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Frequent convergent evolution in phylogenetically unrelated taxa points to the importance of ecological

factors during evolution, whereas convergent evolution in closely related taxa indicates the importance of

favourable pre-existing characters (pre-adaptations). We investigated the transitions to arboreal life in ori-

batid mites (Oribatida, Acari), a group of mostly soil-living arthropods. We evaluated which general

force—ecological factors, historical constraints or chance—was dominant in the evolution of arboreal life

in oribatid mites. A phylogenetic study of 51 oribatid mite species and four outgroup taxa, using the

ribosomal 18S rDNA region, indicates that arboreal life evolved at least 15 times independently. Arboreal

oribatid mite species are not randomly distributed in the phylogenetic tree, but are concentrated among

strongly sclerotized, sexual and evolutionary younger taxa. They convergently evolved a capitate sensillus,

an anemoreceptor that either precludes overstimulation in the exposed bark habitat or functions as a gravity

receptor. Sexual reproduction and strong sclerotization were important pre-adaptations for colonizing the

bark of trees that facilitated the exploitation of living resources (e.g. lichens) and served as predator defence,

respectively. Overall, our results indicate that ecological factors are most important for the observed pattern

of convergent evolution of arboreal life in oribatid mites, supporting an adaptationist view of evolution.

Keywords: convergent evolution; adaptation; ecological niche; pre-adaptation; oribatid mites;

constraints
1. INTRODUCTION
Convergent evolution is the development of similar traits

in different evolutionary lineages. Famous examples of

convergence are the similar body forms and lifestyles

of marsupial and eutherian mammals, camera eyes in

vertebrates and cephalopods, and electrogeneration (and

perception) in the platypus and in a number of fishes, but

myriad evolutionary convergences have been discovered

in molecules, physiological traits and complex morpho-

logical adaptations (Morris 2003). The haemoglobins in

animals, plants, protists and prokaryotes probably have

an independent evolutionary origin (Hardison 1996),

echolocation call design evolved convergently in bats

(Jones & Teeling 2006) and eusociality evolved conver-

gently in insects, shrimps and mammals (O’Riain et al.

2000). However, despite the large number of observed

cases of convergent evolution, its importance and

implications are subjects of intense debate.

For many, convergence derives from frequent and

independent adaptations and thereby points to the impor-

tance of ecological factors during evolution (Sinclair et al.
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2003; Langerhans & DeWitt 2004; Zhang 2006; Marks

2007). In this view, convergent evolution indicates the

limits of potential evolutionary pathways, such that differ-

ent evolutionary trajectories resulted in similar solutions

to the same ecological problem. For example, Morris

(2003) used convergent evolution as evidence for directed

evolution resulting in similar endpoints, although this

teleological view has been criticized (Lenski 2003).

Convergent evolution may also be a product of chance,

as there can be more than one optimum for a trait

(Gould & Lewontin 1979; Doolittle 1981; Gould 1989;

Zhang & Kumar 1997; Marks 2007). An ecological chal-

lenge could have been solved in a similar way by two or

more species through chance alone. Further, convergent

evolution may result from historical contingencies of

certain groups of organisms. Taxa may have certain pre-

existing conditions, i.e. pre-adaptations, that result in

fast radiation when environmental conditions change or

when new habitats are colonized.

Oribatid mites may serve as model organisms to study

the hypothesis of the relative importance of adaptation

versus chance during evolution. They are an evolutiona-

rily old group that probably has existed for at least 380

million years (Norton et al. 1988), and they slowly but

continuously radiated to a large number of species;

about 10 000 species are described but overall 100 000

may exist (Walter & Proctor 1999; Schatz 2002).
This journal is q 2009 The Royal Society
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We investigated whether independent adaptations (caused

by ecological factors), pre-adaptations or chance events were

the important factors for the evolution of arboreal life in ori-

batid mites by examining how often, and in which taxonomic

groups, arboreal life evolved.Oribatidmitesareprimarilysoil-

living organisms, but numerous taxa include species with an

arboreal lifestyle. Oribatid mites on trees live in particular

arboreal microhabitats such as bark or lichens, on both

trunks and twigs (Proctor et al. 2002; Lindo & Winchester

2006; Behan-Pelletier et al. 2007; Erdmann et al. 2007).

Because arboreal oribatid mite species permanently live on

trees, they probably share morphological or behavioural

traits (Walter & Behan-Pelletier 1999; Karasawa & Hijii

2004) including sexual reproduction (Behan-Pelletier &

Winchester 1998; Erdmann et al. 2006). In contrast to oriba-

tid mites on trees, of which in temperate forests 95 per cent of

all individuals reproduce sexually (Erdmann et al. 2006),

parthenogenetic reproduction dominates in soil-living taxa;

in soils of temperate forests, about 80 per cent of the individ-

uals are parthenogenetic (Maraun et al. 2003; Cianciolo &

Norton 2006; Domes et al. 2007a). In soil, both oribatid

mites with cuticles hardened by sclerotization or mineraliz-

ationand soft-bodied species coexist,whereason trees species

with soft-bodied adults are virtually absent. Soil oribatid

mites are characterized by a large and often ornamented

sensillus, whereas in tree-living species a capitate sensillus

predominates (Aoki 1973). Further, in contrast to soil-

living oribatid mites, many tree-living oribatid mite species

feed on lichens (Seyd & Seaward 1984; Erdmann et al. 2007).

Using a large collection of oribatid mite taxa representing

most of the known tree-living taxa, we investigated how

often oribatid mites independently colonized trees. A mol-

ecular phylogeny was constructed using the ribosomal 18S

region (18S rDNA). We also tested whether tree-living in

oribatid mites is correlated with the traits noted above,

sexual reproduction, a capitate sensillus and strong scleroti-

zation, using information from the literature (e.g. Seyd &

Seaward 1984; Weigmann 2006; Erdmann et al. 2007;

B. Fischer 2007, unpublished data).
2. MATERIAL AND METHODS
(a) Species and gene selection

For covering all major lineages of oribatid mites, we investi-

gated members of five out of six commonly recognized

groups (table 1): Palaeosomata (three spp. included),

Enarthronota (three spp.), Mixonomata (three spp.),

Desmonomata (12 spp.) and Brachypylina (30 spp.) (Grandjean

1969; Weigmann 2006); the species-poor Parhyposomata were

not sampled. The middle-derivative Desmonomata and the

higher Brachypylina (¼Circumdehiscentiae) were most heavily

sampled. All specimens were collected from the field and deter-

mined to species level. Habitat (soil or bark), reproductive

mode, feeding mode and type of sensillus were extracted from

the literature (Seyd & Seaward 1984; Cianciolo & Norton

2006; Weigmann 2006; Erdmann et al. 2007) or determined

by us (table 1). The degree of sclerotization was estimated

from the darkness of the cuticle of mature adults. Outgroup

taxa, necessary for the rooting of the tree, included members

of Araneae, Ricinulei (an arachnid lineage often linked to

Acari), Opilioacariformes and Ixodidae (Parasitiformes).

Their sequences were obtained from GenBank (see table 1 for

accession numbers).
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(b) Sample preparation, PCR and sequencing

DNA was extracted from single individuals. Each mite was

placed in an Eppendorf tube, frozen in liquid nitrogen and

crushed with a plastic rod. Total DNA was extracted using

Qiagen DNeasy Kit for animal tissues according to the man-

ufacturer’s protocol (elution was performed in 30 ml instead

of 400 ml; Qiagen, Germany).

Amplifications were performed using the primers

18Sforward (50-TACCTGGTTGATCCTGCCAG-30) and

18Sreverse (50-TAATGATCCTTCCGCAGGTTCAC-30)

(modified after Turbeville et al. 1991) in 25 ml volumes con-

taining 0.5–0.7 ml of each primer (100 pmol ml21), 5–8 ml

DNA and 12.5 ml HotStarTaq Mastermix (1.25 U HotStar-

Taq polymerase, 100 mM of each dNTP and 7.5 mM

MgCl2 buffer solution; Qiagen). PCR conditions were as fol-

lows: initial activation at 958C for 15 min, 34 amplification

cycles (958C for 45 s, 578C for 1 min and 728C for 1 min);

final elongation at 728C (10 min).

PCR products were visualized on 1 per cent agarose gels and

purified using QIAquick PCR Purification Kit (Qiagen); PCR

products were directly sequenced by Macrogen Inc. (Seoul,

South Korea) using the additional primers 18S554f (50-

AAGTCTGGTGCCAGCAGCCGC-30), 18S1282r (50-TCA

CTCCACCAACTAAGAACGGC-30), 18S1150f (50-ATTGA

CGGAAGGGCACCACCAG-30) and 18S614r (50-TCCAAC

TACGAGCTTTTTAACC-30) (modified after Turbeville et al.

1991). All sequences are available at GenBank (see table 1 for

accession numbers).

(c) Alignment and phylogenetic analyses

DNA sequences of the ribosomal 18S region were aligned

using the default settings in CLUSTALX (Thompson et al.

1994, 1997); the alignment was modified by eye since gaps

occurred. The evolutionary model parameters were deter-

mined with MODELTEST 3.7 (Posada & Crandall 1998)

using a hierarchical likelihood ratio test. The model of evol-

ution was GTR þ I þ G (Tamura & Nei 1993) with base fre-

quencies A ¼ 0.2567, C ¼ 0.2246, G ¼ 0.2611, gamma

distribution shape parameter a ¼ 0.5050 for four categories

of among-site variation and fraction of invariant sites I ¼

0.4170. Substitution rates were estimated as A–C ¼ 1.1382,

A–T ¼ 2.4404, C–G ¼ 0.6364 and G–T ¼ 1.0, A–G ¼

3.0285 and C–T ¼ 4.8970. This model of evolution

was used to construct the neighbour joining (NJ) and

maximum-likelihood (ML) trees.

To test whether there is a phylogenetic signal in the data-

set, we carried out the permutation tail probability (PTP)

test (Faith & Cranston 1991) using PAUP* 4b10 (Swofford

1999) with 10 000 replicates. The use of the PTP test has

been questioned (Peres-Neto & Marques 2000), but the

test is still used in a number of recent studies (e.g. Simmons &

Weller 2002).

Phylogenetic trees were constructed using NJ, maximum

parsimony (MP) and ML as implemented in PAUP* 4b10.

MP and ML trees were constructed with a heuristic search

of 100 random additions, and the tree bisection–reconnection

branch-swapping algorithm with the option to collapse zero

branch length. Reliability of the branches was ascertained

by bootstrap analyses for NJ (100 000 replicates), MP

(1000 replicates) and ML (100 replicates) in PAUP* 4b10.

Bayesian phylogenetic analysis was performed with MRBAYES

v. 3.1.2 (Huelsenbeck & Ronquist 2001) using prior settings

nst¼ 6 and rates¼invgamma with four independent runs of

3 000 000 generations and five chains each; rate matrix,



Table 1. Phylogenetic affiliation, full species name, fragment length, GenBank accession numbers, reproductive mode, type

of sensillus and degree of sclerotization of oribatid mite taxa studied and outgroups (bark-living taxa in bold). Sequences
other than those labelled ‘a’ were obtained from GenBank (http://www.ncbi.nlm.nih.gov/GenBank).

taxa

fragment
length
(bp)

GenBank
accession
number

reproductive
mode

type of
sensillus

degree of
sclerotization

outgroups

Araneae Liphistius bicoloripes
(Ono 1988)

1617 AF007104 sexual — —

Ricinulei Pseudocellus pearsei
(Chamberlin & Ivie 1938)

1619 PPU91489 sexual — —

Ixodidae Amblyomma sphenodonti
(Dubleton 1943)

1621 DQ507238 sexual — —

Opilioacaridae Opilioacarus texanus
(Chamberlin &
Mulaik 1942)

1619 AF124935 sexual — —

Enarthronota

Hypochthoniidae Hypochthonius rufulus
(C. L. Koch 1835)

1664 EF091427 thelytokous non-clavate weak

Eniochthoniidae Eniochthonius minutissimus
(Berlese 1903)

1643 EF091428 thelytokous non-clavate weak

Lohmanniidae Lohmannia banksi
(Norton et al. 1978)

1676 AF022036 thelytokous non-clavate weak

Palaeosomata

Acaronychidae Stomacarus ligamentifer
(Hammer 1967)

1620 EU433992 sexual non-clavate weak

Zachvatkinella sp.
(Lange 1954)

1619 EF203776 sexual non-clavate weak

Palaeacaridae Palaeacarus hystricinus
(Trägardh 1932)

1618 EF204472 thelytokous non-clavate weak

Mixonomata

Phthiracaridae Steganacarus magnus (Nicolet
1855)

1616 AF022040 sexual non-clavate strong

Atropacarus striculus
(C. L. Koch 1835)

1625 EF091416 thelytokous non-clavate strong

Euphthiracaroidea Rhysotritia duplicata
(Grandjean 1953)

1624 EF091417 thelytokous non-clavate strong

Desmonomata

Camisiidae Camisia biurus (Koch

1839)

1624 EF081302 thelytokous clavate strong

Camisia horrida

(Hermann 1804)a
1624 EU432207 thelytokous clavate strong

Camisia invenusta
(Michael 1888)a

1624 EU432208 thelytokous clavate strong

Camisia segnis

(Hermann 1804)a
1624 EU432209 thelytokous clavate strong

Camisia spinifer

(C. L. Koch 1835)

1624 EF091420 thelytokous clavate strong

Platynothrus peltifer
(C. L. Koch 1839)

1624 EF091422 thelytokous non-clavate strong

Crotoniidae Crotonia brachyrostrum

(Hammer 1966)

1624 EF081303 sexual clavate strong

Malaconothridae Malaconothrus gracilis
v.d. (Hammen 1952)

1624 EF091424 thelytokous no sensillus weak

Trimalaconothrus sp.
(Berlese 1916)a

1624 EU432210 thelytokous no sensillus weak

Nothridae Nothrus silvestris
(Nicolet 1855)

1624 EF091425 thelytokous non-clavate strong

Trhypochthoniidae Archegozetes longisetosus
(Aoki 1965)

1631 AF022027 thelytokous non-clavate intermediate

Trhypochthonius tectorum

(Berlese 1896)

1623 AF022041 thelytokous clavate intermediate

Brachypylina (non-Poronota)

Carabodidae Carabodes subarcticus
(Trägardh 1902)

1623 EF091429 sexual clavate strong

Odontocepheus elongatus

(Michael 1879)a
1625 EU432200 sexual clavate strong

(Continued.)

Convergent evolution of arboreal life M. Maraun et al. 3221

Proc. R. Soc. B (2009)

http://www.ncbi.nlm.nih.gov/GenBank
http://www.ncbi.nlm.nih.gov/GenBank


Table 1. (Continued.)

taxa

fragment
length

(bp)

GenBank
accession

number

reproductive

mode

type of

sensillus

degree of

sclerotization

Ceratoppiidae Ceratoppia bipilis
(Hermann 1804)a

1624 EU432204 sexual clavate intermediate

Cepheidae Cepheus latus (Koch 1835)a 1624 EU432206 sexual clavate strong
Cymbaeremaeidae Cymbaeremaeus cymba

(Nicolet 1855)a
1624 EU432201 sexual clavate strong

Scapheremaeus palustris

(Sellnick 1924)

1640 EU433989 sexual clavate strong

Eremaeidae Eueremaeus oblongus

(Koch 1835)a
1624 EU432205 sexual clavate strong

Eutegaeidae Eutegaeus curviseta
(Hammer 1966)

1624 EF081297 sexual non-clavate strong

Liacaridae Adoristes poppei
(Oudemans 1906)a

1624 EU432202 sexual clavate strong

Neoliodidae Liodes sp.

(Heyden 1829)

1625 AF022035 sexual clavate strong

Poroliodes farinosus

(Koch 1839)

1624 EF203779 sexual clavate strong

Xenillidae Xenillus discrepans

(Grandjean 1936)a
1624 EU432203 sexual clavate strong

Brachypylina (Poronota)

Achipteriidae Achipteria coleoptrata
(Linnaeus 1758)

1624 EF091418 sexual non-clavate strong

Ceratozetidae Oromurcia sudetica
(Willmann 1939)a

1625 EU432194 sexual non-clavate strong

Trichoribates trimaculatus

(Koch 1835)a
1625 EU432195 sexual clavate strong

Chamobatidae Chamobates pusillus
(Berlese 1895)a

1624 EU432188 sexual non-clavate strong

Chamobates subglobulus
(Oudemans 1900)a

1624 EU432190 sexual non-clavate strong

Chamobates voigtsi
(Oudemans 1902)a

1624 EU432189 sexual non-clavate strong

Eremaeozetidae Eremaeozetes sp.

(Berlese 1913)a
1639 EU432187 sexual clavate strong

Galumnidae Galumna lanceata
(Oudemans 1900)a

1625 EU432197 sexual non-clavate strong

Humerobatidae Humerobates

rostrolamellatus

(Grandjean 1936)a

1624 EU432196 sexual clavate strong

Hydrozetidae Hydrozetes lacustris
(Michael 1882)

1624 EU433987 thelytokous non-clavate intermediate

Oribatulidae Phauloppia lucorum

(Koch 1841)a
1648 EU432198 sexual clavate strong

Oribatula tibialis
(Nicolet 1855)

1651 EU433990 sexual non-clavate strong

Phenopelopsidae Eupelops acromios

(Hermann 1804)a
1624 EU432192 sexual clavate strong

Eupelops plicatus (Koch 1835) 1623 EF091419 sexual non-clavate strong
Punctoribatidae Mycobates parmeliae

(Michael 1884)a
1624 EU432191 sexual clavate strong

Symbioribatidae Scheloribates ascendens 1627 EU432199 sexual clavate strong

(Weigmann &

Wunderle 1990)a

Tectocepheidae Tectocepheus velatus
(Michael 1880)

1628 EF093781 thelytokous clavate intermediate

Tegoribatidae Lepidozetes singularis

(Berlese 1910)a
1625 EU432193 sexual clavate strong

aSpecies sequenced for this study.
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base frequencies and branch lengths were estimated and trees

were sampled every 300 generations. A majority consensus

tree was generated using a burn-in of 2000. Posterior

probabilities were calculated based on the topology of the

Bayesian tree.

History and the ancestral state of character evolution were

reconstructed using parsimony algorithms of the StochChar

package in MESQUITE 2.5 (Maddison & Maddison 2008).

A step matrix for each character was constructed under the

following assumptions: the colonization of bark from soil-

living oribatid mites is more likely than the reverse; the

capitate sensillus is probably evolved from a non-capitate

sensillus; sex is the ancestral mode of reproduction and was

frequently lost, and the sclerotization of oribatid mites

evolved from weaker to stronger sclerotized species.

We investigated whether tree living is correlated with the

type of sensillus, the reproductive mode or the degree of scler-

otization using PHYLOCOM (Webb et al. 2008). Independent

pairwise contrasts between tree living and the three traits,

i.e. type of sensillus, mode of reproduction and degree of scler-

otization, were calculated (Garland et al. 1999) with default

values for number of randomizations (999 replicates).
3. RESULTS
Phylogenetic analyses of the ribosomal 18S rDNA region

were based on 1699 base pairs and 55 taxa in total. Of the

1699 positions, 1113 were conserved and 586 were vari-

able with 379 positions being parsimony informative.

Variable positions of the ingroup (four outgroup taxa

excluded) were 474 with 278 parsimony informative pos-

itions. The average pairwise ML distance of the whole

dataset averaged 7.8 per cent with a maximum value of

33 per cent (the model used to calculate the ML distance

was the same as that used to construct the ML tree).

As each of the tree topologies of the phylogenetic algor-

ithms, NJ, MP, ML and Bayesian methods, were almost

identical, only the Bayesian tree is shown (figure 1).

Bayesian inference has been shown to be most robust

against model violations and recovers (known) correct

trees in nearly all cases (Mar et al. 2005). The PTP test

indicates that there is a strong phylogenetic signal in the

dataset (p , 0.0001). Arboreal oribatid mite species were

not randomly distributed in the phylogenetic tree but domi-

nated among evolutionarily younger taxa, especially in the

Poronota. Enarthronota (Eniochthonius minutissimus,

Hypochthonius rufulus and Lohmannia banksi) were paraphy-

letic except in the ML analysis, where Hypochthonius and

Lohmannia were sister taxa. Enarthronota were followed

by Palaeosomata (Stomacarus ligamentifer, Palaeacarus

hystricinus and Zachvatkinella sp.) and Mixonomata (Atropa-

carus striculus, Steganacarus magnus and Rhysotritia

duplicata). The middle-derivative Desmonomata included

12 species, of which Trhypochthonius tectorum, Crotonia

brachyrostrum and four species of the genus Camisia are arbor-

eal. The Brachypylina (¼Circumdehiscentiae) were always

monophyletic with high statistical support. Basal in

Brachypylina were the two arboreal species of Neoliodidae,

Poroliodes farinosus and Liodes sp., followed by Cepheus latus

and two Carabodidae, Carabodes subarcticus and Odontoce-

pheus elongatus; most groups had high bootstrap and posterior

probability support. The phylogenetic positions of the soil-

living species Ceratoppia bipilis, Eutegaeus curviseta, Adoristes

poppei and of the arboreal species Eueremaeus oblongus,
Proc. R. Soc. B (2009)
Cymberemaeus cymba, Xenillus discrepans varied among differ-

ent phylogenetic analyses, but were identical in the Bayesian

and ML tree. Poronota s.l. (including Scapheremaeus palustris

and Eremaeozetes sp.) were monophyletic with high bootstrap

support and posterior probabilities and included the arboreal

species Scheloribates ascendens, Phauloppia lucorum,

Scapheremaeus palustris, Eremaeozetes sp., Eupelops acromios,

Trichoribates trimaculata, Lepidozetes singularis, Mycobates

parmeliae and Humerobates rostrolamellatus. Among arboreal

oribatid mites, lichen feeding evolved at least four times, in

the genus Camisia and in Cymberemaeus cymba, Phauloppia

lucorum and Mycobates parmeliae (figure 1).

Ancestral character state reconstruction indicated that

arboreal life evolved at least 15 times among the studied

oribatid mites, (figure 2a). All studied arboreal (and

very few soil living) oribatid mite species possess a clavate

sensillus (figure 2b); the studied soil-living oribatid mites

possess a non-clavate sensillus (e.g. pectinate, fusiform,

setiform, bacilliform or ciliate) and two genera (Malaco-

nothrus and Trimalaconothrus) have no sensillus at all

(table 1). All studied arboreal oribatid mites, except the

four species of Camisia, reproduce sexually (figure 2c;

table 1). Furthermore, sclerotization is usually strong in

arboreal and soil living species, except in phylogenetically

older soil-living species, most of which are only weakly

sclerotized (Enarthronota and Palaeosomata; figure 2d;

table 1).

Bark living was strongly correlated with a capitate

sensillus (correlation coefficient R ¼ 0.68) but only weakly

correlated with a strong sclerotization (R ¼ 0.21) and even

less with sexual reproduction (R ¼ 0.12), as indicated by

the test for independent contrasts using PHYLOCOM.
4. DISCUSSION
The aim of this study was to investigate whether ecologi-

cal factors, pre-adaptations or chance were responsible for

the convergent evolution of arboreal life in oribatid mites.

Phylogeny and model-based reconstruction of ancestral

states indicated that arboreal life evolved at least 15

times in oribatid mites. As not all arboreal genera and

species of oribatid mites were included, arboreal life cer-

tainly evolved more often. The arboreal oribatid mite

taxa are not randomly distributed in the phylogenetic

tree but cluster among the more derived Brachypylina,

suggesting that higher oribatid mites may be pre-adapted

to colonize trees.

High correlation of bark living and a capitate sensillus

indicates that the sensillus co-evolved with the arboreal

lifestyle of oribatid mites. Most arboreal oribatid mite

species possess a capitate sensillus that is most probably

an adaptation for arboreal life (Aoki 1973; Alberti et al.

1994). Presumably, this typical sensillus is an air-current

receptor (anemoreceptor) that has this typical shape to

avoid overstimulation (Norton & Palacios-Vargas 1982).

The compact shape could limit the sensitivity of

the receptor under the higher air flow of exposed situ-

ations when compared with soil. Sensilli of soil species

are usually thinner and longer; they often have cilia or

other ornamentations that increase sensitivity to air

currents. Alternatively, the large distal ball and thin

stalk of capitate sensilli could serve as a gravity receptor

in arboreal species (Alberti et al. 1994). This idea is sup-

ported by the fact that capitate sensilli in some arboreal
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Figure 1. Bayesian phylogeny of oribatid mites based on the ribosomal 18S gene using GTR þ I þ G as an evolutionary model.
Numbers at nodes, respectively, represent Bayesian posterior probabilities and bootstrap support values for NJ, MP and ML.
Arboreal oribatid mite species are in bold face and italics; lichen-feeding species on trees are additionally underlined.
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species (Crotoniidae and Camisia abdosensilla; Olszanowski

et al. 2002) are entirely protected from air currents

by being almost completely enclosed in a covered

bothridium.

A capitate sensillus is not characteristic of all derived

oribatid mites, indicating that it evolved several times in
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taxa that permanently colonized trees. In contrast to

sexual reproduction and strong sclerotization (which

were pre-adaptations of oribatid mites before they colo-

nized the trees; see below), the capitate sensillus evolved

convergently after the trees were colonized and is therefore

a true adaptation to arboreal life.
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Figure 2. Ancestral character state reconstruction of (a) living mode, (b) sensillus type, (c) reproductive mode and (d) degree of
sclerotization as reconstructed with MESQUITE 2.5 using parsimony algorithms. Bark living and a clavate sensillus are strongly cor-
related, whereas bark living is not strongly correlated with sexual reproduction and strong sclerotization. See text for details.
(a) Black, bark; orange, soil; white, outgroups. (b) Black, clavate; orange, non-clavate; yellow, no sensillus; white, outgroups.
(c) Black, sexual; white, thelytokous. (d) Black, strong; orange, weak; yellow, intermediate; white, outgroups.
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The low correlation of bark living with sexual reproduc-

tion as well as strong sclerotization indicates that these traits

already existed before the trees were colonized. The most

important pre-adaptation for arboreal life in Brachypylina

probably was the sexual mode of reproduction. In contrast

to basal oribatid mite lineages, Brachypylina are predomi-

nantly sexual. The importance of the reproductive mode

for arboreal oribatid mites can be inferred from the arboreal

genus Crotonia that re-evolved sexual reproduction from a

previously soil-living and parthenogenetic taxon, the

Camisiidae/Crotoniidae (Domes et al. 2007b). It is not

known why sexual reproduction is advantageous for arboreal

species but it is probably related to food resources. While soil-

living taxa predominantly feed on little defended food

substrates, such as dead organic material, arboreal species

predominantly feed on algae and lichens that at least in

part are heavily defended (Seyd & Seaward 1984;

Erdmann et al. 2007). Sexual reproduction therefore

may be necessary for the co-evolutionary arms race between

predators and prey (Red Queen hypothesis; Hamilton 1980).

The second important pre-adaptation of tree living ori-

batid mites probably was the strongly sclerotized body of

the adults. Most adult oribatid mites are sclerotized, but

the sclerotization of arboreal taxa is often even stronger.

The strong sclerotization of bark-living oribatid mite

species probably functions as predator defence. This also

applies to oribatid mites in soil and litter (Sanders &

Norton 2004), but this feature is probably less important

in soil than on the bark of trees owing to the opaqueness

of the soil habitat, which renders prey location more

difficult. This hypothesis is supported by the stronger

sclerotization of juvenile oribatid mite species living on

the bark of trees when compared with juveniles of soil-

living species. While many oribatid mites are sclerotized,

Brachypylina are unique among them in possessing an

extensive tracheal system, which may be evolutionarily

linked to the difficulty of respiring through a sclerotized

cuticle (Norton & Alberti 1997). The combination of a

hard cuticle, a water-resistant epicuticle and an interna-

lized respiratory surface could have been an effective

pre-adaptation of Brachypylina to life in desiccating

environments such as tree bark.

Oribatid mite species have a number of morphological

characters that can be used to test whether arboreal species

are really adapted to arboreal life or just colonized the trees

permanently without evolving specific adaptations. The

bark of trees is a permanent habitat for a large number

of (mainly sexual) oribatid mite species (Proctor et al.

2002; Erdmann et al. 2006; Lindo & Stevenson 2007).

Only a few ubiquitous parthenogenetic species such as

Tectocepheus velatus and Oppiella nova live on the bark of trees

and also in soil. This indicates a clear niche differentiation

between soil and arboreal oribatid mite species.

Overall, our data indicate that the frequent convergent

evolution of arboreal life in oribatid mites was driven in

part by chance, as the arboreal species cluster randomly in

higher taxa. However, the major driving force for the colo-

nization of trees by oribatid mites was the ecological factor

supporting the adaptionist view of evolution (Johannesson

2003; Morris 2003, 2006). Pre-adaptations such as sexual

reproduction and strong sclerotization presumably facili-

tated the arboreal life of oribatid mites, and characters

such as the clavate sensillus evolved later during tree coloni-

zation. We conclude that ecological forces swamp chance
Proc. R. Soc. B (2009)
events such as drift and historical contingencies during

evolution, supporting the ‘adaptionist programme’.
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