Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia

(enzymopathy/genetic variants/human genetics/cloning of mutants)

T. J. Vulliamy^{*}, M. D'Urso[†], G. Battistuzzi[‡], M. Estrada[§], N. S. Foulkes^{*}, G. Martini[†], V. Calabro[‡], V. Poggi^{*}, R. Giordano[†], M. Town^{*}, L. Luzzatto^{*}, and M. G. Persico[†]

*Department of Haematology, Royal Postgraduate Medical School, Du Cane Road, London W12 OHS, Great Britain; [†]International Institute of Genetics and Biophysics, CP 3061, Naples, Italy; [‡]Department of Genetics, University of Naples, via Mezzocannone, Naples, Italy; and [§]Instituto de Hematologia y Immunologia, Havana, Cuba

Communicated by Y. W. Kan, April 4, 1988 (received for review January 14, 1988)

Glucose-6-phosphate dehydrogenase (G6PD; ABSTRACT EC 1.1.1.49) deficiency is a common genetic abnormality affecting an estimated 400 million people worldwide. Clinical and biochemical analyses have identified many variants exhibiting a range of phenotypes, which have been well characterized from the hematological point of view. However, until now, their precise molecular basis has remained unknown. We have cloned and sequenced seven mutant G6PD alleles. In the nondeficient polymorphic African variant G6PD A we have found a single point mutation. The other six mutants investigated were all associated with enzyme deficiency. In one of the commonest, G6PD Mediterranean, which is associated with favism among other clinical manifestations, a single amino acid replacement was found (serine \rightarrow phenylalanine): it must be responsible for the decreased stability and the reduced catalytic efficiency of this enzyme. Single point mutations were also found in G6PD Metaponto (Southern Italy) and in G6PD Ilesha (Nigeria), which are asymptomatic, and in G6PD Chatham, which was observed in an Indian boy with neonatal jaundice. In G6PD "Matera," which is now known to be the same as G6PD A-, two separate point mutations were found, one of which is the same as in G6PD A. In G6PD Santiago, a de novo mutation (glycine \rightarrow arginine) is associated with severe chronic hemolytic anemia. The mutations observed show a striking predominance of $C \rightarrow T$ transitions, with CG doublets involved in four of seven cases. Thus, diverse point mutations may account largely for the phenotypic heterogeneity of G6PD deficiency.

Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is a genetic abnormality associated with a range of clinical conditions (1). Some subjects are asymptomatic, whereas others suffer from neonatal jaundice, acute hemolytic anemia, or severe chronic nonspherocytic hemolytic anemia. Over 300 G6PD variants have been described by using clinical and biochemical criteria (2) and at least 100 of these have polymorphic frequencies in various populations (3). This makes G6PD deficiency probably the most common human enzymopathy, affecting an estimated 400 million people worldwide. There is abundant evidence that this widespread polymorphism results from relative resistance of heterozygotes to *Plasmodium falciparum* malaria (4-6). The fact that a large number of different deficient variants have been characterized suggests that a considerable variety of structural changes can cause abnormal enzyme activity.

G6PD is a housekeeping enzyme, present in all species so far tested (3). It is produced only at low levels in all cells and

therefore purification of sufficient quantities for protein sequence analysis has been very difficult, or impossible in cases of severe deficiency. This has prevented the identification of the specific amino acid changes responsible for altered phenotypes. Recently, the gene that encodes human G6PD, which is located on chromosome Xq28, has been cloned and the coding sequence was determined (7–9), enabling us to study the molecular basis of G6PD deficiency. In this paper we describe the cloning and sequencing of seven mutant G6PD alleles, six of them from deficient subjects. We show that the wide range of clinical phenotypes associated with G6PD deficiency has arisen from different point mutations in the coding sequence of the G6PD gene.

MATERIALS AND METHODS

Biochemical Characterization. Of the seven G6PD variants described here, three have been previously published. For the other four, the following biochemical properties were studied by using methods recommended by the World Health Organization (WHO) (10): G6PD activity in erythrocytes, electrophoretic mobility in Tris/borate/EDTA buffer (pH 8.9), K_m^{G6P} , 2-deoxyglucose 6-phosphate % rate, K_m^{NADP} , and the thermostability at 56°C. K_i^{NADPH} was determined as in ref. 11, and the elution profile from DEAE-Sephadex was determined as in ref. 12. The K_m^{G6P} for G6PD Chatham was measured under the conditions described in ref. 13, and the value was normalized to WHO conditions by using the ratio of values obtained by the two methods with G6PD B.

Preparation and Screening of Genomic Libraries. DNA was prepared from whole blood or Epstein-Barr virus-transformed lymphocytes (14). Phage λ genomic libraries were constructed from this DNA after it had been digested with HindIII or EcoRI and size-fractionated on 0.5% agarose gels or 10-40% sucrose gradients. To obtain the entire G6PD coding sequence, two independent phage clones were isolated (see Fig. 1). (i) Exons I and II were cloned on a 12.5-kilobase (kb) EcoRI fragment into λ GTWes or λ EMBL4 (15). (ii) Exons III-XIII were cloned on either an 8.5-kb partial EcoRI fragment into AGTWes or a 17-kb HindIII fragment into $\lambda 2001$ (16). λ GTWes *Eco*RI arms were obtained from Bethesda Research Laboratories; AEMBL4 EcoRI arms were prepared by digesting λ EMBL4 DNA with EcoRI and BamHI and then purifying the arms by passage through Sephacryl S-300 columns followed by isopropyl alcohol precipitation. $\lambda 2001$ HindIII arms were prepared in the same way, except that the DNA was digested with HindIII and

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviation: G6PD, glucose-6-phosphate dehydrogenase. [¶]On leave of absence from Istituto Biochimica delle Proteine ed Enzimologia, Naples, Italy.

*Eco*RI. Ligated material was packaged by using Gigapack extracts (Northumbria Biologicals, U.K.) or freeze-thaw lysates and sonicated extracts (17). The libraries were screened by standard Benton-Davis filter hybridization (18) using the appropriate G6PD probes labeled by nicktranslation (Amersham).

Sequencing. DNA from plaque-purified phage was subcloned into M13 phage for Sanger dideoxy sequencing (19) or into pUC18 for dideoxy sequencing of denatured plasmid DNA (20). Sequencing reactions were primed by using a set of oligonucleotides homologous to intron sequences near the intron-exon junctions (see Fig. 1). Exons I and II were subcloned on either a 2-kb *Pst* I fragment or a 6-kb *Hind*III/ *Eco*RI fragment, whereas for exons III-XIII the 3.5-kb and 5-kb *Eco*RI fragments were subcloned.

Southern Blotting. Analysis of *Pst* I and *Hin*fI digestions of genomic DNA prepared from various individuals was carried out by Southern hybridization using conventional methods (17).

RESULTS

The G6PD variants studied are representative of a wide range of clinical and biochemical features. G6PD A is a nondeficient variant, widely distributed in Africa (21), with polymorphic gene frequencies reaching 0.25 in several populations (22). G6PD Mediterranean is one of the best-studied G6PD variants (23); it is polymorphic and is associated with acute hemolytic anemia, including favism. G6PD Ilesha is a sporadic variant from West Africa, found in a patient with sickle cell anemia (24). G6PD Metaponto is asymptomatic; since it was encountered in two unrelated people in Lucania (Southern Italy), it may be polymorphic in that region. G6PD Chatham was identified in a boy of Indian ancestry living in England who has had neonatal jaundice; its frequency in the Indian population as a whole has not been established. G6PD "Matera," which is in fact probably G6PD A- (see Discussion), is associated with favism; it was encountered in Lucania and it is polymorphic. G6PD Santiago de Cuba is a sporadic variant (see below) found in a boy from Cuba with chronic nonspherocytic hemolytic anemia.

The biochemical features of the G6PD variants we have investigated include varying degrees of deficiency with normal or abnormal electrophoretic mobility and, in some cases, distinctive changes in thermostability and enzyme kinetics (Table 1). For example, G6PD Mediterranean has a significantly increased affinity for G6P; G6PD Chatham has a slightly decreased affinity for G6P and a significantly reduced *in vitro* thermostability; G6PD Santiago de Cuba also has reduced *in vitro* thermostability and a markedly decreased affinity for NADP. To identify changes in the G6PD protein responsible for these altered properties, we have obtained genomic clones of the G6PD gene from seven male individuals with variant enzyme. Sequencing of G6PD-positive clones was achieved by using a set of custom-designed oligonucleotides (Fig. 1); these permit the rapid sequencing of different clones and will allow the amplification of specific exons with the polymerase chain reaction technique. Comparison of the coding sequence of these G6PD clones with the previously published sequence of normal G6PD B revealed unique base changes (Table 2).

In six cases, single point mutations were identified. With the exception of G6PD A, we can infer these to be the cause of G6PD deficiency. In the seventh case, G6PD "Matera," two separate point mutations are present. One of these is the same as that found in the nondeficient variant, G6PD A, and so we infer that the other is responsible for enzyme deficiency. Six of the seven mutations are $C \rightarrow T$ transitions on either the coding or the noncoding strand, and in four of these the C precedes a G in a CG doublet. The amino acids changed by these mutations are spread throughout the G6PD protein sequence, as shown in Fig. 2. In each case, the inferred amino acid substitution is consistent with the observed change in electrophoretic mobility of the variant enzyme by comparison with the normal.

The $G \rightarrow A$ mutation in G6PD Santiago de Cuba creates a *Pst* I site that is not present in the normal G6PD B gene. This has enabled us to confirm that this mutation is present in the genomic DNA of the individual from which the library was prepared. Southern blot analysis of his DNA, using a probe for the 3' end of the *G6PD* gene, revealed a 1.8-kb *Pst* I fragment that has not been seen in >100 similarly analyzed DNA samples, including one from the mother of the propositus (Fig. 3). By using a minisatellite probe (30), there is no suggestion that she is not the real mother (data not shown). Therefore we conclude that G6PD Santiago de Cuba must have arisen through a new mutation that took place either in the propositus early in embryogenesis or in his mother's germ cell line.

In G6PD Ilesha the $G \rightarrow A$ mutation destroys an *Hin*fl site present in the normal sequence. As above, Southern hybridization analysis of *Hin*fl digests of genomic DNA from this variant confirms the mutation (Fig. 4). In this case, the mother's DNA was not available, but we know from pedigree analysis (31) that this mutation, although sporadic, is not new in the propositus.

DISCUSSION

Identification of mutations that cause pathology is of interest not only in the understanding of genetic disease but also for the information that can be provided concerning the corre-

Table 1. Hematological and biochemical features of G6PD variants investigated

G6PD variant	Clinical expression	Enzyme activity in RBC, % of normal	Electrophoretic mobility, % of normal	K ^{G6P} , μΜ	2dG6P, % rate	K ^{NADP} , μM	K ^{nadph} , μM	DEAE-Sephadex peak at KCl, mM	Thermo- stability
	None	100*	100	50	<4	3-5	9	230 ± 1	Ν
Ā	None	84	110	50	<4	3-5	7	220	Ν
Metaponto	None	14-39	90	47	5	3	12	231 ± 4	Ν
Ilesha	None	25	75	60	—	_		—	
Chatham	NNJ	<2	100	60	14	—	—		Ļ
Mediterranean	AHA	0–7	100	23	50	1.2-1.6	16.0	230 ± 3	Ļ
Matera (A-)	AHA	10-23	110	47	7	2	13	230	Ν
Santiago de Cuba	CNSHA	5	80	50	<2	43		260	↓

Variants are listed in order of increasing severity of clinical expression. All donors were males. G6PD B is the human normal "wild type." Properties of published variants are from ref. 2 except for the following: data for G6PD Ilesha, ref. 24; activity quoted for G6PD A, ref. 25; 2-deoxyglucose 6-phosphate (2dG6P) % rate for Mediterranean, ref. 26; elution peaks off DEAE-Sephadex, ref. 12. NNJ, neonatal jaundice; AHA, acute hemolytic anemia; CNSHA, chronic nonspherocytic hemolytic anemia; RBC, erythrocytes.

*Normal G6PD activity in our laboratory at 30°C is 9 ± 3 international units/g of Hb.

FIG. 1. Sketch of the human G6PD gene showing the positions of mutations found in seven genetic variants and our cloning and sequencing strategies. From the bottom upward: the horizontal lines represent the extent of the different phage clones we have used to isolate the G6PD gene from different individuals. Above is a map of the G6PD gene showing EcoRI sites (R) and HindIII sites (H), and the 13 exons are blacked in (from ref. 8). The two regions of coding sequence are expanded above, again with the exons in black and introns in white. Letters below the sketch show the locations of the 21 custom-synthesized oligonucleotides that we have used to prime sequence reactions into the coding sequences. The vertical bars and names above indicate the positions of the mutations found in the respective variants. bp, Base pairs.

sponding normal function of the respective gene product. The biochemistry of G6PD and the clinical manifestations of its deficiency have been studied extensively (2, 3), yet little is known about the protein at the molecular level. Recently, the primary sequence for the protein was determined through the isolation of full-length cDNA clones (7). Here we identify different point mutations in this coding sequence that are the cause of enzyme deficiency in different individuals. They provide direct proof of the genetic heterogeneity of G6PD deficiency, previously inferred from biochemical data. We demonstrate that different point mutations give rise to different clinical phenotypes. In addition these data provide an insight into which amino acids are important for G6PD enzyme stability and function.

Of course, assignment of specific function to different amino acids within the protein awaits elucidation of its three-dimensional structure, and this set of variants is too small for us to attempt an analysis of how amino acid replacements cause a reduction of G6PD activity by impairing catalytic function, making the protein unstable, or both. However, with respect to catalytic function, the variant with the most abnormal K_m^{G6P} (G6PD Mediterranean) has the amino acid replacement nearest lysine-205, which may be involved in G6P binding (28, 29). With respect to protein stability, the two variants with drastic amino acid changes (serine \rightarrow phenylalanine in G6PD Mediterranean and glycine \rightarrow arginine in G6PD Santiago de Cuba) have very low residual enzyme activity in circulating erythrocytes, presumably as a result of accelerated G6PD breakdown (23). They also have decreased *in vitro* thermostability, as does G6PD Chatham, where the amino acid replacement is alanine \rightarrow threonine. The glycine \rightarrow arginine replacement in G6PD Santiago de Cuba is located within a sequence of hydrophobic amino acids (32), which might make this replacement particularly damaging. Also, within our series of variants this is the only example that is associated with a severe clinical condition and it is a *de novo* mutation.

With respect to G6PD A, our data confirm the asparagine \rightarrow aspartic acid amino acid replacement reported by Yoshida 20 years ago (33) and recently placed at position 142 (34). Although we give a position number of 126, we presume that these two different numbers represent the same amino acid due to a difference in the N-terminal portion (52 vs. 36 amino acids) of the two published protein sequences (7, 9). The N-terminal sequence shown here (Fig. 2) is that derived from

Table 2. Location of point mutations in seven different G6PD variants

G6PD variant	Exon number	Base position	Base change	Codon change	Amino acid position	Amino acid substitution	
A	v	376	$A \rightarrow G$	$(G)AAT \rightarrow GAT$	126	$Asn \rightarrow Asp$	
Metaponto	IV	172	$G \rightarrow A$	$(G)GAT \rightarrow AAT$	58	$Asp \rightarrow Asn$	
Ilesha	v	466	$G \rightarrow A$	$(C)GAG \rightarrow AAG$	156	$Glu \rightarrow Lys$	
Chatham	IX	1003	$G \rightarrow A$	$(C)GCC \rightarrow ACC$	335	Ala \rightarrow Thr	
Mediterranean	VI	563	$C \rightarrow T$	(C)TCC \rightarrow TTC	188	Ser \rightarrow Phe	
Matera (A –)	IV	202	$G \rightarrow A$	(C)GTG \rightarrow ATG	68	Val \rightarrow Met	
	v	376	$A \rightarrow G$	$(G)AAT \rightarrow GAT$	126	$Asn \rightarrow Asp$	
Santiago de Cuba	XI	1339	$G \rightarrow A$	(C)GGG \rightarrow AGG	447	$Gly \rightarrow Arg$	

Base and amino acid position numbers refer to the revised published sequence (ref. 7, p. 7822). The letter in parentheses preceding the codon change is the nucleotide immediately 5' on the coding strand; for Ilesha, Chatham, Matera, and Santiago de Cuba the mutated C on the noncoding strand is part of a CpG doublet. An additional mutation (1116, $G \rightarrow A$) has recently been identified as being responsible for a *Pst* I restriction fragment length polymorphism in African populations (27). This mutation is in the coding sequence but it does not produce any amino acid substitution.

Me t	Ala	G] u	Gln	Val	Ala	Leu	Ser	Arg	10 Thr	Gln	Va]	Cys	Gly	lle	Leu	Arg	Glu	Glu	20 Leu
Fhe	G]n	61 y	Asp	Ala	Phe	His	Gln	Ser	30 Asp	Thr	His	IJe	Phe	1]e]]e	Me t	61 y	Ala	40 Ser
GJy	Asp	Leu	Ala	Lys	Ly s	Lys	Ile	Tyr	50 Pro	Thr	lle	Trp	Trp	Leu	Phe	Arg	Asp	61 y	60 Leu
Leu	Pro	Glu	Asn	Thr	Phe	Ile	Va 1	Gly	70 Tyr	Ala	Arg	Ser	Arg	Leu	Thr	Val	Ala	Asp	80 1] e
Arg	Lys	Gln	Ser	G] u	Pro	Phe	Phe	Lys	90 Ala	Thr	Pro	Glu	Glu	Lys	Leu	Lys	Leu	Glu	100 Asp
Phe	Phe	Ala	Arg	Asn	Ser	Tyr	Va]	Ala	110 Gly	Gln	Tyr	Asp	Asp	Ala	Ala	Ser	Tyr	Gln	120 Arg
Leu	Asn	Ser	His	Met	Asn	Als	Leu	His	130 Leu	G1 y	Ser	Gln	Ala	Asn	Arg	Leu	Phe	Tyr	140 Leu
Ala	Leu	Pro	Pro	Thr	Val	Tyr	Glu	Ala	150 Val	Thr	Lys	Asn	lle	His	G1 u	Ser	Cys	Net	160 Ser
Gln	lle	61 y	Trp	Asn	Arg	Ile	lle	Va]	170 Glu	Lys	Fro	Phe	Gly	Arg	Asp	Leu	Gln	Ser	180 Ser
Asp	Arg	Leu	Ser	Asn	llis	lle	Ser	Ser	190 Leu	Phe	Arg	G] u	Asp	Gln	Ile	Tyr	Arg	Ile	200 Asp
His	Tyr	Leu	Gly	Lys	Glu	Met	val	Gl n	210 Asn	Leu	Met	Val	Leu	Arg	Phe	Ala	Asn	Arg	220 11e
Phe	Gly	Pro	Ile		Asn	Arg	Asp	Asn	230 11e	Ala	Cys	Val	Ile	Leu	Thr	Phe	Lys	G] u	240 Pro
Fhe	G1 y	Thr	Glu	G1 y	Arg	Gly	Gly	Tyr	250 Phe	Asp	Glu	Phe	Gly	Ile	He	Arg	Asp	Val	260 Met
Gln	Asn	His	Leu	Leu	Gln	Met	Leu	Cys	270 Leu	Val	Ala	Met	Glu	Lys	Pro	Ala	Ser	Thr	280 Asn
Ser	Asp	Asp	Val	Arg	Asp	Glu	Lys	Val	290 Lys	Val	Leu	Lys	Cys	11e	Ser	Glu	Val	Gln	300 Ala
Asn	Asn	Val	Va]	Leu	G1 y	Gln	Tyr	Val	310 Gly	Asn	Pro	Asp	Gly	Glu	Gly	Glu	Ala	Thr	320 Lys
Glv	TYP	Leu	Asp	Asp	Pro	Thr	Va J	Pro	330 Arg	Gly	Ser	Thr	Thr	Ala	Thr	l'he	Лlа	Ala	340 Va]
Val	Leu	Tyr	Val	G1u	Asn	Glu	Arg	Trp	350 Asp	Gly	Va j	Pro	Phe	لب 11e	Leu	Arg	Cys	Gly	360 Lys
Ala	Leu	Asn	G1u	Arg	Lvs	Ala	Glu	Val	370 Arg	Leu	Gln	Phe	His	Asp	Val	Ala	GJy	Asp	380 11e
Fhe	His	Gln	 G1n	Crs	Lys	Arg	Asn	Glu	390 Leu	Val]]e	Arg	Val	Gln	I'ro	Asn	Glu	Ala	400 Val
Tvr	Thr	Lys	Met	Met	Thr	Lys	Lys	Pro	410 G1 y	Met	Phe	Phe	Asn	Pro	Glu	Glu	Ser	Glu	420 Leu
460	Len	Thr	Tvr	GIV	Asn	Arg	Tvr	Lvs	430 Asn	Val	Lrs	Leu	Pro	Asp	Ala	Tyr	Glu	Arg	440 Leu
110	Leu	Asn	Val	Phe	Cvs	GIV	Ser	Gin	450 Met	His	Phe	Val	Arg	Ser	Asp	Glu	Leu	Arg	460 Glu
	Trn	Ara	110	Phe	Thr	Pro	Leu	Leu	470 His	Gln	11e	Glu	Leu	Glu	Lys	Pro	Lys	Pro	480 1]e
Pro	Tvr	110	Tvr	e G1 w	Ser	Are		Pro	490 Thr	G1v	Als	Asp	Glu	Leu	Net	Lys	Arg	Val	500 Gly
Phe	Gln	Tyr	Glu	Gly	Thr	Tyr	Lys	Trp	510 Val	Asn	Pro	His	Lys	Leu					
				-				-											

cDNA clones and now confirmed as a continuous sequence in genomic clones from seven different individuals, and we therefore believe it to be correct.

FIG. 3. G6PD Santiago de Cuba is a new mutation. Southern blot analysis was carried out by standard techniques on *Pst* I digests, using a probe to the 3' end of the *G6PD* gene, p2.1 (ref. 27). The normal fragment of 2.1 kb is seen in five unrelated individuals (lanes 1-5), two maternal uncles (lanes 6 and 7), the mother (lane 9), and a sister (lane 10) of the individual with G6PD Santiago de Cuba. This individual (lane 8) shows a 1.8-kb fragment due to the presence of an extra *Pst* I site created by the new mutation.

FIG. 2. Amino acid sequence of G6PD and location of substitutions. Boxes show the positions of the different amino acids that are changed in the variants we have studied. The underlined lysine in position 205 is known to be reactive with pyridoxal phosphate and may be close to the G6P-binding site (28, 29). The sequence shown is the same as that published (ref. 7, p. 7822) except for glutamine at amino acid 11, which was histidine in the published sequence. This change has now been found in all individuals we have sequenced and is a sequencing error in the previous publication.

The same mutation as in G6PD A is present in G6PD "Matera," along with another base change. The biochemical characteristics described here for G6PD "Matera" are very similar to those of G6PD A-. We now consider that G6PD

FIG. 4. G6PD Ilesha mutation is confirmed. Southern hybridization analysis with a G6PD cDNA probe to *Hin*fl digests of genomic DNA from G6PD Ilesha (lane 1) and five unrelated individuals (lanes 2-6) shows the expected change to a *Hin*fl fragment from 1.35 kb in normals to 1.6 kb in this variant due to a point mutation. "Matera" is in fact A -, as we have learned recently that the amino acid replacements reported here for G6PD "Matera" are the same as those found in G6PD A - (35). The extent to which biochemically similar variants turn out to be genetically identical will become clear as more are defined at the molecular level. The finding of two mutational differences between G6PD B and G6PD A - did not come as a complete surprise, since this had been hypothesized some time ago on the grounds of biochemical and genetic considerations (13).

We note the striking predominance of $C \rightarrow T$ transitions in our series of mutations. Although, of course, the sample size is small, this finding is entirely consistent with previous observations on interspecies (36) and intraspecies (37) variation in globins and other genes. In four cases the mutated C residue is in a CpG doublet. Methylation and subsequent deamination of this C are thought to increase the probability of a C \rightarrow T transition (38, 39), and there is growing evidence that this is indeed the case in other human genes as well (40).

The pattern of mutations causing human pathology has been extensively explored in a number of genes with cellspecific expression. For instance, with respect to globins, factor VIII, and steroid sulfatase there have been reports of point mutations and sizeable deletions (41–43). The latter are possible because complete loss of function of such genes is compatible with development in embryonic life and beyond. The findings reported here begin to define the pattern of mutations in a highly polymorphic housekeeping gene, in which complete loss of function would probably be lethal.

We thank Drs. G. Hayes and M. Cascone for supplying blood samples from their patients. We are grateful to Dr. Philip Mason, Dr. Letizia Foroni, and an anonymous reviewer for advice and help. Financial support was received from a Medical Research Council (England) Programme Grant; from the Consiglio Nazionale Ricerche (Italy) Progetti Finalizzati; and from a research contract from the European Economic Community.

- Beutler, E. (1983) in *The Metabolic Basis of Inherited Disease*, eds. Stanbury, J. B., Wyngaarden, J. B., Fredrickson, D. J., Goldstein, J. L. & Brown, M. S. (McGraw-Hill, New York), pp. 1629–1653.
- 2. Beutler, E. (1978) Haemolytic Anaemia in Disorders of Red Cell Metabolism (Plenum, London), pp. 23-167.
- 3. Luzzatto, L. & Battistuzzi, G. (1985) Adv. Hum. Genet. 14, 217–329.
- 4. Allison, A. C. (1960) Nature (London) 186, 531-532.
- 5. Motulsky, A. G. (1960) Hum. Biol. 32, 28-32.
- 6. Luzzatto, L. (1979) Blood 54, 961-976.
- Persico, M. G., Viglietto, G., Martini, G., Toniolo, D., Paonessa, G., Moscatelli, C., Dono, R., Vulliamy, T., Luzzatto, L. & D'Urso, M. (1986) Nucleic Acids Res. 14, 2511–2522, 7822.
- Martini, G., Toniolo, D., Vulliamy, T., Luzzatto, L., Dono, R., Viglietto, G., Paonessa, G., D'Urso, M. & Persico, M. G. (1986) EMBO J. 5, 1849–1855.
- Takizawa, T., Huang, I.-Y., Ikuta, T. & Yoshida, A. (1986) Proc. Natl. Acad. Sci. USA 83, 4157–4161.
- Betke, K., Brewer, G. J., Kirkman, H. N., Luzzatto, L., Motulsky, A. G., Ramot, B. & Siniscalo, M. (1967) W.H.O. Tech. Rep. Ser. 366.
- 11. Luzzatto, L. (1967) Biochim. Biophys. Acta 146, 18-25.
- 12. D'Urso, M., Battistuzzi, G. & Luzzatto, L. (1980) Anal. Biochem. 108, 146-150.

- Babalola, A. O. G., Beetlestone, J. G. & Luzzatto, L. (1976) J. Biol. Chem. 251, 2992–3002.
- Foroni, L., Foldi, J., Matutes, E., Catovsky, D., O'Connor, N. J., Baer, R., Forster, A., Rabbitts, T. H. & Luzzatto, L. (1987) Br. J. Haematol. 67, 307-318.
- Frischauf, A. M., Lehrach, H., Poustka, A. & Murray, N. (1983) J. Mol. Biol. 170, 827–842.
- 16. Karn, J., Matthes, H., Gait, M. J. & Brenner, S. (1984) Gene 32, 217–224.
- 17. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Lab., Cold Spring Harbor, NY).
- 18. Benton, W. D. & Davis, R. W. (1977) Science 196, 180-186.
- Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. (1980) J. Mol. Biol. 143, 161–178.
- 20. Hattori, M., Hidaka, S. & Sakaki, Y. (1985) Nucleic Acids Res. 13, 7813-7827.
- Porter, I. H., Boyer, S. H., Watson-Williams, E. J., Adam, A., Szeinberg, A. & Siniscalco, M. (1964) Lancet i, 895-899.
- 22. Luzzatto, L. (1973) Isr. J. Med. Sci. 9, 1181-1194.
- 23. Morelli, A., Benatti, U., Gaetani, G. F. & DeFlora, A. (1978) Proc. Natl. Acad. Sci. USA 75, 1979–1983.
- Usanga, E. A., Bienzle, U., Cancedda, R., Fasuan, F. A., Ajayi, O. & Luzzatto, L. (1977) Ann. Hum. Genet. 40, 279–286.
- 25. Battistuzzi, G., Esan, G. J. F., Fasuan, F. A., Modiano, G. & Luzzatto, L. (1977) Am. J. Hum. Genet. 29, 31-36.
- Ferraris, A. M., Giuntini, P., Galiano, S. & Goetani, G. F. (1981) Am. J. Hum. Genet. 33, 307–313.
- D'Urso, M., Luzzatto, L., Perroni, L., Ciccodicola, A., Gentile, G., Peluso, I., Persico, M. G., Pizella, T., Toniolo, D. & Vulliamy, T. J. (1988) Am. J. Hum. Genet. 42, 735-740.
- Jeffrey, J., Hobbs, L. & Jörnvall, H. (1985) Biochemistry 24, 666-671.
- Camardella, L., Caruso, C., Rutigliano, B., Romano, M., D'Prisoco, G. & Descalzicancedda, F. (1988) Eur. J. Biochem. 171, 485-489.
- Jeffreys, A. J., Wilson, V. & Thein, S. L. (1985) Nature (London) 314, 67–73.
- 31. Luzzatto, L., Usanga, E. A., Bienzle, U., Esan, G. F. J. & Fasuan, F. A. (1979) Science 205, 1418-1420.
- Persico, M. G., Viglietto, G., Martini, G., Dono, R., D'Urso, M., Toniolo, D., Vulliamy, T. & Luzzatto, L. (1986) in *Glucose-6-Phosphate-Dehydrogenase*, eds. Yoshida, A. & Beutler, E. (Academic, New York), pp. 503-516.
- Yoshida, A. (1967) Proc. Natl. Acad. Sci. USA 57, 835–841.
 Takizawa, T. & Yoshida, A. (1987) Am. J. Hum. Genet. 41,
- A241 (abstr.). 35. Hirono, A. & Beutler, E. (1988) Proc. Natl. Acad. Sci. USA 85, 3951–3954.
- 36. Vogel, F. & Kopun, M. J. (1977) Mol. Evol. 9, 159-180.
- Modiano, G., Battistuzzi, G. & Motulsky, A. G. (1981) Proc. Natl. Acad. Sci. USA 78, 1110–1114.
- 38. Bird, A. P. (1980) Nucleic Acids Res. 8, 4091-4109.
- 39. Barker, D., Schafer, M. & White, R. (1984) Cell 36, 131-138.
- Youssoufian, H., Kazazian, H. H., Phillips, D. G., Aronis, S., Tsfitis, G., Brown, V. A. & Antonarakis, S. E. (1986) Nature (London) 324, 380-382.
- Weatherall, D. J. (1985) The New Genetics and Clinical Practice (Oxford Univ. Press, Oxford), pp. 66-86.
- 42. Youssoufian, H., Antonarakis, S. E., Aronis, S., Tsiftis, G., Phillips, D. G. & Kazazian, H. H. (1987) Proc. Natl. Acad. Sci. USA 84, 3772-3776.
- Ballabio, A., Parenti, G., Carrozzo, R., Sebastio, G., Andria, G., Buckle, V., Fraser, N., Craig, I., Rocchi, M., Romeo, G., Jobsis, A. C. & Persico, M. G. (1987) Proc. Natl. Acad. Sci. USA 84, 4519-4523.