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Predicting undetected infections during the
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Active disease surveillance during epidemics is of utmost importance in detecting and
eliminating new cases quickly, and targeting such surveillance to high-risk individuals is
considered more efficient than applying a random strategy. Contact tracing has been used as
a form of at-risk targeting, and a variety of mathematical models have indicated that it is
likely to be highly efficient. However, for fast-moving epidemics, resource constraints limit
the ability of the authorities to perform, and follow up, contact tracing effectively. As an
alternative, we present a novel real-time Bayesian statistical methodology to determine
currently undetected (occult) infections. For the UK foot-and-mouth disease (FMD)
epidemic of 2007, we use real-time epidemic data synthesized with previous knowledge of
FMD outbreaks in the UK to predict which premises might have been infected, but remained
undetected, at any point during the outbreak. This provides both a framework for targeting
surveillance in the face of limited resources and an indicator of the current severity and
spatial extent of the epidemic. We anticipate that this methodology will be of substantial
benefit in future outbreaks, providing a compromise between targeted manual surveillance
and random or spatially targeted strategies.
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1. INTRODUCTION

Epidemic control essentially focuses on reducing the
risk of transmission between susceptible and infected
individuals. Traditional methods such as vaccination or
pre-emptive culling serve to decrease the size of the
susceptible population and may be used with varying
success (Anderson & May 1991; Keeling et al. 2001;
Woolhouse & Donaldson 2001). An alternative strategy
is to focus on infected individuals, either quarantining
or culling to prevent onward transmission. In such
cases, early detection is vital to reduce the time for
which the individual is actively shedding infection
(Howard & Donnelly 2000; Ferguson et al. 2001b;
Woolhouse & Donaldson 2001). When infection occurs
significantly before the onset of symptoms, mechanisms
of contact tracing become vital, with the aim of
identifying at-risk individuals by their interaction
with known infectious cases (Riley & Ferguson 2006).

Contact tracing has traditionally and successfully
been used for a variety of human diseases, including
the 2003 SARS outbreak, when high-risk individuals
were quarantined, and a variety of sexually transmitted
infections, where at-risk contacts are tested and
treated (Cowan et al. 1996; Donnelly et al. 2003). For
pplementary material is available at http://dx.doi.org/
008.0433 or via http://journals.royalsociety.org.

orrespondence (chris.jewell@warwick.ac.uk).

ctober 2008
ovember 2008 114
foot-and-mouth disease (FMD), contact tracing from
known infected premises (IPs) is mandatory, gener-
ating dangerous contacts (DCs) whose livestock must
be culled. During the 2001 FMD outbreak in the UK,
contact tracing only was deemed insufficient to control
the epidemic—the high number of cases and the limited
veterinary resources meant that contacts could not be
identified and removed quickly enough (Ferguson et al.
2001a,b; Keeling et al. 2001). Indeed, subsequent
studies have demonstrated that for epidemics where
the number of cases and/or contacts is high, contact
tracing loses its efficacy owing to resource constraints
(Eames & Keeling 2003; Kao 2003; Kiss et al. 2005).
Given these resource constraints, the contiguous
premises cull policy (where animals on premises
neighbouring IPs were culled) was implemented as a
crude but rapid method of identifying and removing
potentially at-risk premises (The Royal Society 2002;
Haydon et al. 2004). During the 2007 FMD outbreak in
Surrey, however, the number of cases was small and the
policy was better developed in the wake of 2001, so that
effective contact tracing was implemented. This led to a
large number of DCs being identified and subsequently
culled; to what extent this would have been kept up if
the epidemichadbeen larger is unclear (Ryan et al. 2008).

Here, we perform a rigorous statistical analysis of the
2007 FMD outbreak, and, as the epidemic unfolds, we
focus on predicting which premises may be infected but
currently undetected—we term such premises occult
doi:10.1098/rsif.2008.0433
J. R. Soc. Interface (2009) 6, –1145 1151
Published online 16 December 2008
This journal is q 2008 The Royal Society5

http://dx.doi.org/10.1098/rsif.2008.0433
http://dx.doi.org/10.1098/rsif.2008.0433
http://journals.royalsociety.org


Predicting undetected infections C. P. Jewell et al.1146
infections. Such inference is, in general, complex owing
to the necessity of dealing with the fact that the exact
moment of infection is never directly observed. Here, in
contrast to others (e.g. Chis-Ster & Ferguson 2007), we
postulate that the time between infection and detection
is a stochastic quantity and should, therefore, be
modelled as such—this is particularly true when treating
the farm as an individual since a wide variety of factors,
such as stocking density, management system and
stockmanship, can all affect how quickly a disease is
detected. Furthermore, if an epidemic is to be analysed
during its course, the presence of occult infections should
be taken into account. If this is not done, then our
analysis will be biased since disease transmission rates
from only known IPs will appear artificially high. To
include this complexity in our inference, we use a
Bayesian framework that incorporates the unobserved
data as parameters to be inferred. Using prior infor-
mation determined from the 2001 FMD outbreak in the
UK (Kypraios 2007), we introduce a completely different
approach that makes use of new highly specialized
Bayesian Markov chain Monte Carlo (MCMC) metho-
dology designed for making quantitative risk predictions
in real time as epidemics progress (O’Neill & Roberts
1999; Neal & Roberts 2004; Jewell et al. in press). This
methodology therefore addresses two major epidemiolo-
gical concerns: it predicts the uncertain scale of the
current epidemic, and it rapidly identifies high-risk
premises that can be targeted for further epidemiological
investigation or control.
2. DATA AND METHODS

2.1. Data

The data required for this analysis fall into three
categories, which are as follows.

—Covariate data describe the population in terms of
an individual’s attributes. For this analysis, we use
location (as OSGB reference), number of cattle and
number of sheep present on the farm as derived from
the 2003 census. These data remain constant
throughout the epidemic.

—Epidemiological data describe the disease states of
individuals. These data are acquired from the field as
the epidemic progresses and, for our purposes,
comprise a daily list of detection times and cull
times linked to affected farms. In practice, this
requires Defra to notify us of any detections or culls
that have occurred on a daily basis.

—Unobserved data which, if it were available, would
allow straightforward inference. This refers to the
infection times during the epidemic, which, owing to
the lag between infection and the onset of clinical
disease, are never directly observed. In addition, this
lag means that at any point during an epidemic,
there may be farms that are infected (and infectious)
that have not yet been detected and which require
accounting for in the analysis. We take particular
trouble, therefore, to impute such data, allowing the
statistical analysis to reflect the uncertainty sur-
rounding this inability in observation.
J. R. Soc. Interface (2009)
2.2. Model construction

The model treats each premises as an individual that
can be susceptible, infected, notified (i.e. detected and
reported) or removed (i.e. culled), with each infected
individual passing through all four states in sequence.
We therefore assume that each infection will eventually
be detected (even if the detection occurs in the future).
The fundamental aim for statistical inference is then to
estimate the rate of transition from susceptible to
infected, and from infected to notified. Since we are
interested in analysing an epidemic during its course,
these states interact with the time of analysis (Tobs)
giving rise to three possible types of infected
individuals:

— infections that have been notified and removed
before Tobs;

— infections that have been notified but not yet
removed; and

— individuals of unknown disease status that are either
currently presumed susceptible or have been prema-
turely culled as DCs. These individuals, if infected,
are termed occults and will be imputed in the
inference mechanism (see the electronic supple-
mentary material, sections A.4 and B).

The infection rate is parametrized in terms of
infected–susceptible and notified–susceptible pairs.
With a knowledge of individual-level covariates (as
described above), we fit parameters to describe the
effects that each covariate has on the transmission rate
between farms. We adopt a model similar to Keeling
et al. (2001), which assumes heterogeneity in infectivity
and susceptibility according to the species present on
each premises, as well as using a spatial function to
allow the probability of infection to vary over distance.
Let S, I , andN be the sets of susceptible, infected, and
notified individuals respectively at the time of the
analysis, with I , N , and R the respective vectors of
infection, notification, and removal times. We thus
parametrize the disease transmission rate between
infected i and susceptible j as

bij Z ðb1cji Csji Þ$ðb2c
j
j Csjj Þ$b3

b25

r2ij Cb25
i2I ; j 2S;

ð2:1Þ
and the transmission rate between notified i and
susceptible j as

b�ij Z ðb1cji Csji Þ$ðb2c
j
j Csjj Þ$b4

b25

r2ij Cb25
i2N ; j 2S;

ð2:2Þ
where c and s represent the number of cattle and sheep,
respectively, on premises i and j, and rij is the Euclidean
distance between them. b1 is then interpreted as
the relative infectivity of cattle versus sheep, b2 as the
relative susceptibility of cattle versus sheep, b3 and b4
as the rate of spatial transmission for infected and
notified premises, respectively, with b5 governing its
rate of decay with increasing distance. The difference
between b3 and b4 therefore allows the measurement
of the effect of control measures applied directly to a
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notified premises, such as restrictions on vehicles
entering or leaving, and the general upregulation of
biosecurity required.

We allow for a latent period in which an individual is
infected but not yet infectious by multiplying bij by a
time-dependent infectivity function h($), describing
how an individual’s infectivity increases from the
moment of infection. The shape of this function is
application dependent, and could range from a more
biologically plausible smooth function to a more
simplistic step function. Here, we choose the latter,
with h(t)Z0 for t!4 days and h(t)Z1 otherwise, giving
an ‘exposed’ (infected but not infectious) period of
4 days. The choice of 4 days reflects the under-
lying pathobiology of the disease as described by
Defra Veterinary Surveillance (2006): it is assumed
that animals are infectious once disease-associated
lesions on the buccal mucosa and the coronary band
have formed and ruptured, this occurring 2–3 days
post-infection. An upper bound of 4 days is then used to
allow some time for the within-herd/flock epidemic to
establish, in accordance with the stated within-herd/
flock incubation time of 2–6 days. This gives our model
equivalence to the SEIR model specified in
Keeling et al. (2001). The total infectious pressure on
any susceptible j, immediately before its infection,
is therefore

tj Z b0 C
X

Ii!Ij!Ni

bijhðIjK IiÞC
X

Ni!Ij!Ri

b�ij ; ð2:3Þ

where Ik, Nk and Rk denote the infection, notification
and removal times of individual k, respectively. Note
the incorporation of b0 that accounts for a background
infection rate owing to factors other than those
explicitly modelled (e.g. another primary incursion).

To model the rate of notification conditional on an
infection, we use the following distribution:

FDðdÞZ eKaðeKbxK1Þ; ð2:4Þ

with parameters aZ0.005 and bZ0.6 fixed to give a
mean infection to notification time of 7.5 days
(Kypraios 2007).
2.3. Bayesian analysis

The methodology used in this analysis is based on
recently developed Bayesian techniques (Jewell et al.
in press) applied to more established models of disease
dynamics. We use a Bayesian approach since it allows
the incorporation of prior knowledge of the epidemic,
and provides a very natural framework to treat each
unobserved infection time. We then use a MCMC
algorithm to iteratively sample from the conditional
posterior distributions of the transmission parameters
qZ{b0,.,b5, j} and infection times I (detailed
information available in the electronic supplementary
material).

First, the Bayesian paradigm requires that both a
likelihood function (i.e. the likelihood of the data given
the parameters) and prior information (represented as
probability distributions) are specified. These are now
examined in turn.
J. R. Soc. Interface (2009)
The likelihood function is constructed by assuming
that the infection times constitute a time-inhomogeneous
Poisson process with the rate at any particular time
point equal to the sum of infectious pressures on
susceptibles at that point (equation (2.3)). This
pressure changes throughout the epidemic as new
infections occur, and current ones are notified and
removed. Notification times are then modelled, con-
ditionally on their respective infection times, by the
distribution in equation (2.4). This function then
provides a link between the observed notification
times and unobserved information. Considering m
known infections and [I ]-m occults (including DCs),
the form of the likelihood function is the following, with
details of its derivation available in section A.5 in the
electronic supplementary material:

f ðI ; qjN ;RÞ

Z
Y½I �

lZ1;lsk

ðtlÞ$exp
ðTobs

Ik

X½S�
jZ1;jsk

tj

 !
tK

dt

( )

!
Ym
lZ1

fDðNlK IlÞ!
Y½I �

lZmC1

ð1KFDðT lK IlÞÞ; ð2:5Þ

with k the index case, such that the likelihood is
conditional on the first detected case. fD($) is specified
in equation (2.4), with FD($) the corresponding
cumulative density function giving the probability
that Nj occurs after T l, where

T Z
Tobs if l is a true occult

Cl if l is a DC culled at time Cl

:

(

Prior distributions are now required for each of the
parameters in the model. For this, we turn to previous
studies as our source of prior information. Kypraios
(2007) provided a Bayesian analysis of the UK foot-
and-mouth outbreak in 2001 using a similar model from
which we take priors for b1, b2 and j. A combination of
the posterior distance kernel provided in Kypraios
(2007) and the empirical kernel provided by Savill et al.
(2006), which are remarkably consistent, inform our
choice of b3, b4 and b5. For each parameter, we use a
gamma distribution with mean and variance chosen to
match our prior information.

The joint posterior distribution of the unobserved
information (parameters and infection times) is then
proportional to the product of the likelihood and prior
probability distribution functions. If it were possible to
integrate this product over the whole parameter
(including infection time) space in order to find the
constant of proportionality, then a closed-form pos-
terior would be available. However, since the likelihood
is intractable to integration, an adaptive reversible-
jump MCMC algorithm is used to simulate samples
from the joint posterior (Jewell et al. in press).

The MCMC algorithm is an iterative process in
which alternately samples from the conditional
posterior of the parameters (given the data and current
(simulated) infection times) and the conditional
posterior of the infection times (given the data and
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Figure 1. The epidemic time line. The solid line shows the
current number of notified farms. The dashed line gives
the predicted median number of undetected infections, given
the available information up to that time.
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current parameter values). The important feature of
the MCMC for this study is that it is possible for the
algorithm to explore the possibility of susceptible
individuals, in fact, being infected—the occult infec-
tions. Briefly, occult infections can be regarded, from
the point of view of infectious pressure, as individuals
that have been infected, but have their notification and
removal times in the future. Thus, the only infectious
pressure they contribute to the system is, therefore,
from their infected state up until the analysis time. The
algorithm chooses a susceptible at random and proposes
an infection time based on the distribution in equation
(2.4). In concept, the likelihood is then queried to see,
first, whether the amount of infectious pressure in the
system at the proposed infection time supports the
possibility of the infection having occurred, and, second,
whether the subsequently increased infectious pressure
supports the observed data. If the occult is consistent
with the likelihood, then the proposal is accepted; if not,
it is rejected. Importantly, the MCMC also proposes the
reverse move—in other words, previously added occults
are also removed, again, in a probabilistic way. Since
infection times are treated as parameters in the Bayesian
sense, adding or removing occults amounts to moving
between models of different dimensions, and hence the
amount of time that the model spends in any one
dimension is equal to the probability of those occults
existing. The necessity of capturing these occult infec-
tions is encapsulated in the likelihood where it is easy to
see that for a given level of infectious pressure consistent
with the observed data, the presence of occults requires a
smaller per-pair infectious pressure than if they were
ignored. This is then, of course, reflected in the estimated
values of the parameters. Full details of how this
algorithm works are presented in section B in the
electronic supplementary material.
3. RESULTS

Our analysis of the 2007 FMD outbreak began once it
became apparent that the disease was concentrating
around the Surrey town of Egham. At a given time
point, the analysis provides a current prediction for the
number of occults, described as a probability distri-
bution, given the data available up to that time.
Beginning just after the detection of IP4, daily analyses
were carried out. Figure 1 shows the number of notified
individuals present on each day, as well as the median
predicted number of occults provided by the analysis.
For selected time points, figure 2 then gives the
probability that apparently uninfected farms are, in
fact, infected. This gives an estimate of the current
extent of the epidemic given the uncertainties in
parameter estimates and the routes of transmission.
Figure 2 shows that at each stage of the epidemic, the
greatest occult probabilities were associated with
premises close to the known IPs, and were those
with large numbers of cattle or sheep—in agreement
with qualitative understanding. Taken together with
figure 1, figure 2 also demonstrates how the algorithm
learns about the epidemic as data are gathered from the
field. The first map (13 September) is drawn based on
only four data points. The dataset here contains very
J. R. Soc. Interface (2009)
little information on spatial transmission since only two
farms are closer than 10 km, and results in a very diffuse
prediction which is heavily influenced by the priors (cf.
the fast-moving 2001 FMD outbreak). As the epidemic
progresses and the number of data points increases, so
does the quantity of statistical information, leading to a
more precise estimate (see Posteriors in the electronic
supplementary material). This is shown most strikingly
by the difference between 13 and 17 September where
just the addition of one data point drastically reduces
the median number of predicted undetected infections,
and correspondingly reduces the extent of the distri-
bution of high-probability premises. Moreover,
knowing in hindsight the time frame of the epidemic,
we see how the spatial distribution of high-risk farms
localizes towards the end, reflecting the fact that the
epidemic was being controlled effectively.

In terms of disease control, it is necessary to have an
idea on the extent of the resources needed to cope with
the outbreak. To answer this question, figure 3 shows the
predicted number of new infections in a period of 7 days
from the observation time. Consistent with the priors
and large amount of uncertainty, this prediction is high
early in the epidemic with wide 95% credibility intervals
ranging from 0 to 1196 new cases. However, this is soon
refined as the epidemic progresses to give the small value
consistent with the final outcome of the epidemic. We
postulate that, taken together, these results give an
overview of the extent of the epidemic, the short-term
risk posed by the presence of undetected infections and
the resource required for control measures.

From this ability to predict occult infections, we can
consider whether the Bayesian occult probabilities
provide a better guide for targeted control than other
measures. Table 1 gives the occult ranking of the last
four infected premises for dates in September before
their detection. For the Bayesian analysis, this ranking
simply sorts the undetected farms in the order of
highest probability, and this is compared with ranking
farms by their proximity to the closest known infected
premises. Table 1 reflects the same patterns that were
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Figure 3. Predicted numbers of new cases within a 7-day time
period after the observation time, given the available
information up to that time. Solid line, median; dashed line,
95% credibility interval.
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Figure 2. Probability of occult infections (dark green
circles, 0.005–0.010; light green circles, 0.011–0.050;
yellow circles, 0.051–0.100; light orange circles, 0.101–0.350;
dark orange circles, 0.351–1.000; red triangles, known IP; grey
circles, susceptibles) during the 2007 foot-and-mouth out-
break. For brevity, we show only a subset (after IPs 4–8, and a
week after IP8) of our analyses.
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observed in figure 2. In addition, table 1 indicates
the dynamic nature of risk to individual farms as the
epidemic progresses, with an individual’s rank increas-
ing as time progresses (according to its likely infection
date). For IP5, IP6 and IP8, the Bayesian algorithm
clearly outperforms the spatial measure, and is
roughly comparable for IP7. We also note that since
this method incorporates individual farm charac-
teristics, as well as spatial relationships, it should be
capable of discriminating between two close farms
with different characteristics. In considering this, we
looked at two farms within 0.5 km of each other, of
which IP7 was one. According to the database, IP7
holds just less than 20 cattle, whereas the other farm
holds over 300 sheep1. IP7 is, therefore, consistently at
higher risk than the other farm owing to the higher
susceptibility of cattle compared with sheep (e.g.
25% (rank 15) occult probability for IP7 versus 11%
1Data confidentiality prevents us from displaying precise farm-level
covariates. Therefore, here, we provide only one example of many.
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(rank 53) on the 17 September; 21% (rank 13) versus
3% (rank 35) on 21 September).

This ranking system is an oversimplified summary of
a complex Bayesian analysis and is only used for
comparison with the ad hoc spatial ranking system. In
reality, the use of these results requires consideration of
the Bayesian occult probabilities themselves (rather
than their ranks), with further consideration being given
to other factors that influence effective surveillance, such
as the centrality of occults in known contact networks
(Jewell 2008). Such model-based assessment will, of
course, never be a replacement for the detailed contact
tracing performed by veterinarians when identifying
DCs, but may help to direct additional resources.
4. DISCUSSION

The ‘epidemiological triangle’ is an important concept
in studying the spread of infectious diseases and states
that the characteristics of an outbreak depend on the
host, pathogen and environment in which they coexist
(Morens et al. 2004). Changes over time in one or more
of the three vertices are therefore likely to alter the
dynamics of outbreaks of the same disease recurring in
the population. This is demonstrated in the differences
between FMD outbreaks in 1967 and 2001 where large
differences in farming practices accounted for very
different patterns of transmission (Defra FMD infor-
mation http://www.defra.gov.uk/footandmouth), and
also in the recent 2007 outbreak that occurred in a
sparsely populated area of the country. This shows that
by basing predictions of epidemic spread simply on past
information, it is difficult to quantify how relevant they
are to the current outbreak. On the other hand, early in
the epidemic, there is inherently very little data from
the current epidemic on which to base a prediction.
A Bayesian analysis provides a framework for learning
about a current disease outbreak. At the beginning of
an epidemic, the prediction process begins with prior
information based on our past experience and expert

http://www.defra.gov.uk/footandmouth


Table 1. Occult risk ranking. (Rankings are calculated from Bayesian analysis (ba) occult probabilities (in parentheses) and by
spatial proximity to currently infected individuals (sp).) (Note that for an individual IP, the early (off-diagonal) ranks take into
account the fact that there is a higher probability of it not having yet been infected. See also §3).

IP method 13 Sep 17 Sep 21 Sep 24 Sep

IP5 ba 6 (0.56)
sp 11

IP6 ba 36 (0.18) 20 (0.22)
sp 14 30

IP7 ba 38 (0.17) 15 (0.25) 13 (0.21)
sp 6 14 10

IP8 ba 31 (0.20) 28 (0.16) 2 (0.36) 1 (0.33)
sp 24 42 2 10
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opinion, and then updates this by incorporating data
obtained from the field during the epidemic under
study. Using this methodology therefore provides a
very natural way to make as accurate a prediction as
possible, while quantifying the amount of uncertainty
we have about the quantities on which the predictions
are based.

The statistical methodology presented in this paper
aims to identify the presence of occult infections,
although it has at its core the aim of estimating disease
transmission parameters for a specified epidemic model.
When interpreting the results, it is important to realize
that the occults are identified probabilistically, meaning
that it is impossible to say from the data whether an
individual is definitely infected or not, only that it
might be infected with a given probability. Therefore,
we do not claim this methodology to be more effective
than manual contact tracing given the resource
available with which to carry it out. However, as
noted by Eames & Keeling (2003), if the resource
requirement is not sufficient to match the speed of the
epidemic, then the advantage of identifying DCs over
culling on a distance basis is lost (though we note that
this was not the case with FMD2007). It is in these
scenarios, for example a large FMD 2001-style out-
break, that our statistical method of identifying likely
infections is intended to improve upon a blanket-culling
policy, allowing prioritization of disease surveillance so
as to use suboptimal resources in the most efficient way.
Moreover, if a certain amount of contact-tracing
information were to be made available to us, it could
readily be used in our framework to provide, as our
preliminary results show, a marked increase in predic-
tion accuracy.

In this study, we have used static covariate data taken
from the 2006 agricultural census. However, it is known
that this dataset is highly dynamic, particularly in the
number of animals present on the farm (Robinson &
Christley 2006). Inaccuracies in the covariate data will
certainly have an effect on our predictions, which will be
noticeable in the case that the associated parameter
values are large. There are a number of possible ways to
overcome this limitation. First, the most preferable
solution would be to have the most up-to-date version of
Defra’s livestock database possible, requiring more
efficient data handling than is currently implemented
(Anderson 2008). Second, part of our current work is
looking at Bayesian methods to incorporate a measure of
J. R. Soc. Interface (2009)
uncertainty into the dataset itself. This will allow the
algorithm to integrate over the uncertainty that exists in
the dataset, and to reflect this in the joint posterior
distribution (parameters, infection times and occult
probabilities). Any predictions that we make will, of
course, be more uncertain owing to the increased
variance contributed by data uncertainty, but will
remain a true reflection of what is currently known
about the system. To improve on this uncertainty,
dynamic data, available as a result of field investigations,
should be included into the dataset. Our early results
suggest that incorporating contact-tracing data into the
analysis provides a large reduction in posterior uncer-
tainty, and therefore provides a very important source of
information. In practice, however, the usefulness of this
as yet unpublished methodology would depend on
efficient data acquisition from the field teams.

An important aspect of providing a ‘real-time’
analysis in any situation is algorithm run-time. For
our methodology, run-time is approximately pro-
portional to [S ][I ], with [I ] including both known and
occult infections. In order to deal with the potentially
large dimension of the statistical calculations,
the MCMC is parallelized by sharing the calculation
of the likelihood among multiple processors. A relation-
ship exists between the dimension of I and the number
of processors, with better parallel scalability being
achieved with larger datasets owing to Amdahl’s Law
(Kontoghiorghes 2006). However, the possibility of
scaling on massively parallel cluster machines com-
monly available in research establishments means that
even large-scale epidemics can be analysed using this
algorithm. In this study, for 1 000 000 iterations of the
MCMC on a twin dual-core 2.4 GHz AMD OpteronTM

machine (Sun Fire X4100 server), our algorithm took
51 min for the dataset on 13 September, and 30 min on
5 October, showing the effect of the occult infections on
algorithm run-time. Taking the former as an upper
bound on run-time, a linear scaling indicates a run-time
of approximately 18 days for a large outbreak of 2000
IPs such as FMD2001 on the same hardware. However,
this can easily be shortened to below our required run-
time by expanding the number of processors—even
using 150 processors is well within the capability of
typical university high-performance computers.

We have shown, therefore, that a fully Bayesian
approach to real-time inference on disease epidemics
is feasible in the agricultural context. To perform this,
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we have developed tailor-made MCMC methods,
which, although computationally intensive, can be
readily implemented on time scales short enough to
inform policy on a day-to-day basis. This provides a
framework for monitoring disease-control efforts, and
provides information to adapt policy in the event that
the outbreak does not behave as expected based on past
experience. Although the example presented here is of a
small outbreak that was contained quickly, the
methodology is equally applicable to larger epidemics
in more densely populated areas. In particular, since
more epidemiological data are available in these
situations, a likelihood-based approach such as ours
will perform significantly better, reducing posterior
uncertainty quickly, therefore giving an even greater
prediction accuracy. Since this work demonstrates its
capability in probabilistically identifying occult cases,
it is anticipated that such techniques will form the basis
of statistical contact tracing to provide a targeted
surveillance strategy even in the face of limited contact-
tracing resource.

We would like to thank the following individuals for their
assistance with this work: Dr Mike Tildesley and Dr Theodore
Kypraios. We thank Defra for the provision of data and
funding for this research. We also thank the Wellcome Trust
for funding part of this research (M.J.K.).
REFERENCES

Anderson, I. 2008. Foot and mouth disease 2007: a review and
lessons learned, London, UK: The Stationary Office. See
http://www.cabinetoffice.gov.uk/fmdreview.aspx.

Anderson, R. M. & May, R. M. 1991 Infectious diseases of
humans: dynamics and control. New York, NY: Oxford
University Press.

Chis-Ster, I. & Ferguson, N. 2007 Transmission parameters of
the 2001 foot and mouth epidemic in Great Britain. PLoS
One 2, e502. (10.1371/journal.pone.0000502)

Cowan, F. M., French, R. & Johnson, A. M. 1996 The role
and effectiveness of partner notification in STD control:
a review. Genitourin. Med. 72, 247–252.

Defra Veterinary Surveillance 2006. Full profile for foot and
mouth disease. Electronic. See http://www.defra.gov.uk/
animal/diseases/vetsurveillance/profiles/fmd-fullprofile.
pdf.

Donnelly, C. A. et al. 2003 Epidemiological determinants of
spread of causal agent of severe acute respiratory
syndrome in Hong Kong. The Lancet 361, 1761–1766.
(doi:10.1016/S0140-6736(03)13410-1)

Eames, K. T. D. & Keeling, M. J. 2003 Contact tracing and
disease control. Proc. R. Soc. B 270, 2565–2571. (doi:10.
1098/rspb.2003.2554)

Ferguson, N. M., Donnelly, C. & Anderson, R. 2001a
Transmission intensity and impact of control policies on
the foot and mouth epidemic in Great Britain. Nature 413,
542–548. (doi:10.1038/35097116)

Ferguson, N. M., Donnelly, C. A. & Anderson, R. M. 2001b
The foot-and-mouth epidemic in Great Britain: pattern of
spread and impact of interventions. Science 292,
1155–1161. (doi:10.1126/science.1061020)
J. R. Soc. Interface (2009)
Haydon, D. T., Kao, R. R. & Kitching, R. P. 2004 The UK
foot-and-mouth disease outbreak—the aftermath. Nat.
Rev. Microbiol. 2, 675–681. (doi:10.1038/nrmicro960)

Howard, S. C. & Donnelly, C. A. 2000 The importance of
immediate destruction in epidemics of foot and mouth
disease. Res. Vet. Sci. 69, 189–196. (doi:10.1053/rvsc.
2000.0415)

Jewell, C. P. 2008 Real-time inference and risk-predition for
notifiable diseases of animals. PhD thesis, University of
Warwick.

Jewell, C. P., Kypraios, T., Roberts, G. O., Christley, R.
In press. A novel approach to real-time risk-prediction
for emerging infectious diseases: a case study in Avian
Influenza H5N1. Prev. Vet. Med.

Kao, R. R. 2003 The impact of local heterogeneity on
alternative control strategies for foot-and-mouth disease.
Proc. R. Soc. B 270, 2557–2564. (doi:10.1098/rspb.2003.
2546)

Keeling, M. J. et al. 2001 Dynamics of the 2001 UK foot and
mouth epidemic: stochastic dispersal in a heterogeneous
landscape. Science 294, 813–818. (doi:10.1126/science.
1065973)

Kiss, I. Z., Green, D. M. & Kao, R. R. 2005 Disease contact
tracing in random and clustered networks. Proc. R. Soc. B
272, 1407. (doi:10.1098/rspb.2005.3092)

Kontoghiorghes, E. J. 2006 Handbook of parallel computing
and statistics. Boca Raton, FL: Chapman and Hall.

Kypraios, T. 2007 Efficient bayesian inference for partially
observed stochastic epidemics and a new class of semi-
parametric time series models, PhD. thesis, Department of
Mathematics and Statistics, Lancaster University,
Lancaster.

Morens, D. M., Folkers, G. K. & Fauci, A. S. 2004 The
challenge of emerging and re-emerging infectious diseases.
Nature 430, 242. (doi:10.1038/nature02759)

Neal, P. J. & Roberts, G. O. 2004 Statistical inference
and model selection for the 1861 Hagelloch measles epi-
demic. Biostatistics 5, 249–261. (doi:10.1093/biostatistics/
5.2.249)

O’Neill, P. D. & Roberts, G. O. 1999 Bayesian inference for
partially observed stochastic epidemics. J. R. Stat. Soc.
Ser. A 162, 121–129. (doi:10.1111/1467-985X.00125)

Riley, S. & Ferguson, N. M. 2006 From the cover: smallpox
transmission and control: spatial dynamics in Great
Britain. Proc. Natl Acad. Sci. USA 103, 12 637–12 642.
(doi:10.1073/pnas.0510873103)

Robinson, S. E. & Christley, R. M. 2006 Identifying temporal
variation in reported births, deaths and movements of
cattle in britain. BMC Vet. Res. 2, 11. (doi:10.1186/1746-
6148-2-11)

Ryan, E. et al. 2008 Clinical and laboratory investigations of
the outbreaks of foot-and-mouth disease in southern
England in 2007. Vet. Rec. 163, 139–147.

Savill, N. J., Shaw, D. J., Deardon, R., Tildesley, M. J.,
Keeling, M. J., Woolhouse, M. E., Brooks, S. P. &Grenfell,
B. T. 2006 Topographic determinants of foot and mouth
disease transmission in the UK 2001 epidemic. BMC Vet.
Res. 2, 3. (doi:10.1186/1746-6148-2-3)

The Royal Society 2002 Inquiry into infectious diseases in
livestock, Tech. rep.. London, UK: The Stationary Office.

Woolhouse, M. & Donaldson, A. 2001 Managing foot-and-
mouth. Nature 410, 515–516. (doi:10.1038/35069250)

http://www.cabinetoffice.gov.uk/fmdreview.aspx
http://dx.doi.org/doi:doi:10.1371/journal.pone.0000502
http://www.defra.gov.uk/animal/diseases/vetsurveillance/profiles/fmd-fullprofile.pdf
http://www.defra.gov.uk/animal/diseases/vetsurveillance/profiles/fmd-fullprofile.pdf
http://www.defra.gov.uk/animal/diseases/vetsurveillance/profiles/fmd-fullprofile.pdf
http://dx.doi.org/doi:10.1016/S0140-6736(03)13410-1
http://dx.doi.org/doi:10.1098/rspb.2003.2554
http://dx.doi.org/doi:10.1098/rspb.2003.2554
http://dx.doi.org/doi:10.1038/35097116
http://dx.doi.org/doi:10.1126/science.1061020
http://dx.doi.org/doi:10.1038/nrmicro960
http://dx.doi.org/doi:10.1053/rvsc.2000.0415
http://dx.doi.org/doi:10.1053/rvsc.2000.0415
http://dx.doi.org/doi:10.1098/rspb.2003.2546
http://dx.doi.org/doi:10.1098/rspb.2003.2546
http://dx.doi.org/doi:10.1126/science.1065973
http://dx.doi.org/doi:10.1126/science.1065973
http://dx.doi.org/doi:10.1098/rspb.2005.3092
http://dx.doi.org/doi:10.1038/nature02759
http://dx.doi.org/doi:10.1093/biostatistics/5.2.249
http://dx.doi.org/doi:10.1093/biostatistics/5.2.249
http://dx.doi.org/doi:10.1111/1467-985X.00125
http://dx.doi.org/doi:10.1073/pnas.0510873103
http://dx.doi.org/doi:10.1186/1746-6148-2-11
http://dx.doi.org/doi:10.1186/1746-6148-2-11
http://dx.doi.org/doi:10.1186/1746-6148-2-3
http://dx.doi.org/doi:10.1038/35069250

	Predicting undetected infections during the 2007 foot-and-mouth disease outbreak
	Introduction
	Data and methods
	Data
	Model construction
	Bayesian analysis

	Results
	Discussion
	We would like to thank the following individuals for their assistance with this work: Dr Mike Tildesley and Dr Theodore Kypraios. We thank Defra for the provision of data and funding for this research. We also thank the Wellcome Trust for funding part ...
	References




