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Little is known about how best to deploy scarce resources for disease control when epidemics
occur in different but interconnected regions. We use a combination of optimal control
methods and epidemiological theory for metapopulations to address this problem. We
consider what strategy should be used if the objective is to minimize the discounted number
of infected individuals during the course of an epidemic. We show, for a system with two
interconnected regions and an epidemic in which infected individuals recover and can be
reinfected, that equalizing infection in the two regions is the worst possible strategy in
minimizing the total level of infection. Treatment should instead be preferentially directed at
the region with the lower level of infection, treating the other subpopulation only when there
is resource left over. The same strategy holds with preferential treatments of regions with
lower levels of infection when quarantine is introduced.
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1. INTRODUCTION

Many epidemics outstrip the resources available to
treat all infected individuals (Lipsitch et al. 2000),
especially when disease occurs simultaneously in
different but interconnected regions (Ferguson et al.
2001; Keeling et al. 2001; Dye & Gay 2003). Seeking to
control in more than one region poses a dilemma for
epidemiologists and health administrators of how best
to deploy limited resources among different regions:
should preference be given to treating infected individ-
uals in regions with high or with low levels of infection,
or to equalizing levels of infection in different regions as
fast as possible? Choosing between these options
requires a combination of epidemiological and economic
insights that hitherto have tended to remain separate:
epidemiological models take little account of economic
constraints (Forster & Gilligan 2007; Klein et al. 2007),
while economic models mostly ignore the spatial and
temporal dynamics of disease (Gilligan 2003), with
some recent exceptions (Goldman & Lightwood 2002;
Rowthorn & Brown 2003; Smith et al. 2005; Barrett &
Hoel 2007; Forster & Gilligan 2007), of which Smith
et al. (2005) and Forster & Gilligan (2007) explicitly
consider infection space.
pplementary material is available at http://dx.doi.org/
008.0402 or via http://rsif.royalsocietypublishing.org.

orrespondence (cag1@cam.ac.uk).

eptember 2008
anuary 2009 113
The influence of the spatial structure of susceptible
populations on the invasion and persistence of
human, animal and plant pathogens is now well
established (Ferguson et al. 2001; Keeling et al. 2001;
Dye & Gay 2003; Stacey et al. 2004). Most contem-
porary epidemiological theories are focused on the
dynamics of disease in so-called ‘structured metapopu-
lations’ (Gyllenberg et al. 1997; Grenfell & Bolker 1998;
Keeling & Gilligan 2000a; Hanski & Ovaskainen 2002)
following on from early models that addressed spatial
heterogeneity in disease transmission (Lajmanovich &
Yorke 1976; Murray & Cliff 1977; Nold 1980) in which
epidemics occur in loosely coupled subpopulations.
These subpopulations correspond with natural aggre-
gations of susceptibles, such as hospitals, towns, cities
or countries. Infecteds and susceptibles mix more or
less freely within subpopulations, with a smaller
movement of infecteds or inoculum among sub-
populations. The system of loose coupling leads to
spatially distributed epidemics with local fade-out but
global persistence (Keeling & Gilligan 2000b), as
infection is transmitted between infected and healthy
subpopulations. It follows that local deployment of
control in one region may benefit other regions by
reducing the number of infecteds capable of transmit-
ting infection between subpopulations, but the regional
benefits of control may also be countermanded by
reinvasion from neighbouring populations. Using a
combination of optimization methods from the
doi:10.1098/rsif.2008.0402
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economic theory of disease control (Sethi 1978;
Goldman & Lightwood 2002; Rowthorn & Brown
2003; Forster & Gilligan 2007) with a metapopulation
model from epidemiological theory (Hanski 1998;
Swinton et al. 1998; Park et al. 2003; Keeling et al.
2004), we show, however, that it is possible to
optimize the deployment of control. By formalizing
the problem as one of control of a dynamic, spatially
structured system subject to economic constraints, it
becomes apparent that one plausible intuition to give
preference to the most highly infected regions when
resources are limited may be the worst possible
strategy in limiting the amount of infection suffered
by the entire population.
2. METHODS

2.1. The model

We consider two coupled subpopulations of susceptible
individuals, in which an epidemic is described by a
simple susceptible–infected–susceptible (SIS ) com-
partmental model. An SIS model is characteristic of a
sexually transmitted disease, such as gonorrhoea,
in which infecteds (I ) recover naturally or after
treatment (Lajmanovich & Yorke 1976; Hethcote
1980; Anderson & May 1991). Infected individuals do
not gain immunity to the disease, rejoining the
susceptible class (S ) and so may be reinfected. This
relatively simple model of an epidemic allows a rigorous
analysis of strategies for optimal control of disease.
Here, we consider a simple control strategy in which a
certain drug is administered to some or all of the
infected individuals in two regions, each with popu-
lations of the same size N. The model is inspired by the
analysis of Goldman & Lightwood (2002) for optimal
drug use in a single region. We envisage regions as
encompassing local districts, counties, provinces or
countries. The dynamics of infection for the SIS model
in the two regions Ii are given by

dI1
dt

Z ðNK I1ÞðbI1 CgI2ÞKmI1KaF1 ð2:1Þ

and

dI2
dt

Z ðNK I2ÞðbI2 CgI1ÞKmI2KaF2; ð2:2Þ

in which b and g are the transmission rates within and
between subpopulations, respectively; mK1 is the infec-
tious period; and a is a measure of the rate at which
infecteds are cured by the drug. The number of infecteds
receiving treatment in region i is equal to Fi. We assume
that the drug is not used as a prophylactic so that only
infected individuals receive it, hence Fi%Ii. An alter-
native scenario, in which treatment is effected through
changes in the transmission rate (b), is discussed briefly
in the electronic supplementary material.
2.2. Optimal control under a budget constraint

Suppose that expenditure on drugs is subject to a
budget constraint c(F1CF2)%M. We assume that
finance is not transferable through time, so that
J. R. Soc. Interface (2009)
money which is not spent immediately cannot be
saved for the future purchase of drugs. If there are
sufficient resources, every infected individual will be
treated. Otherwise, drugs are allocated so as to
minimize the discounted sum of total infection in the
two regions. Hence, we choose F1 and F2 so as to
minimize the following integral:

V Z

ðN
0
eKrtðI1 CI2Þdt: ð2:3Þ

The objective function in equation (2.3) is concerned
only with minimizing total infection across both
subpopulations. We also briefly consider objective
functions of the form VZ

ÐN
0 eKrtðI q1 CI q2 Þdt. If qO1,

such an objective function will give extra weight to the
area with the higher level of infection. The discount rate
is included to allow for long-term changes, thus giving
greater emphasis to control in the short rather than the
long term (Forster & Gilligan 2007). The optimization
approach we adopt is based upon the Hamiltonian
method (Pontryagin et al. 1962; Seierstad & Sydsaeter
1987; Pinch 1993), which is a device for minimizing the
objective function subject to the economic constraints
and the epidemiological dynamics of the model. This
method takes into account the influence of current
infection on the future evolution of disease as given by
the propagation equations (2.1) and (2.2). Such
influence is embodied in the co-state variables that
appear in a mathematical expression known as the
Hamiltonian (see appendix A and the electronic
supplementary material for details).

We consider two hypotheses for optimizing the
control of infection under a limited budget, when at
least for some of the time, the combined number of
infected individuals in the two regions exceeds the
availability of the drug for treatment. A choice must
then be made as to how to optimize the distribution of
the drug between the two regions. Under the first
hypothesis, preference is given to treating individuals
in the region with the higher prevalence, so as to first
equalize infection in each region. In the second
hypothesis, we assume that preference is given to
treating individuals in the region with the lower level of
infection, thus seeking to reduce the force of infection in
the more sparsely infested region.
2.3. Optimal control under a fixed budget
constraint with quarantine

Suppose that the coupling parameter between regions,
g, can be altered by imposing quarantine controls that
restrict the reciprocal rate of cross infection between
the two regions. These are equivalent to border
controls. They may be costly to administer and may
also impose indirect costs arising from restrictions on
free circulation. Let Q be the total amount of direct and
indirect costs involved in the quarantine policy. We
shall assume that g and Q are functionally related as

gZg0hðQÞ; ð2:4Þ

where Q2 ½0;Qmax�; hð0ÞZ1; hðQmaxÞZ0; dh=dQ!0

and dh2=dQ2O0. Thus, when there are no restrictions
the cross-infection parameter g is equal to g0. When a
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Figure 1. Comparison of disease progress curves for the (a,d,g) best and (b,e,h) worst policies. (a–c) Progress of disease in two
interconnected regions 1 (blue curves) and 2 (red curves), with treatment dynamics in insets, showing small differences between
the best and worst paths when initial infection occurs in zone A (table 1). (d–f ) The best and worst paths diverge markedly when
initial infection occurs in the instability zone B (table 1). (g–i ) Disease continues to increase but markedly less steeply in the
region with the lower infestation (region 1) when infection occurs in zone C (table 1). Default parameters are aZ0.25 (efficiency
of control), bZ0.25 (within-region transmission rate), gZ0.03 (between-region transmission rate), rZ0.1 (discount rate),
mZ0.05 (recovery rate), MZ0.2 (fixed costs) with NZ1 ((c, f,i ) proportion infected).
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total ban is imposed to movement of infection between
regions gZ0, and the cost of restrictions is equal to
Qmax. We also assume that the budgets for medical
treatment and for quarantine restrictions are separate,
so that funds cannot be transferred between uses. The
optimal strategy is now to choose F1, F2 and Q so as to
minimize the following integral:

VQ Z

ðN
0
eKrtðI1 CI2 CQ=pÞdt; ð2:5Þ

subject to the same constraints as before plus the
additional constraint Q2 ½0;Qmax� and gZg0hðQÞ. In
this integral, Q/p measures the cost of restrictions
expressed in terms of infection equivalents. The
methods for optimization are given in appendix A.
3. RESULTS

3.1. Preferential treatment of region with
higher prevalence

First, we consider preferential treatment of the region
with higher prevalence. So long as ðI1CI2Þ%M=c all
infected individuals are treated and the infection is
J. R. Soc. Interface (2009)
either eliminated in each subpopulation, if R0Z
NðbCgÞ=ðaCmÞ%1, or brought to some non-negative
equilibrium density in each subpopulation if R0O1.
When, however, (I1CI2)OM/c, some infecteds remain
untreated and a decision must be made as to how to
allocate the drug between regions so as to minimize the
discounted numbers of infected individuals. One
obvious strategy is to equalize the levels of infection
within the two regions as fast as possible. Many people
would regard this as the socially equitable strategy
(Murray & Lopez 1996). Formally, it involves deflec-
tion of the two subpopulations onto a spatially
homogeneous solution in which the levels of infection
within each region are equalized (see appendix A and
§S1 in the electronic supplementary material for
details). This is conventionally known in optimal
control theory as the singular solution (Seierstad &
Sydsaeter 1987). Such a strategy would be achieved by
preferential treatment of infecteds in the region with
the higher prevalence of infecteds. The policy is called
the MRAP since it involves the most rapid approach
path to the singular solution, in which infection is
equalized in both subpopulations (figure 1). However,
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Figure 2. Transmission between regions and the error between the best and worst policies. (a–c) Effect of the between-region
transmission rate g (scaled by b) on the magnitude of the instability zone B (shown in red) in which the best and worst paths lead
to marked differences in epidemic behaviour with one controlling the epidemic and the other leading to ‘explosive’ infection
towards high levels of infection (figure 1; instability zones for (a) g/bZ0, (b) g/bZ0.008 and (c) g/bZ0.02). (d ) Effect of
changing the ratio of g/b on the maximum (blue line) and average (red line) errors between the best and worst policies.
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as we show analytically in appendix A, the MRAP is
the worst possible strategy within the constraints of the
system. Rather than minimizing the discounted
amount of infection over time (equation (2.3)) it
maximizes that quantity (figure 1).
3.2. Finding the optimal strategy

To find the best (i.e. optimal) path, we chose to give
preference to the region with the lower level of infection
(and, by corollary, the higher level of susceptibles),
treating the other region as a residual claimant.
Sufficient details of the analysis are given in appendix
A to reproduce the results, with additional rigorous
mathematical details in the electronic supplementary
material. Individuals in the region with the higher level
of infection only receive treatment when there are
resources left over after treating all the infecteds in the
target region (figure 1). Although it is not possible to
prove analytically that this is the optimal path,
extensive numerical simulations using a variety of
parameters support the hypothesis (see appendix A for
details). This alternative policy is known as the anti-
MRAP since it goes away from the singular solution as
J. R. Soc. Interface (2009)
fast as possible (figure 1c). By concentrating scarce
resources on the least infected region, where there are
most susceptibles, we maximize the social benefit
associated with the prevention of disease.

The difference between the best and worst paths
depends upon the amount of initial infection in each
population when the treatment is first introduced and
can be separated into three regimes in infection space
(figures 1 and 2; table 1). In zone A, the best and worst
scenarios each bring the epidemic under control. The
difference between the two is relatively small. In zone B,
the worst path fails to bring the epidemic under control
while the best path does (figure 1) and the error of
choosing the wrong strategy is large (table 1). We refer
to this zone as an ‘instability zone’ to indicate the fact
that the outcome is highly sensitive to the choice of
policy. Neither policy is capable of bringing the
epidemic under control in zone C but preferential
treatment of the less infected subpopulation is sub-
stantially more successful in reducing the discounted
amount of infection (figure 1; table 1). The same is also
true in the case of the objective function involving
ðI 3=21 CI

3=2
2 Þ shown in table 1. Thus, even if some weight

is assigned to equalizing the levels of infection in the



Table 1. Differences and errors associated with the best and worst strategiesa to control disease in a metapopulation when
resources are limited. (Alternative objective functions are shown for the SIS model without quarantine.)

zone path I1(0) I2(0) I1(N) I2(N)

ÐN
0 eKrtðI1CI2Þdt
(% error)b

ÐN
0 eKrtðI 2=31 CI

2=3
2 Þdt

(% error)b

ÐN
0 eKrtðI 3=21 CI

3=2
2 Þdt

(% error)b

SIS model without quarantine
A worst 0.090 0.165 0 0 2.27 (5.09) 4.66 (4.59) 0.78 (3.77)

best 0.090 0.165 0 0 2.16 4.45 0.75
B worst 0.085 0.180 0.69 0.69 3.38 (30.05) 5.99 (19.07) 1.51 (52.04)

best 0.085 0.180 0 0 2.59 5.03 0.99
C worst 0.100 0.250 0.69 0.69 6.14 (18.76) 8.89 (14.05) 3.68 (19.81)

best 0.100 0.250 0.19 0.80 5.17 7.73 3.07
SIS model with quarantine

C best 0.100 0.250 0 0 3.83

aParameter values as in figure 1.
bComputed by (VworstKVbest)/Vbest in which Vworst and Vbest are the values of the discounted infection along the worst and
best paths, respectively (see appendix A for details).
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two regions (i.e. with exponents greater than unity),
our results show that it may still be better to give
priority to the region with the lower level of infection.
For completeness, we also show consistency in the

results for an objective function involving ðI 2=31 CI
2=3
2 Þ,

in which the exponents are less than unity (table 1),
implying some penalty for control effort as the level
of infection increases.
3.3. Effects of relative transmission parameters
on best and worst solutions

The size of the instability zone B, in which the best and
worst paths diverge, depends upon the relative magni-
tudes of transmission within (b) and between (g)
subpopulations (figure 2). Increasing the value of g

has two effects. It shifts the instability zone inwards
reflecting the fact that it has become more difficult to
control infection. At the same time, the size of the
instability zone shrinks (figure 2). Both the average and
maximum values of the error ratio for the difference
between the best and worst paths decline as (g/b) gets
larger (figure 2). Thus, as the rate of transmission
between subpopulations increases the outcome becomes
less sensitive to the choice of policy. Moreover, at a
certain point there is a sharp decline in the maximum
error ratio. This occurs when g/b becomes so large that,
irrespective of the starting point, it is impossible to
contain infection. Under these conditions, zones A
and B disappear and zone C covers the entire
infection space.
3.4. Quarantine control

Using the standard procedure (see appendix A) for the
propagation equations and the objective function for
quarantine introduced in equation (2.5), we derive an
optimal value first for Q̂ from which it is possible
to calculate the corresponding value for quarantine
(from equation (2.4)). Extensive numerical analysis
again shows that the optimal strategy is the anti-
MRAP, giving preference to the population with the
lower prevalence of infection while also imposing
quarantine to restrict transmission between the two
J. R. Soc. Interface (2009)
subpopulations (figure 3a). For the example shown in
figure 3, a severe quarantine, with g close to zero
(figure 3b), is initially imposed to isolate the high
infection region 2. The limited medical resources
available are mostly used to saturate the low infection
region 1 leaving only a small residual for use in region 2.
As infection falls in region 1, more medical resources
become available for use in region 2 and infection is
eventually brought down there as well. At a certain
point, infection is sufficiently low in both regions that it
is optimal to lift the quarantine and allow g to return
rapidly to its unrestricted value of 0.03. This is done
quite rapidly. Without imposing a temporary quar-
antine, it is impossible to bring infection down from
the starting point shown. With g fixed at 0.03, total
infection increases no matter what treatment policy
is followed (cf. figure 1d ). Thus, the possibility of
quarantine may radically alter the time paths of
infection in the two regions. Table 1 compares the
integrals for the discounted cost of infection with and
without quarantine costs.
4. CONCLUSIONS AND DISCUSSION

Epidemics of the SIS form apply to a small but
important class of epidemics in which infected individ-
uals recover and can be reinfected (Murray 2002). With
just two interconnected regions of hosts and a fixed
population size, our SIS formulation allows a rigorous
analysis to show that, under certain initial conditions,
equalizing infection in each subpopulation is the worst
possible strategy when resources are limited for control.
It also shows that treatment should be focused on
subpopulations with the lower level of infected individ-
uals. This is equivalent to allocating treatment
preferentially to subpopulations with the higher pro-
portions of susceptible individuals. The methods
introduced here provide new insights into optimal
disease control. The results overturn a simple intuition
that preference should normally be given to strategies
designed to equalize infection in different sub-
populations. This paper presents an alternative
intuition that derives from the influence of treatment
on the future dynamics of disease. Our optimal solution
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Figure 3. The role of quarantine. (a) Disease progress curves in the two regions with treatment allocation shown in the inset,
together with quarantine (best path with quarantine; blue line, region 1; red line, region 2). (b) Quarantine effort and
corresponding value for g: note the sudden change in quarantine policy (best path: quarantine effort; light pink line,Q; dark pink
line, g). (c) Phase portrait showing how a potentially explosive epidemic (cf. figure 1j and table 1) can be brought under control
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infected). Default parameters as in figure 1, except that pZ1, bZ100, QmaxZ5 and gZg0h(Q), where g0Z0.03 and
hðQÞZðeKbQKeKbQmaxÞ=ð1KeKbQmaxÞ.
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(anti-MRAP) assumes that the benefit to those who are
cured is the same no matter where they are located, but
invokes the additional policy consideration that curing
individuals influences the future dynamics of infection
in the coupled subpopulations. The latter does depend
upon the location of the individuals who are cured. The
most effective way of slowing down the spread of disease
is to concentrate on resources in areas where there is a
large pool of susceptibles. This implies giving priority to
areas with low levels of infection.

Deviation from the optimal strategy necessarily
changes this criterion, with greater weight being
placed upon the health of some individuals compared
with others. That is, preferential treatment of the
subpopulation with higher levels of infection and fewer
susceptibles necessarily places a greater weighting on
the health of individuals in that subpopulation. Such
considerations require further debate and greater
integration of epidemiological models with insight
from social sciences.

One of the principal epidemiological and mathemat-
ical challenges is to extend the methods developed here
to other realistic, spatially extended epidemics. It is
straightforward to extend the analysis to the case of
multiple regions and also to the case when treatment
reduces the transmission rate of infection, as we point
out with illustrative results in the electronic supple-
mentary material (§§S3 and S4, respectively). We
conclude from these explorations that the main intui-
tion concerning the inferiority of the MRAP is robust to
extensions of the model as listed above. It is our
intention to extend these analytical methods further to
more complex situations, in which there are immune
classes and options for vaccination. In particular, is it
the case that the optimal strategy identified in this
paper has a counterpart for other classes of epidemics
in which treated individuals become immune (SIR)
or rejoin the susceptible class (SIRS )? Rigorous
mathematical analysis is extremely difficult for these
types of epidemics because of the increased number of
state and co-state variables involved. Preliminary
numerical explorations of an SIR model with births of
susceptibles suggest that, for certain initial conditions,
it is more efficient to follow the anti-MRAP strategy of
J. R. Soc. Interface (2009)
giving priority to the infected area with the lower level
of infection than it is to equalize infection as fast as
possible (see §S5 in the electronic supplementary
material). However, further exploratory work suggests
that, while giving priority to the region with the greater
proportion of susceptibles (analogous to the anti-
MRAP strategy in the SIS model) is key to controlling
SIR epidemics, the optimal solution sometimes involves
switching priority from one subpopulation to another
depending upon the initial conditions. This will be the
subject of a separate study.

Consideration of the time horizon for control is also
important. Here, we have used the conventional
economic device of a discount rate to give more weight
in the objective function to shorter rather than long-
term control. We have used a default value of rZ0.1
for the discount rate. Our main result, however, does
not depend upon this particular value. The choice of
discount rate affects the relative valuation of current
and future disease, and also the optimal timing of
quarantine: it does not affect the key result that the
MRAP is the worst possible strategy.

Forster & Gilligan (2007) analysed an SIS seasonal
plant epidemic with transmission of infection between
nearest neighbours, approximated by a contact
process. Switching the time horizon from a single
season (with no discount rate and a fixed time) to
multiple seasons (with discount and infinite horizon)
effectively changed the optimal solution from a
simple bang-bang (treat all then treat none) to a
continuously dynamic (interior) response. Interior
solutions have also been identified by Sethi (1974)
and Goldman & Lightwood (2002) for SISmodels, and
by Barrett (2003), working with a static epidemic
model with bifurcations and a Nash equilibrium, but
none of these models addressed the spatial structure
of host populations that are shown here to play an
important part in the optimization of control. More
recently, Barrett & Hoel (2007) have identified criteria
under which long-term eradication of diseases, such as
poliomyelitis, would be optimal. Using a non-spatial,
dynamical SIRmodel with vaccination of susceptibles,
they showed that high rates of vaccination are never
optimal. The results contrast with a naive intuition
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that a high rate of vaccination might be advantageous
in eradication programmes in an analogous way to the
counter-intuitive results presented here that prefer-
ence should be given to treating the subpopulation
with lower rather than higher levels of infection. All
three analyses (Barrett & Hoel 2007; Forster &
Gilligan 2007; and the current one) support the insight
that may be gained by coupling dynamic epidemiolo-
gical models with economic optimization.

C.A.G. acknowledges support from the Biotechnology and
Biological Sciences Research Council.
APPENDIX A

The analytical and numerical methods used to derive
the results are summarized here in sufficient detail to
reproduce the results. Further mathematical detail is
given in the electronic supplementary material together
with some results for exploratory analysis of an
SIR model.
A.1. Optimization methods

The objective is to minimize the discounted level of
infection (equation (2.3)) subject to the propagation
equations (2.1) and (2.2) (Pinch 1993) and subject
to the following epidemiological and economic
constraints: Ii(0)ZIi0; 0%Fi%Ii , F1CF2Zmin(I1CI2,
M/c). Let AZfI1; I2 : I1CI2%M=cg be the region
where there are sufficient resources to treat
all infecteds. Within this region, the propagation
equations are

dIi
dt

Z ðNK IiÞðbIi CgIjÞKðaCmÞIi i; j Z 1; 2; jsi:

ðA 1Þ
These equations have one stable equilibrium, which is
given by

Î 1 ZÎ 2 Zmax½0;NKðaCmÞ=ðbCgÞ�: ðA 2Þ
We assume that NKðaCmÞ=ðbCgÞ!0:5M=c. This
ensures that ðÎ 1;Î 2Þ2A. It also ensures that any
allowable path that enters the region A will remain
permanently within this region and eventually con-
verge to the stable equilibrium point.

When there are more infecteds than can be treated,
c(I1CI2)OM and hence F1CF2ZM/c. The relevant
Hamiltonian in this case is

H ZKeKrtðI1 CI2Þ
Cm1½ðNK I1ÞðbI1 CgI2ÞKmI1KaF1�
Cm 2½ðNK I2ÞðbI2 CgI1ÞKmI2KaF2�; ðA 3Þ

wheremi are co-state variables. Since F2ZM/cKF1, we
can eliminate F2 to obtain

H ZKeKrtðI1 CI2Þ
Cm1½ðNK I1ÞðbI1 CgI2ÞKmI1�
Cm 2½ðNK I2ÞðbI2 CgI1ÞKmI2�
Km 2aM=cCaðm 2Km1ÞF1: ðA 4Þ

When c(I1CI2)OM, the control variable F1 is subject
to the following inequalities:
J. R. Soc. Interface (2009)
F1R0; I1KF1R0; F2RM=cKF ;

I2KF2 Z I2 CF1KM=cR0:

)
ðA 5Þ

Some of these are ‘mixed’ constraints, which include
both state and co-state variables. In this case, the
standard procedure is to include all constraints in a
Lagrangian known as the ‘augmented’ Hamiltonian,
which is given as follows (Seierstad & Sydsaeter 1987):

LZH Cx1F1 Cx2ðM=cKF1ÞCy1ðI1KF1Þ
Cy2ðI2 CF1KM=cÞ; ðA 6Þ

where the x’s and y’s are multipliers that satisfy the
complementary slack conditions,

x1R0; F1R0; x1F1 Z 0;

y1R0; I1KF1R0; y1ðI1KFÞZ 0;

x2R0; M=cKF1R0; x2ðM=cKFÞZ 0;

y2R0; I2 CF1KM=cR0; y2ðI2 CF1KM=cÞZ 0:

ðA 7Þ
The first-order conditions for an optimum require that

vL

vF1

Zaðm 2Km1ÞCx1K y1K x2 Cy2 Z 0 ðA 8Þ

and that F1 (and hence F2) is chosen so as to maximize
the Hamiltonian. This yields the following result:

if m 2Km1O0 then

F1 Zmin

�
I1;

M

c

�
and F2 Z

M

c
KF1;

if m 2Km1!0 then

F2 Zmin

�
I2;

M

c

�
and F1 Z

M

c
KF2:

9>>>>>>>=
>>>>>>>;

ðA 9Þ

It must also be the case that

_mi ZK
vL

vIi
ZK

vH

vIi
K yi i Z 1; 2: ðA 10Þ

Finally, there are the transversality conditions.
Allowable paths fall into two groups: those that never
enter the region AZfI1; I2 : M=cRI1CI2g, and those
that enter this region and never leave it again. In the
former case, there are alternative transversality con-
ditions. Define the function W as follows:

W ðZ1;Z2ÞZ
ðt
0
eKrtðI1 CI2Þdt; ðA 11Þ

where the integral is evaluated along the path defined
by the ‘treat-all’ propagation equations (2.1) and
starting from the point I1ð0ÞZZ1; I2ð0ÞZZ2. The
transversality conditions for a path that enters this
set are as follows:

m 2Km1 ZK

�
vW2

vt
K

vW1

vt

�
;

rW ZH ZKðI1 CI2ÞCm1
_I 1 Cm 2

_I 2:

9>=
>; ðA 12Þ

A.2. The singular solution

Suppose that the control variables are chosen from the
interior of their domains so that 0!Fi!Ii. This implies
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that xiZyiZ0 for iZ1, 2, and hence from (A 3) it
follows that m2Zm1. Suppose also that the latter
equality holds throughout an open interval of time.
Then _m2Z _m1 from which it is simple to show that
I1ZI2, whence _I 2Z _I 1 and F2ZF1ZM/2c. This yields
the ‘singular’ solution, which is given by

dIi
dt

Z ðNK IiÞðbIi CgIjÞKaIiK
aM

2c
;

i Z 1; 2; j Z 2; 1: ðA 13Þ

A.3. The most rapid approach path

The MRAP involves reaching the singular solution as
fast as possible and remaining on this solution there-
after. This means giving preferential treatment to the
subpopulation with the higher prevalence of disease
until disease in the two populations is equalized, and
then treating these populations equally. This strategy
implies that

if IiOIj then
Fi ZminðIi;M=cÞ and Fj ZM=cKFi;

if Ii Z Ij then Fi ZFj ZM=2c:

9>=
>; ðA 14Þ

To confirm that this strategy is the worst case, we show
that this path maximizes the discounted level of
infection (equation (2.3)). The Hamiltonian is identical
to equation (A 4) save that the first termKeKrtðI1CI2Þ
is replaced by CeKrtðI1CI2Þ for maximization rather
than minimization of the integral V. Hence, the
conditions on F1 for maximization are identical to
equation (A 5), only this time the co-state variables are
positive. Mangasarian’s sufficiency conditions for a
maximum require that the Hamiltonian be a concave
function of I1, I2 and F1 (Seierstad & Sydsaeter 1987).
These conditions require that the following matrix is
negative semi-definite:

v2H

vI 21

v2H

vI2vI1

v2H

vF1vI1

v2H

vI1vI2

v2H

vI 22

v2H

vF1vI2

v2H

vI1vF1

v2H

vI2vF1

v2H

vF2
1

2
66666666664

3
77777777775

Z

K2bm1 Kgðm1 Cm 2Þ 0

Kgðm1 Cm 2Þ K2bm 2 0

0 0 0

2
64

3
75; ðA 15Þ

which will be the case if m1R0 and

4b2m1m 2Kg2ðm1 Cm 2Þ2R0: ðA 16Þ
Provided bOg, the above inequality is always strictly
satisfied on the singular solution, where m1Zm2. By
continuity, it must also be weakly satisfied on the
MRAP for points close to the singular solution. The
co-state variables measure the marginal value of
additional infection, which in the maximization version
J. R. Soc. Interface (2009)
of the problem is always positive. Thus m1, m2O0.
Moreover, for the parameter values we consider (bOg),
the inequality given in equation (A 16) is also
satisfied along the whole length of the trajectory of
the singular solution, where m1Zm2. These conditions
establish that the Hamiltonian is strictly concave
on the singular solution and also close to it. For paths
that remain permanently outside of the region
AZfI1; I2 : I1CI2%M=cg, the transversality con-
ditions limt/NmiðtÞZ0 for iZ1, 2 are satisfied. For
paths that enter this region, the transversality con-
ditionm1Zm2 at the point where they enter is satisfied.
For paths of this type, an additional concavity
condition is required (Seierstad & Sydsaeter 1987).
Simulations indicate that W(Z1,Z2) is concave. Under
these conditions, the MRAP maximizes the integral V
and is therefore as bad as, or worse than, any other
path that satisfies the constraints of the problem
(Seierstad & Sydsaeter 1987).
A.4. Finding the optimal path

We propose an alternative candidate for the optimal
path, when (I1CI2)OM/c. The path is determined by
the following decision rules:

if Ii!Ij then
Fi ZminðIi;M=cÞ and Fj ZM=cKFi;

if Ii Z Ij then
Fi ZminðIi;M=cÞ and Fj ZM=cKFi;

or vice versa:

9>>>>>=
>>>>>;

ðA 17Þ

This path is the anti-MRAP in which preference
is given to treating the subpopulation with lower
prevalence of infection. Standard sufficiency theorems
cannot be used to prove analytically that this is the
optimal path since m1!0 and the Hamiltonian is not
concave. However, simulations indicate that the anti-
MRAP is in fact optimal (see §S2 in the electronic
supplementary material).

Using a 100 ! 100 grid of starting points we
compared the following three paths: path 1, which
always gives priority to region 1; path 2, which always
gives priority to region 2; and the MRAP, which
equalizes infection levels in the two regions as fast as
possible and then splits the drug equally between them.
Starting from an initial point with I1!I2, the smallest
integral was obtained with path 1, the next smallest
with path 2 and the strictly largest integral with the
MRAP. From an initial point with I2!I1, the smallest
integral was obtained with path 2 and the strictly
largest integral with the MRAP. With I1ZI2 initially,
the MRAP always gave the strictly largest integral, but
paths 1 and 2 gave identical integrals. We were also
able to show that the three paths described above
were the only paths that entered the treat-all set (given
a suitable starting point) and satisfied both the
Hamiltonian and transversality conditions. This
suggests that the anti-MRAP strategy of favouring
the least infected area is the best. We were not able to
rule out the possibility that there are other paths that
yield an even lower integral than the anti-MRAP,
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but we were not able to locate such a path from any
starting point.
A.5. Quarantine

The Hamiltonian for the case with quarantine is the
same as in equation (A 4) except that g is replaced by
g0h(Q) as in equation (2.4) and the objective function
by equation (2.5). The decision rules are identical to
equation (A 17), with the additional constraint that the
quarantine variable Q is selected from the set [0, Qmax]
so as to maximize the Hamiltonian, taking all other
variables as given. The optimal value of Q is thus
equal to

Q̂ZQ argmax K
eKrtQ

p

�

C½m1ðNK I1ÞI2 Cm 2ðNK I2ÞI1�hðQÞ
�
: ðA 18Þ

Note that in this case the discount rate does affect the
optimal strategy.
A.6. Error of worst relative to best path

The error ratio for the worst compared with the best
paths is computed by (VworstKVbest)/Vbest in which
Vworst and Vbest are the values of the discounted
infection along the best and worst paths, respectively.
We distinguish between the maximum and the average
value (computed as the average error over all starting
points in infection space for which (I1CI2)OM/c for
given ratios of transmission between and within
subpopulations). The instability region in which the
best path leads to disease control and the worst to
explosive spread shown in figure 2 were computed for
each of 21!21 starting points laid out on a uniform grid
on the infection space. When gZb, the two regions are
effectively a single region and all allowable treatment
policies lead to exactly the same trajectory for total
infection, and hence to the same value for the integralV
(equation (2.3)).
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