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Networks of person-to-person contacts form the substrate along which infectious diseases
spread. Most network-based studies of this spread focus on the impact of variations in degree
(the number of contacts an individual has). However, other effects such as clustering,
variations in infectiousness or susceptibility, or variations in closeness of contacts may play a
significant role. We develop analytic techniques to predict how these effects alter the growth
rate, probability and size of epidemics, and validate the predictions with a realistic social
network. We find that (for a given degree distribution and average transmissibility)
clustering is the dominant factor controlling the growth rate, heterogeneity in infectiousness
is the dominant factor controlling the probability of an epidemic and heterogeneity in
susceptibility is the dominant factor controlling the size of an epidemic. Edge weights
(measuring closeness or duration of contacts) have impact only if correlations exist between
different edges. Combined, these effects can play a minor role in reinforcing one another, with
the impact of clustering the largest when the population is maximally heterogeneous or if the
closer contacts are also strongly clustered. Our most significant contribution is a systematic
way to address clustering in infectious disease models, and our results have a number of
implications for the design of interventions.
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1. INTRODUCTION

Recently, H5N1 avian influenza and SARS have raised
the profile of emerging infectious diseases. Both can
infect humans, but have a primary animal host.
Typically, such zoonotic diseases emerge periodically
into the human population and disappear (e.g. Ebola,
hantavirus, rabies), but sometimes (e.g. HIV) the
disease achieves sustained person-to-person spread.
With the advent of modern transportation networks,
diseases that formerly emerged in isolated villages
and died out without further spread may now
spread worldwide.

A number of interventions are available to control
emerging diseases, each with distinct costs and benefits.
To design optimal policies, we must address several
related, but nevertheless distinct, questions. How fast
would an epidemic spread? How likely is a single
introduced infection to result in an epidemic? How
many people would an epidemic infect? We quantify
these using R0, the basic reproductive ratio, which
measures the average number of new cases each
infection causes early in the outbreak; P, the proba-
bility that a single infection sparks an epidemic; and A,
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the attack rate or fraction of the population infected in
an epidemic. Understanding these different quantities
and what affects them helps us to select policies with
maximal impact for given cost.

Many different models are used to study disease
spread. Perhaps the most important decision in
developing a model is how the interactions of the
population are represented. Owing to the complexity of
the population, it is invariably necessary to make
simplifying assumptions. The errors (and therefore the
conclusions) resulting from many of these approxi-
mations are not well quantified. In this paper, we will
focus on quantifying the impact of clustering (the
tendency to interact in small groups) and individual-
scale heterogeneity on the spread of an epidemic.

Based on how they handle clustering, models for
population structure fit into a hierarchy of three classes
(which in turn may be subdivided). At the simplest
level, the population is assumed to mix without any
clustering. Most existing models fall into this category.
At the most complex level, agent-based models are
used: the movements of each individual are tracked and
people who are in the same location are able to infect
one another. These models typically require significant
resources to develop, and the clustering is explicitly
included. An intermediate level of complexity attempts
to introduce the clustering as a parameter (or several
parameters). Usually these models consider clustering
doi:10.1098/rsif.2008.0524
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only in terms of the number of triangles in a network,
but as we shall see, other structures may play a role.

Before introducing the details of our model, we
review some previous work. All the models we consider
are susceptible–infected–recovered (SIR) epidemic
models (Anderson & May 1991), in which individuals
begin susceptible, become infected by contacting
infected individuals and finally recover with immunity.

For unclustered populations, ordinary differential
equation (ODE) models were among the earliest models
used (Kermack & McKendrick 1927) and remain the
most common. They are deterministic, and so cannot
directly calculate P, but they give insights into the
factors controlling R0 and A. Because they assume
mass-action mixing, it is difficult to incorporate
individual heterogeneity in the number of contacts.
More recently, some network-based models have been
introduced for unclustered populations (Andersson
1998; Newman 2002; Meyers et al. 2005, 2006;
Kenah & Robins 2007; Miller 2007; Meyers 2007).
These models represent the population as nodes with
edges between nodes representing contacts, along which
disease spreads stochastically. Heterogeneity in the
number of contacts is introduced by modifying the
degree (number of edges) of each node. By neglecting
clustering, these studies are able to make analytic
predictions through branching process arguments.
A recent sociological study (Mossong et al. 2008) has
used surveys with participants recording the length and
nature of their contacts. These data are valuable for
providing the contact distribution needed for the above
network models, and allow us to apply network results
to real populations. However, these data do not directly
tell us anything about the clustering of the population
resulting from family/work/other groups. Other recent
work by Kenah & Robins (2007) and Miller (2007)
analytically addresses the impact of heterogeneity in
infectiousness and susceptibility inunclusterednetworks.

Using agent-based simulations (Eubank et al. 2004;
Barrett et al. 2005; Ferguson et al. 2005; Del Valle et al.
2006; Germann et al. 2006; Ajelli & Merler 2008) allows
us to directly incorporate clustering. In these
simulations, the population is a collection of individuals
who move and contact one another. The modeller has
complete control over the parameters governing
interactions and how the disease spreads. This allows
us to study many effects, but introduces many
parameters. It is difficult to test the accuracy of the
assumptions used to generate these models and to
extract which parameters are essential to the disease
dynamics. The expense of developing these simulations
is frequently prohibitive.

In this paper, we introduce a systematic approach for
calculating the impact of clustering and quantifying the
error. Because our model investigates disease spread in
clustered networks, we provide a more detailed review
of previous work on clustering and disease. A few
investigations have been made into the interaction of
clustering with disease spread using network models.
The attempts that have been made (Keeling 1999;
Newman 2003a; Serrano & Boguñá 2006a,b; Britton
et al. 2007; Eames 2008) typically use approximations
whose errors are not quantified, resulting in apparently
J. R. Soc. Interface (2009)
contradictory results. A few papers (Kuulasmaa 1982;
Trapman 2007; Miller 2008) have considered clustering
and heterogeneities, rigorously showing that increased
heterogeneity tends to decrease P and A, but without
quantitative predictions. Recently, Eames (2008) has
considered the spread of epidemics in a class of random
networks for which the number of triangles could be
controlled. It may be inferred from his fig. 3 that
clustering decreases the growth rate and that sufficient
clustering can increase the epidemic threshold.
However, at small and moderate levels, clustering
appears not to alter the final size of epidemics
significantly. Similar observations have been made by
Bansal (2008). At first glance, this contradicts the
observations of Serrano & Boguñá (2006a,b) that
clustering significantly reduces the size of epidemics,
but that sufficiently strong clustering reduces the
epidemic threshold (see also Newman 2003a), allowing
epidemics at lower transmissibility. The discrepancy
in epidemic size may be resolved by noting that the
networks in Serrano & Boguñá (2006a,b) have low
average degree. We will see that clustering affects the
size only if the typical degree is small or clustering is
very high. The apparent discrepancy in epidemic
threshold with strong clustering may be resolved by
noting that the form of strong clustering considered by
Serrano & Boguñá (2006a,b) forces preferential contacts
between high-degree nodes. The reduction in epidemic
threshold is perhaps better understood in terms of
degree–degree correlations than in terms of clustering.

In this paper, we develop techniques to incorporate
general small-scale structure (beyond triangles) into
the calculations of R0, P and A. To calculate R0, we
develop a systematic series expansion that allows us to
interpolate between unclustered and clustered results
by including more terms. To calculate P and A, we use
a similar approach, but give only the estimates on the
size of correction terms. Our methods give us a rigorous
means to understand how the unclustered results relate
to more realistic populations, and our results resolve
the apparent discrepancies mentioned above. Our
theory accurately predicts epidemic behaviour in a
more realistic contact network derived from an agent-
based simulation of Portland, Oregon, by EpiSimS
(Del Valle et al. 2006). We expand this to investigate
the interplay of clustering, heterogeneities in indivi-
dual infectiousness or susceptibility, and variations in
edge weights in their effects on R0, P and A.

The paper is organized as follows: §2 describes our
model and networks and summarizes earlier work on
unclustered networks. These results will be the leading-
order terms for our expansions for clustered networks in
the remainder of the paper. Section 3 considers how
epidemics spread in a clustered network assuming
homogeneous transmission. We derive the corrections
to R0 and show that the corrections to P and A are
insignificant unless the typical degree is small or
clustering very high. Section 4 considers epidemics in
clustered networks with heterogeneous infectiousness
or susceptibility, building on §3. Section 5 extends this
further to consider epidemics spreading on clustered
networks with weighted edges. Edges with large
weights tend to occur in family or work groups, which
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Figure 1. A sample network and several stages of an outbreak. Nodes begin susceptible (small circles), become infected (large
open circles), possibly infecting others along edges, and then recover (large filled circles). The outbreak finishes when no infected
nodes remain.
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magnifies the impact of clustering. Finally, §6 discusses
the implications of our results, particularly for design-
ing interventions. We conclude that, in general,
heterogeneity significantly impacts P and A, but not
R0, while clustering impactsR0 significantly, but not P
and A. Heterogeneity or edge weights may enhance the
impact of clustering.
2. FORMULATION

2.1. The disease model

We consider the spread of a disease using a discrete SIR
model on a static network G. Nodes of G represent
individuals and edges represent (potentially infectious)
contacts. The contact structure of the network is fixed
during the course of the outbreak. The degree k of a node
u is the number of edges containing u. Figure 1 shows a
sample outbreak. For a single infection, the index case is
chosen uniformly from the population to begin an
outbreak. Infection spreads along an edge from an
infected node u to a susceptible node v with probability
Tuv, the transmissibility. The time it takes for infection
and recovery to occur may vary but does not affect our
results. Once u recovers it cannot be reinfected.
Typically, for a large random network with a population
ofNZjGj nodes, the final size of outbreaks is either large,
with O(N ) cumulative infections, or small, with
O(log N ) infections (Bollobás 2001). Large outbreaks
are epidemics and small outbreaks are non-epidemics.
2.1.1. Transmissibility. A number of factors influence
the transmissibility from u to v such as the viral load and
duration of infection of u, the vaccination history and
general health of v, the duration and nature of the contact
between u and v and characteristics of the disease.

For each node u, we denote its ability to infect others
by Iu and its ability to be infected by Su. Each edge has
a weight wuv. The parameter a measures disease-
specific quantities. In most of our calculations, we
assume that these are scalars and follow Del Valle et al.
(2007) and Miller (2007), setting

Tuv ZTðIu;Sv;wuvÞZ 1KeKaIuSvwuv : ð2:1Þ
If all contacts are identical, wuv may be absorbed into a

Tuv ZTðIu;SvÞZ 1KeKaIuSv : ð2:2Þ
Note that Tuv is a number assigned to an edge, while
TðIu;SvÞ is a function that states what the transmis-
sibility between two nodes would be if they shared
an edge.
J. R. Soc. Interface (2009)
With mild abuse of notation, we denote the
probability density functions (pdfs) of I , S and w by
P(I), P(S) and P(w), respectively. We assign I and S
independently, but allow w to be assigned either
independently or based on observed contacts (i.e. by
observing contacts in a population, we may create a
static network with edge weights assigned based on the
observed contact). If w is assigned independently, then
it is possible to eliminate edge weights from the analysis
by marginalizing over the distribution of weights.
However, if weights are not independent (for example
work or family contacts tend to have correlated
weights), then the details of the distribution and the
correlations are important.

Given the infectiousness Iu of node u, we follow
Miller (2007, 2008) and define its out-transmissibility

ToutðuÞZ
ðð

TðIu;S;wÞPðSÞPðwÞdS dw: ð2:3Þ

This is the marginalized probability that u infects a
randomly chosen neighbour given Iu. From the
definition of Tout and the pdf P(I), we can calculate
the pdf Qout(Tout). We symmetrically define the
in-transmissibility Tin and its pdf Qin(Tin).

We denote the average of a quantity by h$i. The
average transmissibility hT i is

hTiZ
ððð

TðI ;S;wÞPðIÞPðSÞPðwÞdI dS dw: ð2:4Þ

2.1.2. Epidemic percolation networks. Rather than
studying outbreaks as dynamic processes on networks,
we may consider them in the context of epidemic
percolation networks (EPNs; Kenah & Robins 2007a,b;
Miller 2008). The EPN framework allows us to study
epidemics as static objects and is useful for quickly
estimating R0, P and A. In this section, we summarize
properties of EPNs; more details are provided in
Kenah & Robins (2007), Miller (2007, 2008) and in
§A of the electronic supplementary material.

Once the properties of the nodes and edges are
assigned, an EPN E is created as follows: we place each
node of G into E. For each edge {u,v} in G, we place
directed edges (u,v) and (v,u) into E independently with
probabilityTuv andTvu, respectively. The nodes infected
in an outbreak correspond exactly to those nodes that
may be reached from the index case following the edges
of E. More specifically, the distribution of out-
components of a node u in different EPN realizations
matches the distribution of outbreaks resulting from
different epidemic realizations in the original model
with u as the index case. It may be shown that the
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distributions of out- and in-component sizes give us
information about the probability of nodes to start an
epidemic or become infected in an epidemic. We will see
that in a large population the structure of a single EPN
can be used to accurately estimate R0, P and A.

Once we create an EPN and choose the index case,
we define the rank of node v as the length of the shortest
directed path from the index case to v.1 If no such path
exists, v is never infected.

Interchanging all arrow directions interchanges
P and A. This means that if we can calculate P, then
A may be calculated by the same technique, but with
the direction of infection reversed. Owing to this, we
focus our attention on calculating P and apply the same
methodology to calculateA. An important consequence
is that if T is constant, then PZA (Newman 2002;
Miller 2007).
2.1.3. The basic reproductive ratio. We expect that
epidemics are possible if and only if the basic
reproductive ratio R0 is greater than 1. That is, if an
average infection causes more than one new case, an
epidemic may occur, but otherwise the outbreak dies
out quickly. However, this use of R0 is not consistent
with the typical definition: the average number of new
infections caused by a single infected individual
introduced into a fully susceptible population, which
gives R0ZhTihki. A more appropriate definition is the
average number of new infections caused by infected
individuals early in outbreaks. The distinction is subtle,
but results from the fact that whether an outbreak can
grow depends on whether the people of low rank infect
more than one person each (Diekmann et al. 1990).
Low-rank individuals may be different from the average
individual. Most obviously, they have more contacts
(Feld 1991; Newman 2002); but with clustering, they
also have a disproportionately large fraction of neigh-
bours infected or recovered.

In order to quantify R0 more rigorously, we first
defineNr to be the number of people of rank r for a given
outbreak simulation. We then define the rank repro-
ductive ratio

R0;r Z
E½NrC1�
E½Nr �

ð2:5Þ

to be the expected number of new cases caused by a
rank r node (averaged over all possible outbreak
realizations). R0;0ZhTihki corresponds to the usual
definition ofR0. In practice, we find that R0,r reaches a
plateau quickly as r increases before eventually
decreasing as the finite size of the population becomes
important. Consequently, an improved definition of R0

is the limit ofR0,r as r grows, subject to the assumption
that R0,r is unaffected by the finite size of G. This gives
(cf. Trapman 2007)

R0 Z lim
r/N

lim
jGj/N

R0;r ð2:6Þ
1We follow Ludwig (1975) in using the term rank rather than
generation which has been used elsewhere, but is potentially
ambiguous. The rank is the smallest number of infectious contacts
between the index case and a node. It is possible that a different path
takes less time. The path infection actually follows is the path that is
shorter in time, rather than number of links.
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and generalizes the definition given by Diekmann et al.
(1990) for ODE models. Under this definition, epi-
demics are possible if R0O1, but not if R0!1. We
discuss this further in §B of the electronic supple-
mentary material. In a large population, considering
multiple index cases with a single EPN gives a good
estimate of E½Nr � and hence R0,r.
2.2. Configuration model networks

We consider two different types of networks. The first is
a class of (unclustered) random networks for which we
can derive analytic results based only on the degree
distribution. These analytic results will form the
leading-order term of our perturbation expansions. The
second is a more complicated network resulting from an
agent-based simulation, which we will use to demon-
strate the accuracy of our perturbation expansions.

Our random networks are created by an algorithm
that has been discovered independently a number

times (e.g. Molloy & Reed 1995). These have
come to be called configuration model
(CM; Newman 2003b) networks. These networks

are

maximally random given the degree distribution. As
the number of nodes in a CM network grows, the
frequency of short cycles becomes negligible. The
resulting lack of clustering allows us to calculate
analytic results for epidemics. We briefly discuss these
results assuming T is constant. More details are in
Andersson (1998), Newman (2002), Meyers et al.
(2006), Kenah & Robins (2007), Marder (2007),
Miller (2007) and Noël et al. (2009) and §C of the
electronic supplementary material (which also
addresses edge weights).

In the early stages of an outbreak in a CM network,
the probability that a newly infected (non-index case)
node has degree k is kP(k)/hki. Clustering is unim-
portant and so the node will have kK1 susceptible
neighbours, regardless of its rank. Thus, the expected
number of infections caused by a newly infected node is

R0 ZT
hk2Kki
hki : ð2:7Þ

To calculate the probability P that infection of a
randomly chosen index case results in an epidemic, we
instead calculate the probability fZ1KP that it does
not. Then f is the probability that each neighbour of the
index case is either not infected, or infected but does not
start an epidemic. Defining h to be the probability that
a secondary case does not start an epidemic,

f Z
X
k

PðkÞ½1KT CTh�k : ð2:8Þ

We find a similar relationship for h, except that the
probability for a secondary case to have degree k is
kP(k)/hki and only kK1 neighbours are susceptible

h Z
1

hki
X
k

kPðkÞ½1KT CTh�kK1: ð2:9Þ

We solve this recurrence relationship for h numerically,
and use the result to find f. P follows immediately.
Because T is constant, this also givesA (Newman 2002;
Miller 2007).

of
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Figure 2. (a,b) Simulated values of the rank reproductive ratioR0;rZE½NrC1�=E½Nr � for rZ0,., 4 using an EPN from the (fixed)
EpiSimS network with a homogeneous population, compared with the unclustered prediction. (b) At small T, R0,1–R0,4 match
the unclustered prediction (black solid curve, unclusteredR0 prediction; black dashed curve,R0,0; grey solid curve,R0,1; dotted
curve,R0,2; dot-dashed curve,R0,3; grey dashed curve,R0,4). Each data point for hT i%0.5 is for 105 index cases in a single EPN,
while each data point for TO0.5 is for 103 index cases. Noise becomes less significant at larger r.
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If T is not constant, the calculation becomes more
difficult, and is discussed further in §C of the electronic
supplementary material and Kenah & Robins (2007)
and Miller (2007). In general, if T can vary for
CM networks, R0ZhTihk2Kki=hki, while the values
calculated assuming constant T give upper bounds for
P and A.
Figure 3. Different options for paths of length 2 between nodes
u and v : (a) nuvZ4, xuvZ1; (b) nuvZ4, xuvZ0.
2.3. The EpiSimS network

We are interested in understanding the impact of
clustering on disease spread. The term clustering is
rather vague, and is usually measured by the number of
triangles in a network (Watts & Strogatz 1998).
However, any sufficiently short cycles impact the
spread of an infectious disease. For our purposes, we
think of a clustered network as a network with enough
short cycles to impact disease dynamics.

It is relatively simple to measure the degree distri-
bution of a population using survey methods. We can
easily calculate R0, P and A for a CM network with the
same degree distribution, but the errors between these
values and the values for the original clustered network
are unknown. Our goal in this paper is to develop
analytical techniques to quantify these errors.

To test our predictions, we turn to an agent-based
network derived from a single EpiSimS (Eubank et al.
2004; Barrett et al. 2005; Del Valle et al. 2006)
simulation of Portland, Oregon. The simulation
includes roads, buildings and a statistically accurate
(based on census data) population of approximately
1.6 million people who perform daily tasks based on
population surveys. This gives a highly detailed knowl-
edge of the interactions in the synthetic population.
The degree distribution and contact structure emerge
from the simulation. The resulting network has
significant clustering and average degree of approxi-
mately 16. More details are in §D of the electronic
supplementary material.
3. CLUSTERED NETWORKS WITH
HOMOGENEOUS NODES

In this section, we assume that the population is
homogeneous and all contacts are equally weighted.
Consequently, transmissibility is constant: TuvZT
J. R. Soc. Interface (2009)
for all edges. It follows that PZA (Newman 2002;
Miller 2007). We develop a predictive theory for R0, P
and A and test the theory with simulations on the
EpiSimS network. We begin with R0.
3.1. The basic reproductive ratio

The simulated rank reproductive ratio R0,r is shown in
figure 2 for 0%r%4. At all values of T, R0;0ZThki is
clearly distinct from R0,r, rO0 (which are close
together). For rO0, R0,r is asymptotic to the unclus-
tered approximation Thk2Kki/hki as T/0. This is
because at small T the disease only rarely follows all
edges of short cycles and so clustering has no impact. As
T increases, these curves lie significantly below the
unclustered approximation, because clustering reduces
the number of available susceptibles. R0,4 peels away
from R0,1, R0,2 and R0,3 for larger T because the
population is finite, and so the number of susceptibles
available to infect after rank 4 is reduced. In larger
populations, R0,4 would not deviate.

We conclude that R0,r converges quickly, and that
R0,1 is a good approximation toR0, butR0,0 is not. This
implies that the network has an important structure
contained in the paths of length 2, but not in the paths
of length 3. This fortunate observation allows us to
approximate R0 by R0,1, which we may analytically
calculate with relative ease (R0,r becomes combinato-
rially hard as r grows). To find R0;1ZE½N2�=E½N1�, we
first note that E½N1�ZThki. Calculating E½N2� is more
difficult: consider all pairs of nodes u and v with at least
one path of length 2 between them. Let nuv be the
number of paths of length 2 between u and v and cuv be
an indicator function: cuvZ1 if {u,v} is an edge and
cuvZ0 if it is not (figure 3). The probability that an
infection of u results in infection of v in exactly two
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steps is ½1Kð1KT2Þnuv �½1KT �cuv . Summing this over all
pairs yields (where N is the size of the population and
each pair u and v appears twice)

E½N2�Z
1

N

X
u

X
vsu

½1Kð1KT2Þnuv �½1KT �cuv ;

which allows us to calculate R0,1 exactly. This sum is
straightforward to calculate, but we can increase our
understanding with a small T expansion. We approxi-
mate E½N2� for T/1 by

E½N2�Z
1

N

X
u

X
vsu

T2nuvð1KTÞcuv

K
nuv

2

 !
T4 COðT5Þ

ZT2hk2KkiK2T3hnOiKT4hn,iCOðT5Þ;

where hnOiZ1=N
P

u

P
vsunuvcuv is the average

number of triangles each node is in, and hn,iZ� �

1=N

P
u

P
vsu

nuv

2
is the average number of squares

each node is in (cf. Hastings 2006). Higher order terms
2Early noise controls how quickly outbreaks become epidemics, and so
once stochastic effects become small, the curves appear to be
translations in time. We note that it is common to consider the
temporal average of a number of outbreaks. However, prior to taking
an average, the curves should be shifted in time so that they coincide
once the stochastic effects are no longer important. Failure to do so
underestimates the early growth, peak incidence and late decay, while
it overestimates the epidemic duration. This can lead to an incorrect
understanding of ‘typical’ outbreaks.
involve more complicated shapes. This gives

R0;1 Z
hk2Kki
hki TK

2hnOi
hki T2K

hn,i
hki T3 CO T4

hki

� �
:

ð3:1Þ

At the leading order, we recover the unclustered
prediction for R0, reflecting the fact that at small T the
probability the outbreak follows all edges of a cycle is
negligible. AsT increases, the first corrections are due to
triangles, then squares, then pairs of triangles sharing an
J. R. Soc. Interface (2009)
edge and sequentially larger and larger structures made
up of paths of length 2. A comparison of these
approximations with the exact value is shown in figure 4.

Although we have defined R0 for an ensemble of
realizations, figure 5 shows that R0,1 accurately
predicts the observed ratio NrC1/Nr for individual
simulations once the outbreaks are well established.
Early in outbreaks, the behaviour is dominated by
stochastic effects, and so the ratio of successive rank
sizes is noisy. Once the outbreak has grown large
enough, random events become unimportant and the
ratio settles at R0,1.

2

3.2. Epidemic probability and size

In order to assess the effect of clustering on P andA, we
compare epidemics on the EpiSimS network with the
analytic predictions derived assuming a CM network of
the same degree distribution in figure 6. The epidemic
threshold is not notably altered, and the values ofP and
A are almost indistinguishable from the predictions
made assuming no clustering, despite the large amount
of clustering in the network.

Although initially surprising, these results may be
understood intuitively as follows: if T is large enough
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Figure 6. Probability P and attack rate A of epidemics for the
(clustered) EpiSimS network (pluses) versus T, compared with
the prediction derived from the degree distribution assuming
no clustering. Each data point is from a single EPN (the
variation in P resulting from different EPNs is negligible).

3If P is small, then the relative change may be large, but the absolute
change is small.
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that the disease follows all edges of a short cycle, then
some other edge from a node of that cycle is likely to
start an epidemic and the cycle does not prevent an
epidemic. On the other hand, if T is smaller so that it
does not follow all edges of a cycle, then the disease
never sees the existence of the cycle, and the outbreak
progresses as if there were no cycle.

To make this more rigorous, we first look at the
epidemic threshold. We assume that R0 is well
approximated by R0,1. Let T0Zhki/hk2Kki be the
threshold without clustering and T0CdT be the
threshold found by including the correction due to
triangles. From equation (3.1), it follows that

dT

T0

Z
2hnOihki
hk2Kki2

CO 2hnOihki
hk2Kki2
� �2� �

: ð3:2Þ

Because a given node of degree k is contained in at most
(k2Kk)/2 triangles, we conclude 2hnOi/hk2Kki%1. So
if hki/hk2Kki is small, then the leading-order term of
equation (3.2) is small and triangles do not significantly
alter the epidemic threshold regardless of the density of
triangles. For the EpiSimS network, hki/hk2Kki takes
the value 0.046, and so we do not anticipate clustering
to play an important role in determining the threshold.

Above threshold, we assume that P may be
expanded much as (3.1)

P ZP0 CP1hnOiCP2hnOi2 C/CQ1hn,iC/;

ð3:3Þ

where P0 is the epidemic probability in a CM network
of the same degree distribution. Although calculating
R0,1 only requires information about the nodes of
distance at most two from the index case, P may
depend on the effects occurring at larger distance, and
so the expansion has many additional terms. In general,
we expect that if the average degree is large, then the
various coefficients of the correction terms are all small.
The larger a structure is, the smaller we expect its
corresponding coefficient to be. The coefficient for
triangles P1 may be found by

P1hnOiZK
1

N

X
u2G

X
O2G

p̂OðuÞ;
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where p̂OðuÞ is the probability that a given triangle
prevents an epidemic if u is the index case (regardless of
whether u is part of the triangle). Reversing the order of
summation, we get

P1hnOiZK
NO

N

X
u2G

p̂OðuÞ
* +

O

ZK
1

3
hnOi

X
u2G

p̂OðuÞ
* +

O

;

where NO is the number of triangles in G and h$iO is
the average of the given quantity taken over all
triangles. Thus

P1 ZK
1

3

X
u2G

p̂OðuÞ
* +

O

;

and we can find P1 by considering the average effect of a
single triangle in an unclustered network.

To calculate the impact of a triangle with nodes u, v
and w on P for a given network, we consider that
triangle and a randomly chosen edge {x,y} elsewhere in
the network. If we replace the edges {v,w} and {x,y}
with {v,x} and {w,y}, then we have a new network
without the triangle, but with the same degree
distribution. We must estimate the expected change
in P caused by switching the edges.

We begin by assuming that u is the index case. The
triangle can affect P only if the infection tries to cross
all three edges, that is if the infection process ‘loses’ an
edge because of clustering. This may happen in three
distinct ways. In the first, node u infects both v and w,
and then v and/or w tries to infect the other. In the
second, u infects v but not w, then v infects w and finally
w tries to infect u. The third is symmetric to the second
(with u infecting w).

To leading order we can ignore other short cycles,
so the probability that an edge leading out of u (not to
v or w) will not cause an epidemic is gZ1KTCTh,
where h (as before) is the probability that a randomly
chosen secondary case does not cause an epidemic in an
unclustered network and can be calculated using
equation (2.9).

We perform a sample calculation with the first case:
u infects both v and w. Assume that u has degree ku, v
has degree kv and w has degree kw. The probability that
u infects both v and w without some other edge leading
from u, v or w starting an epidemic is T2gkuCkvCkwK6. If
the {v,w} edge were broken and v and w were joined to x
and y, respectively (figure 7), then the new probability
of u to infect both v and w without an epidemic becomes
T2gkuCkvCkwK4. The difference is T2gkuCkvCkwK6ð1Kg2Þ,
which is the product of three terms, all at most 1. If the
sum kuCkvCkw is moderately large, then either
gkuCkvCkwK6/1 or 1Kg2/1 (if g is not close to 1
then the first term is small, otherwise the second term is
small). Thus, the triangle has little impact on the
epidemic probability in this case.3 Similar analysis
applies to the other two cases where the w to u or v to u
infections are lost. Provided the typical sum of degrees
of nodes in a triangle is relatively large, the probability



Figure 7. Replacing the edges {v,w} and {x,y} with {v,x} and {w,y} breaks the triangle and allows more infections, without
affecting the degree distribution.
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of an epidemic when the index case is in the triangle is
not impacted significantly.

If the index case is not part of the triangle, then the
above analysis is modified because we must also
consider each node in the path from the index case to
the triangle. We must first calculate the probability
that infection reaches a node in the triangle while
simultaneously no intermediate node sparks an epi-
demic, and then we calculate the probability as above
that the triangle prevents an epidemic. If the index case
is u1 and the path from u1 to the triangle goes through
u2,., un and then reaches u, then the probability that
the triangle prevents an epidemic p̂ðu1Þ is given by

TnðgK2nC
P

i
kui Þp̂ðuÞ. This falls off very quickly, and so

nodes not in the triangle are unimportant, unless
typical degrees are small.

By contrast, in a network with small average degree
and a significant number of triangles, this becomes
significant. This explains the observations of Serrano &
Boguñá (2006a,b) who use networks with average degree
less than 3 and find that clustering significantly altersA.

It is tempting to generalize our conclusion and state
that if the average degree is large, clustering has no
impact on P or A. However, there are a number of
counter-examples: consider a network made up of
isolated cliques with Nc nodes, then in expansion
(3.3), the coefficient for cliques of Nc nodes will not be
small. Consequently, care must be taken when using
such an expansion to ensure that neglected terms
resulting from larger scale structures are in fact
negligible. For social networks, we generally anticipate
this highly segregated situation to be unimportant.

We conclude that for most reasonable networks,
clustering is only important for P and A if the typical
degrees of nodes are low in which case R0 is small. A
consequence of these results is that if R0 is moderately
large, then P and A are effectively unaltered by
clustering. If R0 is small, however, clustering may or
may not play a role in determining P and A, depending
on whether R0 is small because the degrees are small or
T is small.
4. CLUSTERED NETWORKS WITH
HETEROGENEOUS NODES

When we drop the assumption of constant transmissi-
bility, disease spread becomes more complicated. If I is
heterogeneous and u infects a neighbour, then the a
posteriori expectation for Tout(u) becomes higher: it is
J. R. Soc. Interface (2009)
likely to infect more neighbours. This accentuates the
effect of short cycles, enhancing the impact of clustering
on R0, P and A. A similar argument applies with
heterogeneity in S: if v is not infected by one of its
neighbours, then the a posteriori expectation for Tin(v)
becomes lower: it is less likely to be infected by other
neighbours, and so has multiple opportunities to
prevent an epidemic. Again this accentuates the effect
of short cycles.

In this section, we investigate how varying the
infectiousness and susceptibility of nodes in the
EpiSimS network enables clustering to alter the values
of R0, P and A. We will make use of the ordering
assumption and its consequences from Miller (2008):
if u1 is ‘more infectious’ than u2 in a given instance
(or v1 ‘more susceptible’ than v2), then u1 is always
more infectious than u2 (or v1 always more susceptible
than v2). More specifically, the ordering assumption
states that Tout(u1)OTout(u2) if and only if TðIu1

;SÞR
TðIu2

;SÞ for all S, with inequality for some S, and the
corresponding statement for Tin. The results of Miller
(2008) show that if the ordering assumption holds,
heterogeneity tends to reduce P and A, and the upper
bounds on P and A correspond to homogeneous
populations (constant T ).

For simulations in this section, we consider five
different illustrative cases, which will be denoted
throughout by the symbols given in table 1. In the
first four cases, we use equation (2.2), so that
TuvZ1KeKaIuSv with the distribution of I and S
varying for each. We vary a to change the average
transmissibility. In the fifth case, the out-transmissi-
bility is maximally heterogeneous: a fraction hT i of the
population infect all neighbours, while the remaining
1KhT i infect no neighbours.

The fifth case gives a lower bound on P for a
homogeneously susceptible population (Trapman
2007). It is hypothesized to remain a lower bound on
P if susceptibility is allowed to vary (Miller 2008).
We could also consider maximal heterogeneity in
susceptibility, but the results for P and A merely
correspond to interchanging their values for maximal
heterogeneity in infectiousness, and so we do not need
to consider it explicitly.
4.1. The basic reproductive ratio

We use simulations to calculate the rank reproductive
ratio R0,r for the cases of table 1 and plot the result for
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Figure 8. (a–e) R0;rZE½NrC1�=E½Nr � calculated from EPNs for the heterogeneous examples of table 1 (black solid curve,
unclustered R0; black dashed curve, R0,0; grey solid curve, R0,1; dotted curve, R0,2; dot-dashed curve, R0,3; grey dashed curve,
R0,4). ( f ) R0,1 values for all of the different cases, including both unclustered R0 (solid curve) and homogeneous R0,1 (dotted
curve) are compared.

Table 1. For the calculations of §§4 and 5, we determine Tuv using equations (2.1) and (2.2) with the distributions of I and S
given in the first four rows, or by considering a maximally heterogeneous population for which hT i of the population infects all
neighbours and 1KhT i infects no neighbours. (The function d is the Dirac delta function.)

symbol infectiousness susceptibility

PðIÞZdðI K1Þ PðSÞZ0:5dðSK0:001ÞC0:5dðSK1Þ
PðIÞZ0:3dðIK0:001ÞC0:7dðI K1Þ PðSÞZdðSK1Þ
PðIÞZ0:5dðIK0:1ÞC0:5dðI K1Þ PðSÞZ0:2dðSK0:1ÞC0:8dðSK1Þ
PðIÞZ0:5dðIK0:1ÞC0:5dðI K1Þ PðSÞZ0:8dðSK0:01ÞC0:2dðSK1Þ
maximally heterogeneous

PðToutÞZhTidðToutK1ÞCð1K hTiÞdðToutÞ
homogeneous TinZhT i

4We can use this notation because the ordering assumption
allows us to uniquely identify I from Tout and S from Tin. If the
ordering assumption fails, similar results hold, but the notation is
more cumbersome.
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0%r%4 in figure 8. Note that R0,1 remains a good
approximation to R0. In the first four cases, R0 is
again asymptotic to the unclustered approximation
as hT i/0. There are small kinks for and at
hT iZ0.5 and hT iZ0.7, respectively, resulting from the
nature of those distributions. The heterogeneities act to
enhance the effect of clustering on R0, but the effect is
relatively small.

In the final, maximally heterogeneous case , R0,1

remains a good approximation to R0. At small values
of hT i, the heterogeneity causes clustering to have
a larger impact than in a homogeneous population as
seen in figure 8f, and so this is not asymptotic to the
unclustered approximation. At larger values of hT i,
the heterogeneous and homogeneous growth rates
are similar.

As before, we can calculate R0,1 analytically, which
helps to explain our observations. If the ordering
assumption holds, we may use a simplified notation
J. R. Soc. Interface (2009)
T(Tout,Tin) to denote the transmissibility from a node
with out-transmissibility Tout to a node with in-
transmissibility Tin.

4 We have E½N1�ZhTihki and

E½N2�Z
1

N

X
u

X
vsu

ðð
½1Kð1KToutTinÞnuv �

!½1KTðTout;TinÞ�cuvQoutðToutÞ

!QinðTinÞdTout dTin

Z hk2KkihTi2K2hnOihToutTinTðTout;TinÞi

Khn,ihT2
outihT2

iniC/;
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Figure 9. Comparison of (a) P and (b) A observed from EPNs in the clustered EpiSimS network with heterogeneities (symbols)
with that predicted by the unclustered theory (curves) using table 1. Each data point is based on a single EPN. For both
and , Tin(v)ZhT i for all nodes, and so the unclustered prediction for A is the same.
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and so we may express the growth rate as a perturbation
about the unclustered case R0ZhTihk2Kki=hki giving

R0;1 Z
hk2Kki
hki hTi

K
2hnOi
hki

hToutTinTðTout;TinÞi
hTi

K
hn,i
hki

hT 2
outihT 2

ini
hTi C/: ð4:1Þ

For the second term, it may be shown that hT i3%
hToutTinT(Tout ,Tin)i%hT i2. The minimum occurs
when T is constant, suggesting that the maximum
growth rate occurs in a homogeneous population. The
maximum hT i2 occurs either for

QoutðToutÞZ ð1K hTiÞdðToutÞChTidðToutK1Þ;
ð4:2Þ

i.e. when the out-transmissibility is maximally hetero-
geneous, or when the in-transmissibility is maximally
heterogeneous

QinðTinÞZ ð1K hTiÞdðTinÞChTidðTinK1Þ: ð4:3Þ
Consequently, we expect that for given hT i, the
minimum growth rate occurs with maximally hetero-
geneous infectiousness or susceptibility. These two
minima for R0,1 have previously been hypothesized to
give lower bounds onP andA, respectively (Miller 2008).

We note that in the maximally heterogeneous case,
the correction term in (4.1) is significant at the leading
order in T. Consequently, if hnOi is comparable with
hk2Kki/2 (i.e. the clustering coefficient (Watts &
Strogatz 1998) is comparable with 1), then the
threshold value of hT i may be increased by clustering,
and R0 is not asymptotic to the unclustered prediction
as hT i/0.
4.2. Probability and size

Figure 9 shows that the unclustered predictions provide
a good estimate of P and A in the clustered EpiSimS
network. We expect that in a network with sufficiently
large average degree, the impact of clustering should
once again be small.
J. R. Soc. Interface (2009)
We use arguments similar to that before, taking a
triangle with nodes u, v and w. The reasoning becomes
more difficult because knowledge that u infects v
increases the expectation that u infects w. Con-
sequently, the lost edges in triangles are more
frequently encountered by the outbreak. However, the
knowledge that u infects v also increases the expec-
tation that u infects its other neighbours. For a triangle
to prevent an epidemic, we need both that no edge
outside the triangle leads to an epidemic and that the
lost edge would otherwise have caused an epidemic. If
the typical degree of the network is not small, then the
fact that the lost edge is encountered more frequently
may be offset by the fact that when it is encountered,
other edges are more likely to spark an epidemic.

For where nodes infect all or none of their
neighbours, the effect of different triangles that share
the index case cannot be separated easily. The
probability that the index case directly infects a set of
m nodes of interest is hT i, rather than Tm. Thus,
expansions as in (3.3) do not work as well: terms that
were previously higher order become significant. Close
to the epidemic threshold, this can play an important
role. However, well above the epidemic threshold, if the
index case infects all of its neighbours, then an epidemic
is almost guaranteed and so PzhTi regardless of
whether the network is clustered. Thus for , cluster-
ing affects P only close to the epidemic threshold.

In the opposite case where nodes would be infected
by any neighbour or else no neighbour, the values of
P and A are interchanged. Thus, for maximally hetero-
geneous susceptibility, P could be significantly altered
close to the threshold. The reason for this is as follows:
for the first step, the spread is indistinguishable from
that of an outbreak with constant T. However, when
infections of rank 1 attempt to infect their neighbours,
they cannot infect any of the neighbours of the index
case. By contrast, in the constant T case, any neighbour
not infected by the index case would be susceptible at
later steps. Consequently, the impact of triangles
becomes much more important (by a factor of 1/hT i)
and our earlier argument for neglecting them fails. The
interaction of maximal heterogeneity with clustering in
this case is larger, but it nevertheless becomes unim-
portant far from the threshold.
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Figure 10. (a) R0,r (black solid curve, unclustered R0; black dashed curve, R0,0; grey solid curve, R0,1; dotted curve, R0,2; dot-
dashed curve,R0,3; grey dashed curve,R0,4) and (b) P andA for the weighted EpiSimS network with a homogeneous population.
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Our prediction that heterogeneity allows clustering
to be more significant close to the threshold is borne out
for where there is relatively strong heterogeneity in
susceptibility just above the epidemic threshold. The
epidemic threshold for is increased compared with
the other cases. By contrast, there is much stronger
heterogeneity in susceptibility for at hT iZ0.5 and in
infectiousness for at hT iZ0.7. This results in a
reduction in A and P, respectively, but because it is far
from threshold, there is little deviation from the
unclustered predictions.
5. CLUSTERED NETWORKS WITH WEIGHTED
EDGES

When we allow edges to be weighted, new compli-
cations arise. The weights we use in our simulations
are the durations of contacts from the EpiSimS
simulation and are discussed in more detail in §D of
the electronic supplementary material. If a contact in
the original EpiSimS simulation is longer, then a higher
weight is assigned. If the weights of different edges
were independent, then we could simply take TuvZÐ
TðIu;Sv;wÞPðwÞdw. However, edge weights are not

independent: clustered connections tend to have larger
weights. If brief contacts are negligible, then the disease
spreads on a subnetwork of the original network. The
new network has a comparable number of short cycles
to the original, but lower typical degree. This should
enhance the impact of clustering.

For our calculations in this section, we first isolate
the impact of weighted edges by taking a homogeneous
population (IZSZ1) and using TuvZ1KeKawuv . We
vary a in order to set hT i. We then investigate a
heterogeneous population using equation (2.1) with the
first four distributions of table 1.

Results for a homogeneous population are shown in
figure 10. Because TuvZTvu for all pairs, it follows that
PZA. If different edge weights were uncorrelated, then
the value of R0 would match with figure 2 and P and A
would match with figure 6. We see, however, that R0 is
significantly reduced from the homogeneous unweighted
population (but R0,1 remains a good approximation).
P andA are mildly reduced close to the threshold. These
observations are consistent with our expectation that
clustering should be accentuated by incorporating edge
weights. Although the predictions for P and A are not
far off, we expect that they would improve if we adjusted
J. R. Soc. Interface (2009)
the degree distribution to match that of the effective
network on which the disease spreads.

When the population is moderately heterogeneous
(figure 11), we still find that R0,1 is a reasonable
approximation to the true value of R0; however, it
slightly underestimates R0 as hT i grows. Unfortu-
nately, the analytic calculation of R0,1 is much more
difficult, and so it is more appropriate to use
simulations to estimate its value. If there were no
correlation between weights of different edges, then the
calculation would reduce to that of §4.

We consider P and A in figure 12. The unclustered
predictions are reasonable approximations of the
actual values. The error is larger than before because
we have combined two effects (edge weights and
heterogeneity) that both accentuate the impact of
clustering. In spite of this, the predicted values of P
and A are not far off, and the direction of the error
is consistent: the unclustered prediction is always
an overestimate.
6. DISCUSSION

We have investigated the interplay of clustering, node
heterogeneity and edge weights on the growth rate R0,
probability P and size of epidemics A in social
networks. For unclustered networks with indepen-
dently distributed edge weights, it is possible to predict
all these quantities analytically. Under weak assump-
tions, we can accurately estimate R0, P and A for
clustered networks.

If the typical degrees are not small, then for a given
average transmissibility and degree distribution, the
following can be stated.

—The dominant effect controlling the growth rate
of epidemics is clustering. Increased clustering
reduces R0.

—The dominant effect controlling the probability of
epidemics is heterogeneity in infectiousness.
Increased heterogeneity reduces P.

—The dominant effect controlling the size of epidemics
is heterogeneity in susceptibility. Increased hetero-
geneity reduces A.

We are thus able to neglect clustering and still
closely estimate P based only on the degree distribution
and the out-transmissibility pdf Qout. The estimate for
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Figure 12. Simulated (a) P and (b) A (symbols) for the weighted EpiSimS network compared with predictions in unclustered
networks with the same edge weight distribution (curves).
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A depends only on the degree distribution and the
in-transmissibility pdf Qin. The impact of clustering is
significant in altering R0, and its impact is mildly
enhanced by heterogeneities. This enhancement occurs
because the probability of following all edges of a cycle is
increased if some of the edges are correlated owing to the
heterogeneity. If heterogeneity is large, clustering may
play a small role in moving the epidemic threshold, but
otherwise its effect on the threshold is negligible. In
networks with small typical degree, it has been observed
that clustering can modify P or A (Serrano & Boguñá
2006a,b), which is consistent with our estimates.

If edge weights are included, but are independently
distributed, then their impact is in modifying Qin(Tin)
and Qout(Tout). The resulting modification may be
calculated explicitly, and edge weights have no further
effect. If edge weights are correlated, then they have a
more important role in governing the behaviour of
epidemics, particularly if higher weight edges tend to be
the clustered edges (as frequently occurs in social
networks). If this happens, then the impact of
J. R. Soc. Interface (2009)
clustering is enhanced and the growth rate of epidemics
is further reduced.

When we move from predicting P and A to
predicting R0, we find that the growth rate is well
approximated by R0;1ZE½N2�=E½N1�. This may be
calculated analytically in the homogeneous case
(constant T ). When heterogeneities are included, the
calculation becomes harder, and when edge weights are
included it becomes largely intractable. However, these
are easily estimated through simulation.

These observations show that using R0 to predict A
will generally be inadequate. In a homogeneous but
clustered population,R0 is reduced butA is unaffected,
and so predictions of A based on R0 will be too small.
In networks that are not clustered but have hetero-
geneities in susceptibility, R0 is unaffected but A is
substantially reduced. Consequently, the value of A
predicted from R0 will be too large.

Perhaps our most important conclusion about
clustering is that it plays an important role in altering
the growth of an epidemic, but it plays only a small role
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in determining whether an epidemic may occur or how
big it would be. If the relevant questions are, ‘how likely
is an epidemic and how large would it be?’, then the
modeller may proceed ignoring clustering. If however,
the question is ‘how fast will an epidemic grow
initially?’, then clustering must be considered, but
only enough to calculate R0,1.

Our results have implications for designing inter-
vention strategies. A number of strategies are available
to control epidemic spread, including travel restric-
tions, quarantines and vaccination. Most of the
mathematical theory predicting the effects of these
strategies has been developed under the assumption of
no clustering. Most immediately, if we measure R0Z2
at the early stages of an epidemic, traditional
approaches will suggest that vaccinating just over half
of the population will bring the epidemic below
threshold. However, if the population is clustered, then
the observed R0 was already affected by the fact that
some transmission chains were redundant. Following
vaccination, some of these chains will no longer be
redundant and the disease may still spread withR0O1.

Achieving a better understanding of the effect of
clustering further helps to guide our intuition when
choosing between strategies. For example, let us
assume that we have the choice between two strategies:
in the first, we stagger work schedules in such a way
that a typical person’s contacts are reduced by one-
third; in the second, we implement population-wide
behaviour changes so that the same reduction in
number of contacts is achieved, but the work contacts
are unaltered. The first reduces clustering while the
second increases the relative frequency of clustering.
The value ofR0 is smaller in the second case than in the
first because of the larger clustering, but P and A are
reduced by a comparable amount in both cases. Which
strategy is best depends on our goals and relative costs.

Strategies that enhance heterogeneity in infectious-
ness or susceptibility can be important to help reduce P
orA, even when there is little impact onR0. Depending
on which quantity we want to minimize, different
choices will be optimal. Consider a choice between
vaccinating all individuals with a vaccine that reduces
Tuv by a factor of 1/2 for all pairs u and v or a contact
tracing strategy that will remove half of all new
infections before they have a chance to infect anyone.
Both strategies reduce hT i by a half. However, the first
reduces Tout uniformly, while the second increases
heterogeneity in Tout. Thus, if we have the choice of the
two strategies, then contact tracing is more likely to
eliminate the disease before an epidemic can happen. If
our choice is instead between a global vaccine reducing
Tin by a factor of 1/2 for all individuals and a
completely effective vaccine that is only available for
half of the population, the latter choice will be more
effective for reducing A.

This work was supported by the Division of Mathematical
Modeling at the UBC CDC under CIHR (grant nos. MOP-
81273 and PPR-79231) and the BC Ministry of Health
(Pandemic Preparedness Modeling Project), by DOE at
LANL under contract DE-AC52-06NA25396 and the DOE
Office of ASCR programme in Applied Mathematical Sciences
and by the RAPIDD programme of the Science & Technology
J. R. Soc. Interface (2009)
Directorate, Department of Homeland Security and the
Fogarty International Center, National Institutes of Health.
Luı́s M. A. Bettencourt contributed greatly to the early
development of this work. I am grateful to Sara Y del Valle for
providing the EpiSimS network data.
Ajelli, M. & Merler, S. 2008 The impact of the unstructured
contacts component in influenza pandemic modeling.
PLoS ONE 3, e1519. (doi:10.1371/journal.pone.0001519)

Anderson, R. M. & May, R. M. 1991 Infectious diseases of
humans. Oxford, UK: Oxford University Press.

Andersson, H. 1998 Limit theorems for a random graph
epidemic model. Ann. Appl. Probab. 8, 1331–1349. (doi:10.
1214/aoap/1028903384)

Bansal, S. 2008 Ecology of infectious diseases with contact
networks and percolation theory. PhD thesis, University of
Texas at Austin.

Barrett, C. L., Eubank, S. G. & Smith, J. P. 2005 If smallpox
strikes Portland.. Sci. Am. 292, 42–49.

Bollobás, B. 2001 Random graphs. Cambridge, UK:
Cambridge University Press.

Britton, T., Deijfen, M., Lagerås, A. N. & Lindholm, M. 2007
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