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Although understanding large-scale spatial variation in species’ distributions is a major goal in macro-

ecology, relatively little attention has been paid to the factors limiting species’ ranges. An understanding

of these factors may improve predictions of species’ movements in response to global change. We present

a measure of landscape impermeability, defined as the proportion of resident species whose ranges end in

an area. We quantify and map impermeability for Afrotropical birds and use multi-model inference to

assess support for a wide suite of hypotheses about its potential environmental correlates. Non-spatial

analyses emphasize the importance of broad-scale environmental patterns of energy availability and

habitat heterogeneity in limiting species’ distributions. Conversely, spatial analyses focus attention on

small-scale factors of habitat and topographic complexity. These results hold even when only species

from the top quartile of range sizes are assessed. All our analyses highlight that range edges are concen-

trated in heterogeneous habitats. Global change is expected to alter the nature and distribution of such

habitats, necessitating range movement by many resident species. Therefore, impermeability provides a

simple measure for identifying regions, where continuing global change and human encroachment are

likely to cause profound changes in regional diversity patterns.
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1. INTRODUCTION
The geographic ranges of many species are expected to

change in response to ongoing global climate change.

When trying to predict future ranges, researchers are

often forced to make assumptions, for example that

species will not colonize regions outside their present

ranges and that there are no obstacles to colonization of

newly suitable locations (e.g. Thomas et al. 2004). An

understanding of current constraints acting at species’

range boundaries may therefore make predictions about

the future movements of species more accurate.

Range boundaries have often been studied from a

single- or two-species perspective (Holt & Keitt 2005).

For example, population genetic models have shown

how gene flow from the centre of a species’ range may

thwart local adaptation at the range edge, which can

either promote or disrupt the generation of stable range

limits (Kirkpatrick & Barton 1997). Interspecific inter-

actions may also stabilize range limits, even in the absence

of strong gradients in environmental variables or dispersal

barriers (Case & Taper 2000; Case et al. 2005). While

much attention has been given to identifying the patterns

and environmental correlates of species richness and

range size (e.g. Jetz & Rahbek 2002; Hawkins et al.

2003; Currie et al. 2004), there have been few large-

scale analyses devoted to deciphering patterns in the
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distribution of range boundaries (Svenning & Condit

2008; but see Williams et al. 1999). Furthermore, the

use of species distribution modelling (SDM), where a

species’ climatic envelope is inferred from the climatic

variables found within its range, under the assumption

that this is an adequate description of a species’ realized

niche (Guisan & Thuiller 2005), defines edges largely as

the location where a variable becomes unsuitable, rather

than by modelling the conditions currently constraining

range expansion. Here, we identify the areas where high

proportions of range boundaries are clustered to provide

an ensemble, macroecological perspective on species’

limits. We therefore focus on the factors affecting general-

ized limits of species’ distributions and do not consider

temporary, or sink, populations or individuals occurring

outside this general limit (Gaston 2003; Fortin et al.

2005). We do not incorporate the roles of population

dynamics (Kirkpatrick & Barton 1997), genetics (Bridle &

Vines 2007) or biotic interactions (Terborgh 1985; Case

et al. 2005) in limiting individual species’ ranges. We

locate regions where the range limits of multiple species

coincide, and identify the environmental conditions

within these areas.

Every species has a unique set of environmental vari-

ables under which it can survive and reproduce. Outside

this niche space a species is unable to persist in the

long-term. While many abiotic and biotic factors have

been proposed to limit species’ ranges (reviewed by

Gaston 2003), the availability of ambient and productive

energy has long been considered the most important

factor (Currie et al. 2004). The range edges of many
This journal is q 2009 The Royal Society
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species coincide with climatic thresholds and have been

found to change in broad synchrony with changing cli-

mate (Gaston 2003). Consequently, SDMs have been

used widely to predict the expected new range of a species

under one or more climatic change scenarios (Thomas

et al. 2004). Recently observed changes in avian commu-

nity composition suggest, however, that the current pace

of climate change may be too rapid, with species’ ranges

lagging behind their climatic envelopes (Devictor et al.

2008). Furthermore, there is growing evidence that

non-climatic factors also limit ranges (e.g. Beale et al.

2008). Habitat heterogeneity has been shown to influence

species richness and average range sizes of an area

(Rahbek & Graves 2001; Davies et al. 2007). Complex

habitats, or steep altitudinal gradients, often harbour

high numbers of endemic species, uniquely adapted to

one of the array of narrow niches found there (Terborgh

1977). Heterogeneous habitats are expected to contain

high densities of range edges, from resident endemics

and large-range species unable to cross the varied terrain

(Kark et al. 2007).

Evolutionary processes of niche conservatism and

niche evolution (Hawkins et al. 2007; Rangel et al.

2007), along with Pleistocene glacial cycles and older cli-

mate changes (Davies et al. 2007; Hawkins et al. 2007;

Rahbek et al. 2007), have also recently been invoked to

explain species’ distribution patterns and will probably

also impact on the patterning of range boundaries.

Indeed, evolutionary explanations of high avian species’

richness in the montane tropics include: climatic stability

over time; persistence of old species within refugial

environments; and the generation of new species through

fine-scale niche partitioning along environmental and topo-

graphic gradients (Rahbek & Graves 2001). In short,

where evolutionary and ecological explanations of high

species richness converge, for example in the montane

tropics, the density of range edges will also be high.

Range edges will also cluster at the margin between

tropical and temperate zones if it is true that most species

are generated in the tropics and that their ranges expand

out of the tropics only rarely (Hawkins et al. 2007; Rangel

et al. 2007).

Here we use the birds of the Afrotropics to conduct

the first large-scale taxonomic and spatial analysis of the

distribution and environmental correlates of range

boundaries. To do so, we develop a measure of landscape

impermeability (v), calculated as the proportion of

resident species with range boundaries within an area

(e.g. 18 grid cell). This measure gives an indication of

how readily species’ ranges have extended through an

area and captures factors beyond hard landscape features

(e.g. coastline) that prevent high proportions of species

from expanding their ranges. Our measure is similar to

beta-diversity measures (Koleff et al. 2003; Gaston et al.

2007), and spatial patterning of v is expected to be simi-

lar to that of beta-diversity. However, v is simpler and

easier to interpret because it has relevance within a focal

cell. It is therefore not necessary to define the neigh-

bourhood within which turnover is examined, and yet v

captures compositional changes through space when

viewed across grid cells.

We test a range of potential predictors of v in three

categories—habitat type, energy availability and habitat

heterogeneity—reflecting the identified roles of both
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average environment (Gaston et al. 2007) and environ-

mental variability (Buckley & Jetz 2008; Melo et al.

2009) in explaining patterns of global avian turnover.

While we expect the signal of v to be high in areas rich

in restricted-range endemics (e.g. the montane tropics),

we are also interested in identifying additional patterns

and in capturing the range-limiting factors of species of

all range sizes (Jetz & Rahbek 2002). Finally, we also

look at differences in the spatial patterning of v between

passerines and non-passerines to assess whether charac-

teristics of these major groups influences a species’ ability

to occupy the landscape. This focus on what limits

species, rather than on what determines where they are

found, sheds new light on the processes governing

patterns in the distribution of species diversity and

provides information regarding areas where responses to

ongoing global change are expected to be most difficult.
2. MATERIAL AND METHODS
(a) Range data

We used data for all 2075 terrestrial Afrotropical bird species

taken from a global database of bird ranges (Orme et al. 2005,

2006). We included all endemic Afrotropical species and the

Afrotropical range of non-endemic species. All range maps for

this region were digitized from expert-drawn distribution

maps from a single source (‘The Birds of Africa’, references in

the electronic supplementary material). The distribution data

in this source provide consistent, detailed range polygons,

constructed without recourse to environmental modelling.

The digitized vector maps were converted into a

Behrmann equal area grid containing 2569 land cells at a res-

olution of 96.5 km. This scale, approximately equivalent to a

18 grid, minimizes the overestimation of species occupancy

of cells arising from using broad-scale distribution maps

(Hurlbert & Jetz 2007), especially for species with ragged

range edges. The scale is also not so coarse as to obscure

patterns in edge distribution, particularly in relation to

restricted-range species (Fortin et al. 2005). Species were

scored as present in a grid cell if any part of the breeding

range fell within the cell. A grid cell was counted as contain-

ing a species’ range edge if any part of the perimeter of

the species’ range, including the boundaries of sections of

disjunct range, fell within the cell.

Issues of differences in sampling effort across the realm do

exist, for example between the well-studied southern African

avifauna (Allan et al. 1997) and the under-studied tropical

forests of central Africa. However, The Birds of Africa remains

the best available source for our analyses and a recent com-

parison of gridded survey data (Allan et al. 1997) and these

range maps for southern Africa concluded that congruence

was adequate using grid cells of 18 (our scale of analysis)

and larger (Hurlbert & Jetz 2007).

(b) Calculating impermeability

Impermeability (v) was calculated as the proportion of

resident species that also had a range edge in a cell. As v is

bounded between zero and one, and has non-constant

variance and a non-normal error distribution, we used

logit-transformed v [log(v/1 2 v)] in all models.

(c) Predictor variables

We identified the biome (Olson et al. 2001) occupying the

largest proportion of each cell but restricted analyses to
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the four biomes represented in at least 50 cells. Mean v

for the cells in discarded biomes (listed in the electronic sup-

plementary material) did not differ significantly from those in

the remaining four major biomes: tropical and subtropical

moist broadleaf forests; tropical and subtropical grasslands,

savannas and shrublands; montane grasslands and savannas;

and deserts and xeric shrublands (results not shown). In

addition, all cells with v . 0.9 were identified as cells contain-

ing ranges with boundaries clipped to lakes or coast and

hence where v was trivially high. In total, 696 cells were dis-

carded from the original dataset, resulting in the removal of

170 species restricted to the omitted cells (163 from coastal

cells and seven from minor biomes; see electronic

supplementary material). All the omitted species are

restricted-range species (mean occurrence: 4.2 cells, range:

1–45 cells) and, since almost all occur in coastal/lakeside

cells which are always completely impermeable, their omis-

sion is unlikely to obscure additional patterns in v at this

scale of analysis.

Biome type was used as a predictor variable describing

broad-scale habitat type; we also used mean elevation

(metres) as a second measure to capture habitat type. As

measures of habitat heterogeneity within each cell we used:

the number of the four major biomes present to indicate

large-scale habitat heterogeneity; the number of land cover

types (listed in the electronic supplementary material) to

represent small-scale landscape heterogeneity; and log10

elevational range, to capture topographic complexity. To

investigate the correlation of climatic factors with v, we

used mean annual temperature (8C) as a proxy for ambient

energy and mean annual actual evapotranspiration (AET,

mm) as a proxy for productive energy (all references in the

electronic supplementary material). The data for each of

these variables was re-sampled from the original resolutions

into the equal-area grid (figure S1 in the electronic

supplementary material).

Anthropogenic impacts are expected to be important in

determining the boundaries of ranges, particularly given the

changes expected in human population and land use within

the region (Millennium Ecosystem Assessment 2005). How-

ever, the absence of estimates of range change resulting from

anthropogenic impact, a temporal disassociation between

available measures of impact and the avian range data and

the known positive correlation between measures of human

impact and biodiversity at coarse spatial scales (Luck

2007), suggests that establishing cause and effect of any

relationship between human impact and v will be difficult.

Therefore, we consider only environmental correlates in

our reported models. In addition, a correlation test account-

ing for spatial autocorrelation (Clifford et al. 1989) revealed

no correlation between mean human population density

and v (r ¼ 20.00281, n ¼ 2018, effective sample size

(ess) ¼ 61.72, t ¼ 20.0216, p ¼ 0.98).

(d) Data analysis

Preliminary analyses were performed to limit the scope of the

most complex model considered. We calculated ordinary

least squares (OLS) univariate regressions of v against each

predictor across the entire dataset and within each biome

(tables S1 and S2 in the electronic supplementary material).

Significantly different relationships were often found in the

biome-specific analyses, indicating that biome type is a key

factor affecting landscape impermeability. We then used

regression trees to visualize the structure of the data and
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to identify potential interaction terms (figure S2 in the

electronic supplementary material). Finally, we used a gener-

alized additive model (Wood 2006) to examine the possibility

of significant nonlinearity between v and the predictor

variables (figure S3 in the electronic supplementary

material). All of the main effects showed broadly linear rela-

tionships with v, except for AETand elevational range which

approximated quadratic relationships. Our most complex

model therefore includes all main effects and second-order

polynomial terms for these two variables. We included

first-order interaction terms between each main effect

and biome, and also between AET and both temperature

and elevational range, resulting in a maximal model contain-

ing 19 terms. Variance inflation factors between the main

effects were all low (�4) indicating that there is no strong

collinearity among them (table S3 in the electronic

supplementary material; Fox 2002).

There has been a growing reaction against stepwise model

simplification to a single minimum adequate model, particularly

for broad-scale analyses where multiple alternative hypotheses

may be relevant (Johnson & Omland 2004; Diniz-Filho et al.

2008). Here, we fitted all 14 752 valid simplifications of our

maximal model and follow a multi-model inference approach

(Burnham & Anderson 2002; Johnson & Omland 2004).

Models were fitted using OLS multiple regression and we

obtained AICc, the sample size corrected version of AIC, for

each model. We then computed the Akaike weights of each

model across the full set of models using DAICc values and

identified the set of most highly weighted models with a com-

bined Akaike weight of greater than 0.95 (the 95% confidence

set; Burnham & Anderson 2002).

(e) Spatial modelling

Cells close to one another in space will tend to have more

similar values of both response and explanatory variables

than cells located further apart (Legendre 1993). Such

spatial autocorrelation can inflate Type I error rates and

cause bias in the magnitude of effect of explanatory variables

(Davies et al. 2007). Coefficients may also be estimated

incorrectly and their variances strongly underestimated.

Irrespective of the model selection method used, highly

supported non-spatial models are thus expected to be more

inclusive than equivalently supported spatial models

(Diniz-Filho et al. 2008). However, OLS models may still

be useful, despite their higher Type I error rates, in capturing

broad-scale drivers of macroecological patterns (Diniz-Filho

et al. 2007). Interpretation of both non-spatial and spatial

models and explicit consideration of scale and the hierarchi-

cal nature of diversity drivers may generate a more complete

picture than one or the other mode of analysis alone (Diniz-

Filho et al. 2003, 2007). We follow this course here and

present the results of both non-spatial and spatially explicit

regression analyses following exploration of the spatial

structure of our data.

Correlograms of Moran’s I confirmed the presence of

substantial spatial autocorrelation in explanatory and response

variables and in the residuals of models in our OLS best-model

subset (figure S4a,b in the electronic supplementary material).

Following examination of semi-variograms and calculation of

AIC values (Rangel et al. 2006; data not shown) to determine

the form of the spatial structure in the data, we refitted all

models using a generalized least squares (GLS) approach

(Pinheiro & Bates 2000; Beguerı́a & Pueyo 2009) including

an exponential spatial correlation structure. GLS incorporates
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Figure 1. Landscape impermeability using untransformed v

for Afrotropical birds. Red, high v; yellow, low v. Grey

cells are omitted from all analyses (see text for further
justification).

Table 1. Akaike weights (wi), AICc and the number of terms
in each model for all the non-spatial and spatial models in
the 95 per cent confidence sets.

wi AICc terms

non-spatial
0.18 2578.1 19
0.17 2578.3 18

0.17 2578.3 16
0.16 2578.4 17
0.09 2579.5 17
0.09 2579.5 18

0.03 2581.9 16
0.03 2582.0 15
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this spatial structure directly into model residuals and correlo-

grams of normalized residuals from fitted models are used to

check that spatial autocorrelation had been adequately

accounted for (figure S4c in the electronic supplementary

material; Pinheiro & Bates 2000).

When fitting a spatial model using GLS, the range (r) over

which autocorrelation operates is usually optimized for each set

of explanatory variables, as the structure of the autocorrelation

will vary with the suite of variables chosen. However, changes

in the correlation structure will affect the calculation of AICc

for a model and so, in order to simplify multi-model inference

across models, we used a fixed range (r¼ 39.095 km). This

value was obtained as the mean of independently estimated r

from a random subset of 200 models. Pearson’s correlation

between the AICc values of these 200 models calculated

using both optimized and fixed r is almost perfect (r¼ 0.999,

t198 ¼ 29432, p-value , 0.0001), suggesting that this restriction

does not unduly affect subsequent model weighting. In addition,

visual inspection of Moran’s I correlograms indicated that spatial

autocorrelation is similarly accounted for in both model sets

(data not shown) and that residual autocorrelation was similarly

reduced using the fixed or optimized r.

(f) Range size and taxonomic influences

Results from studies of species richness and range size (Jetz &

Rahbek 2002; Orme et al. 2006) suggest that correlates of v

will differ between large- and small-range species. Following

the study of Jetz & Rahbek (2002), the species were divided

into range size quartiles based on the number of cells occu-

pied within the truncated dataset and the spatial distribution

of v was calculated for each quartile. The analyses described

above were repeated using the species within the top range

size quartile to investigate the expected high influence of

this quartile on analyses of the dataset as a whole. In

addition, we split our dataset into passeriformes and all

remaining birds and recalculated v for each group. We calcu-

lated the correlation between the two subsets to investigate

the degree to which taxonomic biogeographic structure is

reflected in landscape impermeability.

0.02 2582.2 18
0.02 2582.6 17

spatial
0.81 247.2 3

0.15 243.8 3
3. RESULTS
(a) Spatial distribution of v
Impermeability (v) shows strong spatial patterns through-

out the Afrotropics (figure 1). Permeable regions include

the resource-rich Guinean and Congo basin forests and

the savannahs of the Sahel; v increases markedly at the

boundaries of these productive regions. Impermeability

is also high in the montane habitats of northeastern

Africa and along the edges of the Sahara desert in the

north and the Namib desert in the south.

(b) Non-spatial OLS analyses

Non-spatial modelling produces a 95 per cent confidence

set containing 10 models (table 1). As expected, these

highly supported models are inclusive (summarized in

table 2; see also table S4 in the electronic supplementary

material), with the maximal model being the most highly

weighted (weight, wi ¼ 0.184) and the remaining nine

models including a mean of 16.9 terms. On the basis of

F ratios, all models in the top set highlight the importance

of available energy (AET, AET2) as well as elevational

range, temperature and biome heterogeneity. Interactions

with biome typically have lower explanatory power, but
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are present in models retained in the preferred model

set. Although correlograms of the raw residuals from the

top OLS model exhibit reduced spatial autocorrelation

compared with those of individual variables, there is still

evidence (figure S4b in the electronic supplementary

material) for substantial short-range autocorrelation

(Diniz-Filho et al. 2003).
(c) Spatial GLS analyses

Accounting for spatial autocorrelation using a GLS

approach results in a 95 per cent confidence set of two

substantially simpler models and better-fitting models

(table 1) with little remaining autocorrelation (figure

S4c in the electronic supplementary material). Both

models include biome heterogeneity as their strongest

explanatory variable (table 2), followed by landscape

heterogeneity and either elevational range or elevational



Table 2. The minimum and maximum F ratio and the number of times retained (n) for each term across the 95 per cent

confidence set of 10 non-spatial models (a). F ratios for significant terms in the two models in the 95 per cent confidence set
for the spatial models (b). Superscripts show significance at p , 0.001, along with the sign of the coefficient where relevant.

main effects

(a) non-spatial (b) spatial

min F max F n model 1 model 2

biome 61.17* 61.54* 10
mean elevation 0.05 0.05 10
mean annual AET 494.79þ 497.82þ 10

mean annual temperature 123.66þ 124.42þ 10
elevational range 357.10þ 359.28þ 10 33.59þ

landscape heterogeneity 0.29 0.30 6 23.86þ 28.58þ

biome heterogeneity 203.49þ 204.74þ 10 50.61þ 61.74þ

mean annual AET2 283.592 291.322 10

elevational range2 40.51þ 43.92þ 10 19.47þ

biome interactions
mean elevation 15.17* 15.48* 10
mean annual AET 25.98* 26.41* 10
mean annual temperature 19.03* 19.49* 10

elevational range 41.81* 42.93* 10
landscape heterogeneity 6.37* 6.48* 4
biome heterogeneity 3.85* 3.87* 6
mean annual AET2 17.72* 18.81* 10
elevational range2 8.25* 11.34* 10

other interactions
mean annual AET:

mean annual temperature
16.482 21.932 10

mean annual AET:
elevational range

1.90þ 2.38þ 5
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range2. Highly spatially autocorrelated variables such as

AET and temperature (figure S4a in the electronic

supplementary material) are dropped from these models.

(d) Effect of range size and taxonomy on v
Broad-scale patterns in v vary considerably within range

size quartiles (figure 2a–d) but are dominated by species

in the top range size quartile (figure 2d), which inevitably

contribute disproportionately to the number of species’

presence (73.6%) and edge (54.8%) records in the data-

set. Impermeability for this quartile is strongly correlated

with overall v (r ¼ 0.93, n ¼ 2018, ess ¼ 16.30,

t ¼ 13.27, p , 0.0001). Both spatial and non-spatial

models (table S5 in the electronic supplementary

material) for this quartile mirror those for the whole data-

set, with OLS models only suggesting a more significant

role for temperature and with GLS models supporting

the importance of habitat heterogeneity variables (biome

heterogeneity, landscape heterogeneity and elevational

range). In addition, mean v for this quartile is signifi-

cantly higher in cells where restricted-range species are

also found (F1,2016 ¼ 28.50, p , 0.0001), highlighting

the congruence in highly impermeable areas between

small- and large-range species. Finally, the correlation

between passerine and non-passerine v was moderately

strong and significantly positive (r ¼ 0.61, n ¼ 2018,

ess ¼ 32.94, t ¼ 5.50, p , 0.0001). Given the larger aver-

age range size of non-passerines, it is unsurprising that the

patterning of v for this subset (figure 2f ) mirrors that of

the largest range size quartile (figure 2d) while that for the

passerines (figure 2e) is an amalgam of the three smaller

quartiles (figure 2a–c).
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4. DISCUSSION
We find strong broad-scale patterns of impermeability

across Afrotropical birds, despite the idiosyncrasies of sur-

vival, reproduction and immigration that inevitably define

individual species’ range limits. Of the variables assessed,

measures of habitat variability (biome and landscape

heterogeneity and elevational range) are the most consist-

ent predictors of impermeability (v). These variables are

significant in both non-spatial and spatial analyses

(table 2) and show that transitional or complex habitats

act as barriers for a majority of species, even those with

the largest ranges (table S5 in the electronic supplemen-

tary material). These results support those of van

Rensburg et al. (2004) who found greater avian turnover

at biome transitions in South Africa, but differ from the

early conclusions of Allan et al. (1997) who believed

that the botanically defined biomes of the Afrotropics

were not ‘entirely relevant to [its] avifauna.’ Whether

the clustering of avian range boundaries at biome edges

is because of active habitat selection or enforced limits

does not detract from the congruence found between

avian and vegetation turnover or that high v areas are

those where free range expansion is impeded.

We expected impermeability to be high at the tran-

sitions between biomes and in topographically complex

regions for two reasons. First, such areas act as barriers

to the expansion of mid- and large-range species as they

reach the limits of their environmental tolerances.

Second, they will be rich in restricted-range endemics

adapted to niches uniquely found within the transitional

habitat. Range edges for these two groups therefore

coincide where habitat heterogeneity is greatest and,
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(a) (b)

(c) (d )

(e) ( f )

0.2 0.4 0.6 0.8 1.0

Figure 2. Landscape impermeability for subsets of species
from the dataset: range size quartiles (a–d) from the
narrowest-ranged (a) to the widest-ranged (d), species

(e) passerines and ( f ) non-passerines. Grey cells as in
figure 1 with dark grey cells (a,b) showing cells which
contain no species from that subset.
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indeed, mean v for the widest-ranging species is

significantly higher in cells also occupied by the narrow-

est-ranging species. Furthermore, only measures of

habitat heterogeneity are included in the best-supported

spatial models for these wide-ranging species (table S5

in the electronic supplementary material).

Landscape heterogeneity, measured as the number of eco-

system types within a grid cell (references in electronic

supplementary material), shows a more complex relationship

with v. Our initial single-predictor analyses show that high

landscape heterogeneity in tropical and subtropical grass-

lands, savannahs and shrublands is associated with lower

impermeability (table S2b in the electronic supplementary

material). This, however, is driven by the strong signal arising

from the species-poor, highly impermeable boundary of this

biome with the Sahara (figure 1). In spatial models, which

account for the spatial non-independence of this signal, we

find a strong positive association between landscape hetero-

geneity and impermeability across all biomes (table 2; see

also Rosenzweig 1995).

Model choice also affects conclusions on the impor-

tance of energy availability. In our non-spatial analyses,

v is low where energy availability (AET, temperature

and their interaction) is high. However, the strength of

these relationships decreases greatly when spatial struc-

ture in these variables is accounted for. The fact that

climatic variables drop out in the best spatial models

indicates that the matching spatial structures of the expla-

natory and response variables might be driving the
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strength of these relationships. Additional analyses in

other realms are required to determine if there is a genu-

ine effect of climate on v that is not simply a function of

the broad-scale covariance in these variables.

Macroclimatic variables may be true range-limiting fac-

tors, but for large-range species only (Jetz & Rahbek 2002;

Rahbek et al. 2007). Spatially explicit analyses take account

of the same large-range species contributing similar signal

in many adjacent cells and change the focus of analysis

from long-distance clinal variables, such as temperature

and AET, towards predictors acting at finer geographical

scales (Diniz-Filho et al. 2003, 2007). Biome heterogen-

eity, landscape heterogeneity and elevational range are

the only predictors remaining in our best spatial models

(table 2; table S5 in the electronic supplementary material)

suggesting that spatial analyses permit detection of addi-

tional explanatory variables acting at scales where the

macroclimate is expected to vary only slightly (Hawkins &

Diniz-Filho 2006; Diniz-Filho et al. 2007). Interestingly,

these measures of habitat heterogeneity are also the only

variables remaining in the best spatial models for species

in the largest range size quartile. This suggests that

additional factors beyond climatic isotherms limit large-

range species, and that even species capable of maintaining

a large range do not necessarily cross regions of major

habitat turnover.

Our results complement analyses of beta-diversity in

the Afrotropical avifauna (Williams et al. 1999). These

found that, at higher latitudes, turnover was dominated

by richness gradients associated with the changing climate

(at the edge of the Sahara and Kalahari deserts), while at

low latitudes most signal was derived from species’ repla-

cements along complex habitats (along the boundary of

the humid equatorial forests and to the north and west

of Lake Victoria). Different environmental factors there-

fore operate at different scales in shaping macroecological

patterns (Rahbek & Graves 2001), and non-spatial

and spatial analyses should together explain the wider

hierarchy of factors affecting species of all range sizes

(Diniz-Filho et al. 2003, 2007).

We do not assess the scale-dependency of our results,

because such an assessment would be confounded by

the scale limitations of broad-scale distribution maps

(Hurlbert & Jetz 2007). Our finding of the importance

of elevational range and habitat heterogeneity is consist-

ent with the observed fine-scale elevational zonation of

avian communities within the tropical forest of the

Udzungwa Mountains, Tanzania (Romdal & Rahbek

2009) and of the earlier results of Terborgh (1977) for

birds along an elevational transect in the Cordillera

Vilcabamba, Peru. However, neither scale of analysis

directly determines the causal factors limiting species

within heterogeneous habitats, and a detailed under-

standing of such limits will probably require fine-scale

mapping of species’ abundances in combination with

models of the population dynamics at range edges (Case

et al. 2005). Environmental models may also incompletely

explain variation in v if range limits are set primarily by

historical factors such as the location of refugia (Davies

et al. 2007; Rahbek et al. 2007). This would also help

explain the high v found in montane habitats where

ecological factors promoting small ranges and refugial

environments are coincident (Kark et al. 2007). It is likely

that finer-scale analyses would further emphasize some
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areas of high impermeability associated with excluded

coastal cells (figure 1, e.g. in Angola, in Kenya and along

the Rift Valley), as these would re-introduce some narrow-

ranged species culled from the dataset that are also

associated with transitional habitats in these regions.

It is likely that areas of high v will show early responses

to the adverse impacts of global change. We show that the

edges of wide-ranging and the entirety of narrow-ranging

species’ distributions are concentrated in heterogeneous

areas. Under global change, it is likely that the nature

and location of these habitats will change (e.g. Hannah

et al. 2002). Species will respond idiosyncratically to

these habitat movements (Davis & Shaw 2001) and

changes in community composition in high v areas are

expected to be common (Devictor et al. 2008). The steep-

ness of the elevational gradient in mountainous areas may

allow some species to keep pace with their shifting niches

(given the high number of, albeit narrow, niches that can

be packed into a certain area; Rahbek & Graves 2001;

Luoto & Heikkinen 2008). However, certain habitats

are projected to have no analogues in the near future

(Williams et al. 2007), and only limited adaptation to

changing climates is expected (e.g. Gienapp et al.

2008). Şekercioğlu et al. (2008) also highlight the elevated

extinction risk of highland birds, with warming tempera-

tures expected to force species uphill, sometimes resulting

in complete range extirpation.

Human presence is known to correlate positively with

many biodiversity measures at coarse spatial scales

(Luck 2007), partly because available energy facilitates

both dense human populations and diverse natural

assemblages, and partly because human settlements in

transitional habitats can probably access more diverse

resources (Hugo & van Rensburg 2008). However, in

our preliminary analyses, we found no correlation

between human population density and v. While this

may reflect the temporal discord between the two data-

sets, it seems that the areas we identify as particularly

vulnerable to disturbance in the face of climate change

are not currently facing unusually high human densities.

Previous studies have highlighted transitional habitats as

dynamic centres of endemism meriting conservation atten-

tion (Kark et al. 2007). We concur with this study, and

others, in suggesting that both transition zones and the sur-

rounding areas into which species are likely to ‘want’ to

move, alongside montane areas, are important in systematic

conservation planning (Luoto & Heikkinen 2008). Our

analyses complement others suggesting that climate envel-

ope models do not fully capture species’ distributional

limits (Beale et al. 2008) and make a start at answering the

call for a more inclusive understanding of range-limiting

factors (Svenning & Condit 2008; Gaston 2009).
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