� was sig-
nificantly larger than the average. We used the chi-squared
statistic ��2� to make this determination. For a set of N organ
delineations at a point x, we calculated the reduced �2

��
2�x� =

1

N − 1�
i=1

N
�di�x� − ��x��2

�2 =
�2�x�

�2 , �1�

where di�x� is the ith local delineation, ��x� is the average
delineation at x, � is the SD of the parent population of
surface delineations, and �=N−1 is the number of degrees of
freedom in the reduced �2. �For our study, �=19 for the
prostate and the bladder; �=14 for the rectum.� We took �
= ���x�� averaged over all points on the structure’s surface to
be the SD of the parent distribution. The ��

2 distribution then
tells us the probability that any particular set of N organ
delineations �di�x�	 at the point x with SD greater or equal to
��x� could have come from a parent distribution with SD �.
This identified those areas of the surface where the delinea-

lculating the population-based model for the prostate.
en ca
tion uncertainty is significantly larger than the average.
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III. RESULTS

Figures 3–5 shows a number of intermediate structures
that were generated when calculating the population models
for the prostate, the bladder, and the rectum, respectively.
The structures on each row belong to a particular patient. For
the database we used in the study, the rectum boundary de-
lineations were not available for patient 3. The structure at

FIG. 4. Intermediate structures that were generated wh
FIG. 5. Intermediate structures that were generated when ca

Medical Physics, Vol. 37, No. 2, February 2010
the bottom-right corner is the computed population model.
The first five columns are the volumetric rendering of the
individual meshes that were delineated by different observes
and exported from the treatment planning system. Unfortu-
nately, observer 2, who is no longer available for this study,
did not delineate any structures for patient 4. The structures
in the sixth column are the computed patient-specific average

lculating the population-based model for the bladder.
lculating the population-based model for the rectum.
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surfaces with color-coded SD maps. The structures in the last
column, except for the very bottom one, show the registered
SDSMs after being deformably registered with the
population-based structure boundary surface.

Figure 6 shows the overlapped structure surfaces before
and after deformable registrations. The top, middle, and the
bottom rows are the prostate, the bladder, and the rectum,
respectively. The structure surfaces before deformable regis-
trations are shown in the left column and the surfaces after
deformable registrations in the right column. The agreement
among surfaces can be seen to be greatly improved after the

FIG. 6. The overlapped structure surfaces before and after deformable reg-
istrations. The top, middle, and the bottom rows are the prostate, the bladder,
and the rectum, respectively. The structure surfaces after translational and
scaling registrations but before deformable registrations are shown in the
left column and the surfaces after deformable registrations in the right
column.

TABLE I. Surface-to-surface perpendicular distances before and after deform

Before DR

Patient number 1 2 3

Prostate Mean �0.021 0.073 �0.038
SD 0.031 0.025 0.024

Bladder Mean �0.001 �0.137 �0.211
SD 0.121 0.148 0.094

Rectum Mean 0.008 0.135
SD 0.073 0.410
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registration. This was confirmed by comparing the perpen-
dicular distances between the population surface and the
structure surface before and after the deformable registration.
As shown in Table I, after the registration, the SDs of the
distances had been reduced by at least an order of magnitude
for the prostate and the bladder with the mean values being
very close to zero. The improvement for rectum was rela-
tively smaller but the results were still good considering the
large shape differences before the registrations.

Figures 7�a�–7�c� show the population-averaged structure
boundary surfaces with their color-coded SD maps for the
prostate, the bladder, and the rectum, respectively. In the
figures, the color scale from blue to red corresponds to SDs
ranging from 0 to 0.53 cm, 0 to 0.21 cm, and 0 to 1.0 cm for
the prostate, the bladder, and the rectum, respectively. The
largest boundary uncertainties were observed in the superior-
posterior and inferior regions, the inferior region, and
inferior-anterior and inferior regions for the prostate, the
bladder, and the rectum, respectively. In these regions the �2

test outlined in Sec. II G shows a probability p�0.001 that
the observed uncertainties are statistically comparable to the
average uncertainties, from which we conclude that the local
variations in these regions are statistically significant.

IV. DISCUSSION

Unlike the polar angle approach to mapping surface seg-
mentation variability proposed by Remeijer et al.,2 our
method works for a wide range of complex topologies with
cylindrical, convex, and concave surfaces. The interobserver
distance maps were converted to spatially dependent SDs of
the individually contoured SOIs from the average structure
surface. The distribution of SDs on the surface of the average
SOI represents the population-based contouring uncertainty
as a function of location.

We found distinct anatomical regions of each organ sur-
face where the local uncertainties were significantly larger
than the average contouring uncertainty. This supports our
hypothesis that user-delineated surfaces used for surface-
based deformable registration have anatomically correlated
variations in accuracy that should be accommodated in the
registration process. We propose to use the uncertainty maps
as a weighting factor in a probabilistic model-based deform-
able registration process. A simple 3D visualization program
was developed using OpenGL to interactively view 3D struc-
ture surfaces and SD surface maps.

registrations. DR, deformable registration; SD, standard deviation.

After DR

4 1 2 3 4

�0.006 0.000 �0.001 0.000 �0.001
0.013 0.001 0.002 0.001 0.001

�0.091 �0.007 �0.010 �0.004 �0.009
0.421 0.005 0.013 0.006 0.006

�0.542 �0.008 �0.021 �0.042
0.856 0.010 0.018 0.059
able
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An important issue in creating the population-based
model is the determination of the deformable transformation
that matches the corresponding regions among different pa-
tients. Deurloo et al.9 used a surface morphing algorithm.
This method requires a user to interactively define the match-
ing point between the source surface and the target surface.
In a study to quantify the deformation of the prostate and
seminal vesicles during the course of the treatment, van der
Wielen et al.12 used a point-based deformable registration
algorithm in creating the population-based SD model. The
B-Spline deformable registration we adopted is easy to
implement and produced good results that were confirmed by
visual inspection and surface distance calculations. The com-
parison of the performance of these deformable matching
methods is difficult since there is no standard available and
no attempt was made by the other authors in describing the
quality of the matching. The deformable registration we
adopted took less than 5 min to finish when using an Intel
Core 2 Extreme 3 GHz PC.

As shown in Fig. 1�a�, the average surface of a patient
was generated by applying a surface extraction algorithm
�i.e., the marching tetrahedron algorithm used in this paper�
to the smoothed composite image. The number of vertices
produced by the marching tetrahedron algorithm is con-
trolled by a user-given grid size. The smaller the grid size,
the less the voxelization artifacts, and the better the surface
details preserved. However, smaller grid size would result in
a larger number of vertices, which would greatly increase the
computation complexity. The complexity of the perpendicu-
lar distance calculation algorithm we used is proportional to
the square of the number of vertices. Owing to these reasons,
a compromise was made by the setting the grid size to 1 mm,
which results in 27 087, 83 463, and 78 523 vertices for the
patient 1 for the prostate, the bladder, and the rectum, respec-
tively. The computation of one patient-specific SDSM took
1.6, 6.7, and 5.9 min for the prostate, the bladder, and the

FIG. 7. The population-averaged structure boundary surface and the stand
rectum, respectively.
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V. SUMMARY

We developed simple and useful tools to quantify and
visualize structure boundary delineation uncertainty as a
function of position on the 3D structure surface. The com-
puted boundary uncertainties can be used as weighting fac-
tors for a surface-based probabilistic deformable registration.
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