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What drives community dynamics?
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The search for general mechanisms of community assembly is a major focus of community ecology. The

common practice so far has been to examine alternative assembly theories using dichotomist approaches of

the form neutrality versus niche, or compensatory dynamics versus environmental forcing. In reality, all

these mechanisms will be operating, albeit with different strengths. While there have been different

approaches to community structure and dynamics, including neutrality and niche differentiation, less work

has gone into separating out the temporal variation in species abundances into relative contributions from

different components. Here we use a refined statistical machinery to decompose temporal fluctuations in

species abundances into contributions from environmental stochasticity and inter-/intraspecific

interactions, to see which ones dominate. We apply the methodology to community data from a range

of taxa. Our results show that communities are largely driven by environmental fluctuations, and that

member populations are, to different extents, regulated through intraspecific interactions, the effects of

interspecific interactions remaining broadly minor. By decomposing the temporal variation in this way, we

have been able to show directly what has been previously inferred indirectly: compensatory dynamics are

in fact largely outweighed by environmental forcing, and the latter tends to synchronize the

population dynamics.
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environmental stochasticity; neutrality; niche
1. INTRODUCTION

All natural populations fluctuate in abundance due to

environmental stochasticity, demographic stochasticity

and density-dependent regulation (Lande et al. 2003;

Wilson & Lundberg 2006). Some form of density

dependence seems inevitable (Cooper 2003), but deciding

how strongly density dependence affects a population’s

dynamics can ultimately only be done with empirical

studies. Species also exist as part of communities, so

between-species interactions may be important as well

(Bower 1962; Murdock 1994; Shorrocks & Sevenster

1995; Miyashita 2001; Viljugrein et al. 2005).

A major focus of community ecology is to identify the

assembly rules that shape species assemblages, as well as

any exogenous factors that the rules act with to create and

maintain a community. The common practice so far has

been to examine alternative assembly theories using

dichotomist approaches of the form neutrality versus

niche (e.g. Fargione et al. 2003) or compensatory

dynamics versus environmental forcing (Houlahan et al.

2007). But in reality all these forces will be operating (e.g.

Chave et al. 2002), albeit with different strengths.

While there have been different approaches to com-

munity structure and dynamics, encompassing neutral

mechanisms (Caswell 1976; Bell 2000; Hubbell 2001)

and niche differentiation (Gause 1934; Hutchinson 1957;

Armstrong & McGehee 1980), less work has gone into
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separating out the temporal variation in species abun-

dances into contributions from different factors.

Neutral models assume that all individuals of interact-

ing species at a single trophic level are ecologically

equivalent. In reality, ecological communities are shaped

by several factors: individuals interact with conspecifics

and with individuals of other species, and species respond

to abiotic influences (e.g. Enquist et al. 2002). These

factors act in concert with demographic stochasticity to

generate population fluctuations in both time and space

(Ylikarjula 2000), fluctuations that neutral theory is

unable to replicate (Mutshinda et al. 2008). Conse-

quently, a central problem for understanding community

dynamics is to determine how strong (relatively) these

different factors are. Here we decompose temporal

fluctuations in species abundances into contributions

from different factors—namely environmental stochasti-

city and intra-/interspecific interactions—to find which

ones dominate the dynamics.
2. MATERIAL AND METHODS
(a) Description of data

We used community time series from a range of taxa: moths,

fishes, macrocrustaceans, birds and rodents. For all of the

datasets, the sampling methods were consistent over time and

the data are recorded as counts of individuals. The moth data

consist of yearly totals of light-trapping counts of 12 common

noctuid moths from the Rothamsted Insect Survey in the UK

(Woiwod & Harrington 1994). The data span a 40-year

period (1964 to 2003) and come from the Geescroft I station,

in a small piece of woodland on Rothamsted Farm in

Hertfordshire, UK (Woiwod & Gould 2008). The fish and
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crustacean data both come from Hinkley Point in the Bristol

Channel, UK and were collected between 1981 and 2001

(the methods are described further in Henderson & Holmes

1990). The data contain the nine and seven most common

fish and crustacean species, respectively. The bird data

consist of yearly abundances of five species at Hubbard

Brook Experimental Forest, an area of land in central

New Hampshire, USA that functions as an outdoor

laboratory for ecological studies. The data cover a 16-year

period, 1969–1984 (Holmes et al. 1986). The rodent data

come from trapping webs throughout the Sevilleta National

Wildlife Refuge in central New Mexico, USA over the period

1989–2003. At each site, three sampling webs were sampled

for three consecutive nights (Friggens 2006). This replicated

feature allows us to estimate the sampling variation.

Species that were not regularly observed (i.e. that only had

abundances of zero or one individual) were left out of all of

the datasets. It is also assumed that each yearly sample was

collected using the same effort and method, so that the time

series reflect real temporal change in abundance at one

locality. Species’ scientific names, common names, taxa and

sampling periods, as well as mean population densities

and standard deviations, are given in table S1 in the electronic

supplementary material.
(b) Model specification

The underlying model assumed for the abundance of species i

at time t, Ni,t, is a discrete-time stochastic Gompertz model

(e.g. Saitoh et al. 1997; Ives et al. 2003; Jacobson et al. 2004;

Dennis et al. 2006), including the effects of interactions with

other species. That is,

Ni;t jNi;tK1 ZNi; tK1 exp ri 1K
XS

jZ1

ai; j log Nj;tK1=ki

" #
Cei;t

( )
;

t Z 2; 3;.;T ; ð2:1Þ

where ri and ki are respectively the intrinsic growth rate and

the natural logarithm of the carrying capacity of species i; ai, j

is the coefficient of interaction between species i and j,

replicating the per capita effect of species j on the growth of

species i from time (tK1) to time t; with all intraspecific

coefficients, ai,i , set to 1. Environmental noise enters the

dynamics through the zero-mean Gaussian random shocks

ei,t. If we denote by ni,t the natural logarithm of Ni,t, then, on

the natural logarithmic scale, equation (2.1) reads as follows:

ni;t j ni;tK1 Z ni;tK1 C ri 1K
XS

jZ1

ai; j nj;tK1=ki

" #
Cei;t ;

t Z 2; 3;.;T :

ð2:2Þ

The community model can be compactly written in matrix

form as

nt jntK1 ZntK1 CRð1SKAntK1ÞCet ; for t Z 2; 3;.;T ;

ð2:3Þ

where nt is the vector of log-abundances of all the S species at

time t, R is an S!S diagonal matrix with intrinsic growth

rates ri on the diagonal, 1S is the S-dimensional vector with all

elements equal to 1 and Ai; jZai; j =ki. Thus, elements on the

leading diagonal of A are inverse carrying capacities, and off-

diagonal terms are the interaction coefficients between

species, scaled by the carrying capacity of the focal species

(i.e. species i for Ai, j). etZ fei;tg
S
iZ1 is the vector of zero-mean
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environmental disturbances with one element by population,

which are assumed to be serially independent and multi-

variate normally distributed, with a covariance matrix

denoted by C (e.g. Ives et al. 2003; Ripa & Ives 2003). The

off-diagonal terms of the ‘environmental covariance matrix’

C represent the common responses of different species to the

environment. Subsequently, ri; jZci; j =ðci;icj;jÞ
1=2 quantifies

the correlation between the responses of species i and j to

environmental fluctuations.

We would expect many off-diagonal terms of A to be at or

close to zero (i.e. there would be no interaction between the

species), owing to the documented predominance of weak

interspecific interactions (e.g. Kokkoris et al. 1999; Turnbull

et al. 2005). Therefore we used stochastic search variable

selection (SSVS; George & McCulloch 1993) to identify the

set of non-zero interactions.

SSVS is based on letting regression coefficients to be in

two states: either they are close to zero, and hence have no

significant effect on the model, or they are estimated freely.

This is done by modelling a binary indicator gi, j for isj, and

assuming gi; j wBernoulliðpÞ, with gi, jZ1 when species j is

included in the dynamics of species i and gi, jZ0 otherwise.

This controls the (prior) variance of the interaction

coefficient ai, j: ai, j is assumed to be normally distributed

with mean 0 and variance ti, j, and we let ti; j Z ð1K gi; jÞ!

q1Cgi; j !q2. The non-negative numbers q1 and q2 are

selected so that the prior distribution of ai, j is wide under

inclusion of species j in the dynamics of species i and forced to

be close to zero if species j is excluded (i.e. q2 should be large

and q1 small). If inclusion of species j in the dynamics of

species i is not supported by the data, the prior with variance

q1 will tend to be selected more often than the prior with

variance q2, and vice versa. For the purposes of our analysis,

we took q1Z0.01, q2Z10, and set the prior probability of a

non-zero interspecies interaction (i.e. p) to 0.2. We used

Bayes factors (BFs) to evaluate the amount of evidence in the

data in favour of any particular interspecific interaction. Since

PosteriorOdds ZPriorOdds!BF, the BF is the factor by

which the data change the prior odds of including versus not

including a particular interspecific interaction into posterior

odds. A BF that is larger than 1 suggests that the event is more

probable than previously thought, and vice versa.

It follows from equation (2.3) that the variance–covariance

matrix, V, of temporal fluctuations in species abundances can

be decomposed (e.g. Ripa & Ives 2003) as

V ZBVBT CC; ð2:4Þ

where BZ ðRAÞ; that is, bi;iZ ri =ki and bi; jsiZ riai; j =ki.

Consequently, the temporal variances of individual species

abundances (diagonal elements of V ) can be decomposed

into the contributions vi;i !ðri =kiÞ
2, ðri =kiÞ

2
P

jsivj; j !a2
i; j and

ci,i , from intraspecific interactions, interspecific interactions

and environmental forcing, respectively.

Population abundance time series are often fraught with

sampling errors (e.g. Clark & Bjørnstad 2004). In a state-

space framework, ni,t is related to its observed counterpart,

xi,t, through a sampling model. Here we assume that

xi;t j ni;t ; s
2
i;t wN ni;t ; s

2
i;t

� �
; ð2:5Þ

where si,t is the standard error of xi,t as an estimate of ni,t.

(c) Model fitting

The model was fitted to the data with a Bayesian approach

(Gelman et al. 2003; McCarthy 2007) using Markov chain
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Figure 1. Error bars (posterior meanG1 s.d.) for the
proportions of temporal variation attributable to environ-
mental forcing (black diamonds) and to intraspecific
interactions (grey boxes) in the dynamics of individual
moth species.
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Monte Carlo (MCMC) methods (Gilks et al. 1996) through

the Bayesian freeware OPENBUGS (Thomas et al. 2006). We

placed on C an inverse Wishart prior CK1 ~ Wishartðw;SÞ

with scale matrix w and the smallest possible number of

degrees of freedom (i.e. rankðC ÞZS ) as an attempt to impose

non-informativeness. The elements of W were set as wi,iZ1

and wi, jsiZ0. All intrinsic growth rates ri were assigned

independent Nð0; 1Þ Ið0;CNÞ priors, where I(.) denotes the

indicator function. The log-carrying capacities, k i , were

assigned Uniformðl i ; uiÞ priors, with suitably selected hyper-

parameters l i and ui to constrain ki to the range of the data

for identifiability.

We used the replicated feature of the rodent dataset to

derive estimates of sampling errors si,tZsi as 0.223 for

Dipodomys ordii, 0.141 for Dipodomys spectabilis and 0.36

for Perognathus flavus. We used the model with and without

sampling error to fit the rodent data, but the results were

similar. Given the larger sample sizes and longer observa-

tional periods for the other datasets used here, we expected

the amount of sampling variation to be similar or less. Hence,

we fitted the ‘process-error-only’ version of the model to all

these datasets.

For each dataset, we ran 60 000 iterations of three MCMC

with a burn-in period of 15 000 iterations, and thinned the

chains to every 25th observation. The results were broadly

robust to changes in the range of hyper-parameters. We

checked the model adequacy by comparing posterior

predictive distributions of future data to the data that have

actually occurred (Rubin 1984). For all datasets analysed, the

data were consistent under the posterior predictive distri-

butions, as exemplified by fig. S1 in the electronic

supplementary material, where the rodent dataset is used

for illustration, suggesting that our model adequately

describes the data.
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Figure 2. Error bars (posterior meanG1 s.d.) for the
proportions of temporal variation attributable to environ-
mental forcing (black diamonds) and to intraspecific
interactions (grey boxes) in the dynamics of individual
fish species.
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Figure 3. Error bars (posterior meanG1 s.d.) for the
proportions of temporal variation attributable to environ-
mental forcing (black diamonds) and to intraspecific
interactions (grey boxes) in the dynamics of individual
crustacean species.
3. RESULTS
In all of the datasets, the dynamics were largely dominated

by environmental stochasticity, which accounted for

between 40 and 95 per cent of the temporal variances in

individual species’ abundances (figures 1–3; figs S2–S3

in the electronic supplementary material). Much of the

remaining variation was due to intraspecific interactions,

explaining between 11 and 54 per cent of variation in

individual moth species, between 2 and 10 per cent in fish

species, between 6 and 15 per cent in macrocrustaceans,

between 1 and 17 per cent in birds, and between 11 and

37 per cent in rodents. Interspecific interactions were

found to be broadly weak: they explained less than

10 per cent of the temporal variation, and the BFs for

the individual interaction coefficients to be non-zero were

generally between 0.002 and 1.25.

The environmental correlations were, on average,

either zero or positive for most of the datasets examined

(figures 4–6), with posterior means lying between 0.00

and 0.70. However, some negative correlations were

detected in the bird and the rodent communities (see

figs S4–S5 in the electronic supplementary material).

Incorporation of sampling variation into the model

for the rodent data did not change inference, as

sampling variation only accounted for less than

9 per cent of the total variance (fig. S3 in the electronic

supplementary material).
Proc. R. Soc. B (2009)
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Figure 5. Posterior densities of environmental correlations for the fish data; darker shading corresponds to a correlation with a
posterior mean further from 0.
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Figure 4. Posterior densities of environmental correlations for the moth data; darker shading corresponds to a correlation with a
posterior mean further from 0.
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Figure 6. Posterior densities of environmental correlations for the crustacean data; darker shading corresponds to a correlation
with a posterior mean further from 0.
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4. DISCUSSION
Our results show directly that environmental stochasticity

is a major driver of biodiversity patterns, as previously only

inferred from indirect analyses (e.g. Steele 1985; Lawton

1988; Dornelas et al. 2006; Angela et al. 2007; Houlahan

et al. 2007).

Our results also support the suggestions of Angela

et al. (2007), Houlahan et al. (2007) and Loreau &

de Mazancourt (2008), among others, that environmental

forcing broadly dominates compensatory dynamics in

driving temporal fluctuations in species abundance, and

that the pervasive positive correlations in species abun-

dances are presumably environment-induced.

Ripa & Ives (2003) have looked at the dynamics of

communities with correlated environments. When the

interactions between species are negligible (i.e. ai, jy0,

as we found), it follows from equation (2.4) that

vi; jZci; j =ð1K bi;ibj; jÞ, i, jZ1, ., S and the correlation,

4i, j, between the densities of species i and j is related to

the environmental correlation, ri, j, through

4i; j Z qi; jri; j ð4:1Þ

(eqn (5) in Ripa & Ives 2003), where

qi; j Z
1Kb2

i;i

� �
1Kb2

j; j

� �
1Kb2

i;i

� �
1Kb2

j; j

� �
C ðbi;iK bj; jÞ

2

0
@

1
A1=2

;

and bi,i is defined as in equation (2.4).

When species have similar dynamics (i.e. when

bi;i ybj; j), the correlation between population densities is

the same as the correlation in environmental noise, and

is lower when the dynamics of the species are different. We

found that the dynamics are fairly different, with the term

qi, j in equation (4.1) ranging between 0.70 and 1. Hence,
Proc. R. Soc. B (2009)
even when there are no direct interactions between

species, the correlation between population densities is

not a good estimate of the environmental correlation.

Houlahan et al. (2007) found that correlations between

population densities tended to be positive. If our results

can be extrapolated to their study (i.e. we can assume

that species’ interactions are negligible, and variation

between species’ dynamics is large), we can conclude that

the correlations they report broadly underestimate the

correlations in species’ responses to the environment.

Here we ascribed any unexplained variance as environ-

mental. Clearly, a better approach would be to model

the effect of the key environmental drivers (e.g. Ives

1995; Saether et al. 2000). However, this would

require a larger effort, as the drivers are almost certainly

different in the different communities, and indeed

for different species in each community. Thus, we have

concentrated on finding out how general our results are

across different communities.

If the residual variance is not environmental variation,

what could it be? For most of the datasets, it will include

some sampling variation. However, we expect this to be

relatively small for two reasons. Our direct evidence is that

the results from the rodent dataset, where we could

estimate the sampling variability, are consistent with the

other results: the environmental variation still explains

57 to 87 per cent of the variation versus 0.1 to 9 per cent

for sampling error (fig. S3 in the electronic supplementary

material). Indirectly, we would expect the amount of

sampling variation to be similar or less for other datasets

we used, as their sample sizes are larger and the data span

longer observation periods. However, even if the sampling

variation was significantly larger, our conclusions would

still hold.
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The environmental variance may also be inflated by

some interspecific interactions. Not all species in the

community were included in the analysis, so there may be

strong interactions with unseen species. Indeed, it would

seem odd if there were no such interactions. In particular,

species at different trophic levels (e.g. predators, para-

sitoids or host plants for the moths) would be expected to

have an effect. Similarly, we might expect competition

with other species that share a common host resource.

The variation in the dynamics induced by these missing

interactions will appear in our model as environmental

fluctuations. Of course, it could also be argued that they

genuinely are environmental effects, as they are part of

the biotic environment of the community.

Our finding that environmental variation rather than

interspecific competition dominates the dynamics in a

diverse range of communities has important implications

for the way we see the communities. The communities are

not very stable, with the abundances able to bounce

around as the environment buffets them. There is still

some density dependence, which keeps the populations in

check within some bounds, but these are generous.

We found little evidence for interspecific interactions

affecting the temporal variation. This contrasts with

studies using manipulative experiments (i.e. exclusions;

e.g. Brown & Davidson 1997). This may partly be because

manipulative experimental studies tend to overestimate

the strength of interspecific interaction (but see Turnbull

et al. 2005). It may also be because manipulative studies

typically ask slightly different questions. They are usually

carried out by excluding species and seeing the effect this

has on the community (e.g. Heske et al. 1994; Brown &

Davidson 1997). However, this is a test of the effect of

interspecific competition on demarcating species’ niches

(e.g. their geographical range limits). Our study examines

species within their realized niches, where the strength of

interspecific competition typically fades out, and its role in

driving year-to-year fluctuations in species abundances

remains minor. If we are to understand what drives the

dynamics in natural systems, we need to use observations

of natural systems.

Here we have been able to decompose the temporal

variation in species abundances into contributions from

environmental fluctuations and intra- and interspecific

competition, making the evaluation of the relative strengths

of each component possible. This requires both sophis-

ticated statistical machinery and, of equal importance, high

quality community data collected over long periods of time.
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