
RESEARCH ARTICLE

Efficient Sampling of Parsimonious Inversion Histories with Application
to Genome Rearrangement in Yersinia

István Miklós*�� and Aaron E. Darling§

*Bioinformatics group, Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary; �Bioinformatics
Group, Department of Statistics, University of Oxford, Oxford, United Kingdom; �Data Mining and Search Research Group,
Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary; and §Genome Center, University of
California-Davis, Davis

Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and
polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement
to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such
optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on
genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic
polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of
optimal sorting paths.

Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses
a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number
of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely,
and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in
pathogenic Yersinia pestis.

The proposed method has been implemented in a program called ‘‘MC4Inversion.’’ We draw comparison of
MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique.
We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER
and the IS technique and simultaneously avoids bias inherent in the IS technique.

Introduction

As genome-sequencing costs continue their downward
spiral, sequencing of closely related organisms has become
increasingly viable. Initial efforts to sequence groups of
closely related organisms have focused largely on hu-
man-pathogenic bacteria. The most striking result has
been the discovery that members of the same bacterial spe-
cies exhibit a diversity of genome structures, including
extensive differences in gene content (Perna et al. 2001)
and large-scale changes in genome arrangement (Deng
et al. 2002).

Genomic inversion is the best known and most com-
mon mechanism by which bacteria rearrange their chromo-
somes. Inversions typically occur with end points in
oppositely oriented repetitive elements. The repetitive ele-
ments formahomologoussubstrate for replication-associated
DNA repair, the malfunction of which leads to inversion.
Associations between the abundance of repetitive DNA
and the frequency of inversion are well demonstrated (Achaz
et al. 2003).

However, bacteria do not tolerate inversion of some
portions of their chromosomes, and accumulating evidence
suggests that inversions are subject to strong selective
forces and possibly also recombination bias (for an over-
view, see Darling et al. 2008). As such, it is clear that going
beyond inversion distance estimation to reconstruct actual
inversion history is useful to elucidate patterns of natural
selection and recombination bias.

Some bacterial lineages, particularly host-restricted
pathogens like Yersinia pestis, have undergone such exten-
sive genomic rearrangement that numerous possible inver-
sion histories exist which are all equally parsimonious in
the total number of inversions. In such organisms, the true
history of rearrangement events is uncertain. To make ro-
bust inference regarding biological implications of the ge-
nome rearrangement history in such organisms, one must
average across all likely histories of inversion events.

For the present work, we are interested in methods to
reconstruct parsimonious inversion histories and, in partic-
ular, to sample from the uniform or other prescribed distri-
bution of possible parsimonious inversion histories. The
first polynomial-time algorithm to compute inversion his-
tory was given by Hannenhalli and Pevzner (1995). It runs
in O(n4) time, where n is the number of conserved segments
in the genome. Further work by others improved the run-
ning time to O(n2) (Kaplan et al. 1997), and the current best
known algorithm has subquadratic running time (Tannier
and Sagot 2004). These algorithms not only calculate the
minimum number of inversions needed to transform one
genome into another but also generate a series of such in-
versions. When computing only the minimum number of
inversions, without reconstructing history, the time com-
plexity drops down to O(n) (Bader et al. 2001). Other work
has investigated techniques to determine whether any par-
ticular inversion can be part of a parsimonious scenario.
Such inversions are termed ‘‘sorting’’ inversions. Because
there are O(n2) possible inversions acting on a given ge-
nome, the naive algorithm that considers all possible inver-
sions and decides in O(n) time whether each is a sorting
inversion can generate the list of all sorting inversions in
O(n3) time. Siepel (2002, 2003) introduced a faster algo-
rithm that generates all sorting inversions significantly

Key words: genome rearrangement, MCMC, Yersinia, inversion.

E-mail: miklosi@renyi.hu.

Genome. Biol. Evol. Vol. 2009:153–164.
doi:10.1093/gbe/evp015
Advance Access publication June 22, 2009

� The Author(s) 2009. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits

unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

faster than the naive algorithm in practice. However, the
worst-case running time of Siepel’s algorithm is still X(n3).

If we are interested in all parsimonious inversion his-
tories and not only the set of sorting inversions that decrease
the inversion distance by 1 for a particular genome, the sit-
uation gets more complicated. It has been shown that the
size of the network formed by overlaying common subpaths
of minimal sorting scenarios might grow exponentially with
the length of the genome (Bergeron et al. 2002). Moreover,
the best algorithm for enumerating all sorting paths has
O(n2nþ3) running time (Braga et al. 2007). Ajana et al.
(2002) introduced an importance sampler for parsimonious
inversion histories; however, the sampling distribution
might be very far from the uniform one (Mélykúti 2006).

In the present work, we describe a method to efficiently
sample from the uniform or other prescribed distribution of
all parsimonious inversion histories. We describe the ex-
pected mixing time of our method and demonstrate that in
practice, it mixes quickly. In doing so, we provide an empir-
ical comparison of our method’s mixing time to that of
Larget et al. (2005) as implemented in the BADGER soft-
ware. We also compare our method with the importance sam-
pling (IS) approach of Ajana et al. (2002), and we show that
the IS technique cannot be used in practice. We further com-
pare the results of our method with the results provided by IS
on a pair of Y. pestis genomes, and we estimate the bias pres-
ent when the IS distribution is treated as if it was the uniform
one. Even if the IS is corrected with importance weights, the
estimated expectation of statistics of interest has a huge sam-
pling variance caused by the large importance weights.

Finally, we demonstrate how samples generated by
our method can be marginalized to obtain distributions
for statistics of interest, such as the length distribution of
inversions and breakpoint usage. We discuss implications
of our efficient sampler and possible applications to phylo-
genetic inference.

Methods
Preliminaries

Genome Rearrangement and the Reality–Desire Graph

The genome rearrangement problem involves finding
a series of mutations from a set of allowable mutation types
that transform one genome into another. Allowable muta-
tion types might include inversions, transpositions, translo-
cations, and more generally k-break rearrangements
(Alekseyev and Pevzner 2008), which breaks the chromo-
some at k places and rejoins the so-emerging end points.
Genomes are typically described as signed permutations:
numbers represent the different genes and the signs repre-
sent the reading directions of genes. Although bacterial ge-
nomes usually contain a circular chromosome, they can be
represented as a linear permutation: We choose an arbitrary
gene, and we say that it always has a positive sign (reading
direction), and this gene is the first gene in the linear per-
mutation. When a reversal acts on a segment that contains
this gene, we replace that mutation with a reversal of the
other part of the genome instead. It is easy to see that
the alternative mutation has the same effect on the order
of the genes. In algebraic terminology, it can be shown that
signed permutations with the usual permutation composi-

tion and sign multiplication form a group that is isomorphic
to Sn � ðZþ

2 Þ
n; where n is the length of the signed permu-

tation. Mutations act on the permutations as a group action.
Therefore, transforming a genome arrangement (a permu-
tation) z1 into z2 is equivalent to sorting z�1

2 z1 into the iden-
tity permutation, þ1, þ2, . . .þn (writing products from left
to right and hence assuming that mutations act from the
right). In biological terms, the same observation can be re-
alized by numbering the genes as they appear in the target
genome. Moreover, the positive sign for each gene is de-
fined as the reading direction in the target genome. Hence
a gene in the starting genome has positive direction exactly
when the reading direction is the same as in the target ge-
nome. Therefore, we can talk about ‘‘sorting a signed per-
mutation’’ instead of transforming one permutation into
another.

Inversions (also called reversals) are mutations that in-
vert the order of a consecutive part of the permutation and
change the sign of the numbers. It is possible to invert a sin-
gle number, in which case the sign of the number is
changed. When inversions are the only mutations that
can act on signed permutations, it is possible to calculate
the minimum number of mutations needed to sort a genome.
This number is the ‘‘reversal sorting distance’’ of a permu-
tation. An inversion is called a sorting inversion if it de-
creases the sorting distance of a signed permutation.

Signed permutations are traditionally represented as
graphs of desire and reality (see, e.g., Bader and Ohlebusch
2006 and also fig. 1). To get this representation, we first
transform the signed permutation into a double-length non-
signed permutation replacing þi by 2i� 1, 2i and replacing
�i by 2i, 2i� 1. Then, we frame this unsigned permutation
into 0 and 2n þ 1; 0 and 2n þ 1 represents the beginning
and the end of the permutation. Vertices of the graph of de-
sire and reality are the numbers of the unsigned permutation
together with 0 and 2n þ 1. We connect every other pair of
vertices in the unsigned permutation with a black line, start-
ing with 0. These edges are called ‘‘reality edges’’ because
they show the reality, that is, what the neighbor of 0 is and
so on. The position of a reality edge is the smallest index of
its numbers in the unsigned permutation. Also starting with
0, we connect every node 2i and 2i þ 1 with a gray arc
above the row of vertices, and these gray arcs are called
‘‘desire edges’’ because they show which nodes should

FIG. 1.—The unsigned representation of the signed permutation �2,
þ4, �1, þ3, and its graph of desire and reality. In the graph of desire and
reality, every second number of the unsigned permutation is connected
with a line (reality edges, the numbers that are next to each other), and
each even number is connected to the next odd number by an arc (desire
edges, which numbers should be neighbors to get the þ1, þ2, . . ., þn
permutation). The graph of desire and reality can be decomposed into
cycles. This graph contains two intersecting cycles. Arrows on the reality
edges indicates a possible walk around the cycles.

154 Miklós and Darling

be neighbors to get the identity permutation. The graph falls
into cycles because each vertex of the graph has a degree of
2, and we can distinguish ‘‘oriented’’ and ‘‘unoriented’’
cycles. A cycle is oriented if there are two reality edges with
different directions on a traversal of the cycle, otherwise it is
unoriented. The span of a desire edge is the interval of the
permutation between the end points of the desire edges.
Two desire edges are said to cross each other if their spans
intersect, but neither contains the other. Two cycles inter-
sect if at least one or more desire edges from each of them
cross one another. By definition, intersecting cycles form
‘‘components’’ that partition the graph. A component is ori-
ented if it contains at least one oriented cycle; otherwise it is
unoriented. The span of a component is the interval from
the smallest position of its reality edges to the largest
position of its reality edges.

Unoriented components play a central role in the the-
ory of sorting signed permutations by reversals. An unor-
iented component is called a ‘‘hurdle’’ if its span does not
contain the span of any unoriented component or its span
contains the spans of all unoriented components. A hurdle
is called a ‘‘superhurdle’’ if deleting the hurdle would trans-
form a nonhurdle unoriented component into a hurdle. A
permutation is called a ‘‘fortress’’ if all of its hurdles are
superhurdles and the number of superhurdles is an odd
number. The Hannenhalli–Pevzner theorem says that the
inversion distance of permuation z is

dinv 5 n þ 1 � cðzÞ þ hðzÞ þ f ðzÞ; ð1Þ

where n is the length of the signed permutation, c(z) is the
number of cycles, h(z) is the number of hurdles in z, and f(z)
is 1 if z is a fortress, otherwise 0.

Finally, a pair of inversions are said to be commuting in-
versions if they are either nonoverlapping or one is nested in-
side the other. Because they commute, application of the two
inversions to a genome will result in the same final genome
arrangement regardless of which inversion is applied first.

Markov Chain Monte Carlo

The Metropolis–Hastings algorithm (Metropolis et al.
1953; Hastings 1970) can be used to construct a Markov
chain that converges to a prescribed distribution p over state
space S. The algorithm can tailor any Markov chain to con-
verge to p if the following are true for the Markov chain:

� Reversible: If the Markov chain can step to state y from
state x, then it can also step to x from y. More formally,

"x; y 2 S TðyjxÞ 6¼ 00TðxjyÞ 6¼ 0; ð2Þ

where T(y|x) is the probability that the chain steps into
states y given that it is in state x.
� Irreducible: There is a path with positive probability be-

tween any pair of states. If P is the transition matrix of the
Markov chain, then this property can be formalized that

"x; y 2 S dn Æ1T
x P

nj1yæ 6¼ 0; ð3Þ

where 1x is a vector containing 1 in coordinate x and 0 in
all other coordinates, T denotes transposition, and Æ � j � æ
denotes scalar product.

The Metropolis–Hastings algorithm is comprised of
two steps. The first step is called the ‘‘proposal,’’ in which
a random state y is drawn from the conditional distribution
T(�|x). In the second step, a random decision is made to de-
cide whether or not the proposed y is accepted. A random
number u is drawn from the uniform distribution U[0,1] and
the next state of the Markov chain is y if

u � min

�
1;
pðyÞTðxjyÞ
pðxÞTðyjxÞ

�
; ð4Þ

otherwise, the next state of the Markov chain will be also x.
It is easy to show that the so-generated Markov chain con-
verges to the prescribed distribution p (see, e.g., Liu 2001).

Markov Chain Monte Carlo Strategy

The Setup of the Markov Chain

Our sampling strategy for inversions is a realization of
a general framework for sampling from nested models
(Miklós I, unpublished data [http://ramet.elte.hu/~miklosi/
msis.pdf]). It also can be viewed as a generalization of the
(MC)3 method also known as parallel tempering (Altekar
et al. 2004). Assume that the minimal number of inversions
required to transform the source genome arrangement into
the target is d inversions. In our method, we utilize a set of
d chains to sample inversion paths in parallel. The ‘‘cold’’
chain Cd always maintains a complete sorting path of length
d from the source arrangement to the target arrangement.
Each additional chain Ci 2 {C0 . . . Cd�1} maintains an
i-long prefix of a sorting path. The target distribution in
chain Ci is the uniform distribution of possible prefixes
of length i, regardless of the number of ways to elongate
a prefix into an optimal sorting path of length d. Note that
the number of elongations might be different for different
prefixes; however, we are unable to calculate these num-
bers, not even the ratio of the number of possible elonga-
tions for two different prefixes cannot be calculated. At
each step in the Markov chain, either a pair of neighboring
chains Ci, Ciþ1 are swapped with each other or the order of
commuting reversals within a single chain is swapped.
Figure 2 shows an overview of the sampler. We presently
describe each type of move.

Swapping States between Chains

Unlike in parallel tempering (Geyer 1991), where dif-
ferent chains have different distributions over the same state
space, here different chains make random walks in different
state spaces. Therefore, the states have to be transformed to
states in other state spaces when we swap two parallel
chains. This simply means that when states in chains Ci

and Ciþ1 are swapped, we elongate the i-long prefix of
a sorting path in chain Ci by one sorting reversal, yielding
an i þ 1 long prefix as candidate for the new state in chain
Ciþ1. In the other direction, the last sorting reversal is
removed form the current i þ 1 long prefix of the chain
Ciþ1 to get a new candidate for chain Ci. As with parallel
tempering, it is sufficient to calculate the probabilities
up to unknown normalizing constants for each distribu-
tions, these normalizing constants cancel out in the

Sampling of Parsimonious Inversion Histories in Yersinia 155

http://ramet.elte.hu/~miklosi/msis.pdf
http://ramet.elte.hu/~miklosi/msis.pdf

Metropolis–Hastings ratio. Furthermore, as the target distri-
butions are the uniform distribution of prefixes in all par-
allel chains, the equilibrium probabilities also cancel out
from the Metropolis–Hastings ratio. Unlike in parallel tem-
pering, the Metropolis–Hastings ratio contains the ratio of
transition probabilities because the states are not simply
swapped but are also transformed.

Thus, the Metropolis–Hastings ratio for chain swaps
contains the probability of proposing a particular elongation
of the shorter chain. Specifically, if the current prefix in
chain Ci is pi and it is proposed to be elongated by a sorting
reversal ri, and the current prefix in chain Ciþ1 is piþ1 +
riþ1, where + denotes the concatenation of paths, then
the Metropolis–Hastings ratio is

min

�
1;
Pðpiþ 1+riþ 1jpiþ 1Þ

Pðpi+rijpiÞ

�
: ð5Þ

The Metropolis–Hastings ratio accounts for the fact that
two different prefixes may each have a different number
of sorting reversal elongations, and the method to compute
the size of the set of reversals is given below.

Steps Inside a Chain

The random walk inside a chain is performed by swap-
ping two consecutive commuting reversals in a sorting pre-
fix. Namely, our algorithm enumerates all ks for which
reversals rk and rkþ1 in the sorting prefix are commuting
reversals. We select a random k and swap rk and rkþ1.
The Metropolis–Hastings ratio is the ratio of the cardinality
of the set of ks in the resultant prefix and the old prefix.

Proving the Convergence of Our Chain

The proposed Markov Chain Monte Carlo (MCMC)
strategy can be described as a random walk by a single mas-
ter Markov chain. This master chain walks on the set prod-
uct of i-long prefixes of sorting scenarios, where i runs from
0 to d, the reversal sorting distance. The prescribed distri-
bution is the uniform distribution over the entire set prod-
uct, which is guaranteed by the Metropolis–Hastings
algorithm if the two conditions in equations (2) and (3).
are satisfied. But they are indeed satisfied as all steps in
the proposed Markov chain are reversible and any prefix
can be grown from the empty prefix using swaps between
the parallel chains. Namely, it is possible to grow a full-
length path from the empty prefix by swaps, then a d �
1 long prefix from the empty prefix without disturbing
the full-length path, and so on; we can grow an i-long prefix
from the empty prefix without disturbing any j . i long
prefixes.

Theoretical Mixing Time

The first theoretical result on the mixing time of Mar-
kov chains slightly resembling the one presently described
was given by Sinclair and Jerrum (1989). Unfortunately, we
could not apply their results to our method. Instead, we can
give the following theoretical bounds for the mixing time of
the so-constructed Markov chain. Consider the tree of all
optimal sorting paths, where the root is labeled with the
starting genome, the children of the root are labeled with
the possible genomes after the first step of possible optimal
sorting paths, and so on. We would like to mention that all

FIG. 2.—Overview of the sampler. The set of all optimal sorting paths can be represented as a tree where nodes represent genome arrangements
(signed permutations) and edges represent application of a sorting inversion. The root is the starting genome arrangement, and the leaves are the target
arrangement so that every path from root to leaf represents an optimal sorting path. In most cases, the tree will be too large to compute in its entirety so
we desire instead to take a representative sampling of the sorting paths embedded in the tree. To do so, we construct a sampler with d chains, where d is
the minimum sorting distance. Each chain Ci samples uniformly from the nodes at depth i in the tree, thereby sampling uniformly from the i-long
prefixes of optimal sorting paths. Chain Cd samples complete paths. The chains perform a random walk through the tree by swapping with each other
and within themselves (see text). In practice, we do not even compute the full set of edges (sorting reversals) below a node, instead use rejection
sampling to find an arbitrary edge quickly.

156 Miklós and Darling

optimal sorting paths also could be described as a network;
however, this network can be opened to a tree, see figure 3.
We recently showed that the network might contain arbi-
trary big gaps, and hence, from the point of view of conver-
gence of Markov chains on all optimal sorting paths, the tree
representation is essentially as efficient as the network rep-
resentation (Miklós et al. 2009). Let Lj(u) define the leaf no-
des below node u at depth j, and letDi denote the set of nodes
in depth i. We define the ‘‘hiddenness rate’’ of a tree as

k : 5 max
i

max
u2Di

max
j.i

�
jLjðuÞj
jDjj=jDij

�
; ð6Þ

where |�| denotes the cardinality of the set. We recently
proved (Miklós 2009) that the mixing time of the Markov
chain that applies only the swapping steps between the
chains is

XðnkÞ5 srel 5Oðad2þ log2ð9kÞÞ; ð7Þ

where k is the hiddenness rate defined above, a is the inverse
of the smallest transition probability of the Markov chain,
and d is the inversion distance of the input permutation. We
conjecture that the mixing time is a polynomial function of
both d and k and that the upper bound in equation (7) might
be significantly improved.

However, swapping across chains alone does not guar-
antee fast mixing, as one can construct a series of signed
permutations for which the hiddenness rate k grows expo-
nentially with the length of the permutations. Briefly, the
counterexample contains several oriented components with
the same reversal distances but different numbers of sorting
reversals as a first step and a different number of optimal
sorting paths per component. Let us call the components
with more sorting reversals ‘‘rich components,’’ and the
components with fewer sorting reversals ‘‘poor compo-
nents.’’ Assume the number of the poor and rich compo-
nents is the same in the counterexample. The half-length
prefixes containing only sorting reversals that act on poor
components will have many more elongations than other
prefixes. All elongations of these prefixes involve rich com-
ponents, and so, they will have many more elongations than
average and by definition, they are hidden parts of the tree.
However, if the Markov chain also swaps commuting in-

versions within a path, then the chain becomes quickly mix-
ing for this particular case. Still, we have not proved that the
Markov chain with both move types mixes quickly.

Efficiently Sampling a Sorting Reversal

Rejection Sampling

The MCMC algorithm needs samples from some dis-
tribution of sorting reversals. The distribution must be such
that the acceptance ratio can be estimated. The best algo-
rithm to enumerate all sorting reversals for a given genome
has X(n3) worst-case running time (Siepel 2002), which
might be too slow in practice. Here, we introduce a rejection
method (von Neumann 1951; Liu 2001) that we use as
a transition kernel in our MCMC strategy. The rejection
method first calculates the size of a set of reversals which
contains all sorting reversals and some nonsorting reversals.
We refer to that set of reversals as the sampling set, denoted
s. A member from s is then chosen, uniformly at random. It
takes O(n) time to compute the sampling set and choose
a member at random. Next, we apply the algorithm of Bader
et al. to decide if the sampled reversal is a sorting reversal. If
the proposed reversal is a sorting reversal, then we propose
it in the Metropolis–Hastings algorithm and accept it with
a prescribed probability; otherwise, we reject it and the next
state of the Markov chain will remain unchanged from the
current state. Because the Bader et al. algorithm to decide
whether or not a reversal is sorting also runs in O(n) time,
the overall running time for one sampling is O(n). If we use
|si| to refer to the sampling set size for prefix pi, and |siþ1| for
the sampling set size on prefix piþ1, then the Metropolis–
Hastings ratio in equation (5) can be replaced by

min

�
1;

jsij
jsiþ 1j

�
: ð8Þ

Indeed, proposing a particular sorting reversal in the above
described procedure is 1/|si| if the set of the reversals from
which we select a random reversal has size |si|.

Below, we describe how the rejection method defines
a set of reversals and samples a random reversal from it. As
we found that in practice, a constant percentage of the set
will contain sorting reversals, the rejection rate is small, and

FIG. 3.—The network representing all shortest sorting paths of signed permutation þ2,þ1,�3, and the corresponding tree representing all shortest
sorting paths.

Sampling of Parsimonious Inversion Histories in Yersinia 157

hence, this method works very fast in practice. The expe-
rience that the majority of the proposed reversals are indeed
sorting reversals is in accordance with previous works
(Bergeron et al. 2002; Swenson et al. 2008).

We used the following facts for the rejection method
(Siepel 2002):

� If a signed permutation does not contain a hurdle, all
sorting reversals increase the number of cycles in the
graph of desire and reality. ‘‘Cycle-increasing’’ reversals
act on a single cycle and the two reality edges on which
they act have different orientations when traversing the
cycle.

� If a signed permutation contains only one hurdle, then
all sorting reversals either increase the number of cycles
or act on a single cycle belonging to the hurdle. The
latter inversions are called ‘‘hurdle-cutting’’ inversions.

� If a signed permutation contains more than one hurdle,
then all sorting permutations fall into one of the three
categories: (1) cycle increasing (see above), 2) hurdle
cutting (see above), and 3) ‘‘hurdle merging.’’ Inver-
sions of the latest type have end points belonging to the
spans of different hurdles. The reality edges might not
necessarily belong to the hurdles; it is enough to be in
the span of the hurdle. Recall that the span of the hurdle
is the inclusive interval of the leftmost and the rightmost
reality edges of the hurdle.

Note that not all cycle-increasing inversions will be
sorting reversals as some of them might create a hurdle.
On the other hand, it is possible to count the number of cy-
cle-increasing reversals and sample uniformly one of them
in linear time (see Miklós and Hein 2005).

The efficient algorithm by Bader et al. (2001) gives not
only the inversion distance in linear time but also the number
of hurdles, superhurdles, and which cycle belongs to which
hurdle (if it belongs to any). In this way, it is possible to con-
struct an algorithm similar to the one in Miklós and Hein
(2005) that runs in linear time and counts the number of in-
versions acting on one cycle belonging to a hurdle. Note that
not all hurdle-cutting inversions will be sorting inversions.
Cutting a superhurdle creates a new hurdle, and we can
transform the permutation to a fortress by cutting a hurdle.

The algorithm of Bader et al. (2001) also gives the
position of the leftmost and the rightmost reality edge of
a hurdle. If we traverse the reality edges of the signed per-
mutation one more time from left to right, we can tell for
each position i how many reality edges are in spans of hur-
dles and how many are in the span of each hurdle. In this
way, we can tell in O(1) time how many reality edges are to
the right of position i that give a hurdle-merging inversion
together with the reality edge in position i. The sum of these
numbers gives the number of hurdle-merging inversions.
Moreover, we can perform a weighted sample from the re-
ality edges where the weights are the above-mentioned
numbers. The sampled reality edge will be considered as
the left reality edge of a hurdle-merging inversion, and
we choose uniformly from the suitable right reality edges.
It is easy to see that we sample uniformly from the hurdle-
merging inversions in this way in O(n) time. Note that not
all the hurdle-merging inversions will be sorting inversions
as merging two hurdles of a double superhurdle will create

a new hurdle, too (for a definition of ‘‘double superhur-
dles,’’ see Siepel 2002).

The rejection method first calls Bader‘s algorithm and
decides what categories it has to consider (cycle increasing,
hurdle cutting, and hurdle merging). It then calculates the
number of inversions falling into each category, chooses
a category weighted by their cardinalities, and uniformly
samples an inversion from that category. If the sampled in-
version is indeed a sorting inversion (decided by Bader’s
algorithm in linear time), the change is accepted with the
probability in equation (8). Our gamble is that a high frac-
tion of the proposed reversals will be sorting reversals. This
is in accordance with the recently published result claiming
that hurdles are rare, so many of the cycle-increasing rever-
sals are indeed sorting reversals (Swenson et al. 2008).

Estimating the Number of Sorting Paths

Estimation for IS

We now describe how the total number of optimal
sorting paths can be estimated during an IS procedure sim-
ilar to that of Ajana et al. (2002) and described further be-
low in Results. Let q denote the IS distribution, and let p
denote the uniform distribution. In our case q(y) is the in-
verse of the product of the number of sorting reversals of
each intermediate genome on the sorting path y because
random sorting paths are generated by choosing uniformly
from the available sorting reversals at each step. p(y) is the
same for all sorting path y and is equivalent with the inverse
of the number of all sorting paths, N. To estimate N, we first
write down how to estimate the constant 1 function using
importance weights (Liu 2001). Indeed, the following is
true for any two distributions p and q:

15
X
y

qðyÞ pðyÞ
qðyÞ : ð9Þ

If we have a set of samples y1, y2, . . ., ym following the dis-
tribution q, then the unbiased estimation for 1, according to
equation (9), is

1̂5

pðy1Þ
qðy1Þ þ

pðy2Þ
qðy2Þ þ � � � þ pðymÞ

qðymÞ
m

; ð10Þ

(note that we sample from distribution q and would like to
estimate expectation of function p/q). Because pðyiÞ5 1

N for
any i, we get the following estimation for N

N̂5

1
qðy1Þ þ

1
qðy2Þ þ � � � þ 1

qðymÞ
m

: ð11Þ

Estimation for the New Sampling Method

Because the equilibrium distribution of our new sam-
pler is uniform over all sorting prefixes, the product of the
expected number of sorting reversals over all Cis yields the
total number of sorting paths. Therefore, if we calculate the
average number of sorting reversal extensions for each Ci

during the MCMC run, their product across all Ci will con-
verge to the total number of sorting paths. To avoid

158 Miklós and Darling

counting the exact number of sorting reversals extending
each chain Ci, we can instead make an unbiased estimation
for it and we can draw uniformly a fixed number of rever-
sals from the sampling set on Ci. Recall that this is the set of
cycle-increasing reversals and also hurdle-merging and hur-
dle-cutting reversals when hurdles exist in the signed per-
mutation. The size of the sampling set is then multiplied by
the fraction of randomly chosen reversals that are indeed
sorting reversals. In our experiments, we make estimations
from 10 randomly chosen reversals. To reduce the effect of
sampling variance, we average the number of estimated de-
scendants at each Ci across steps in the Markov chain.

Given that the Markov chain is run long enough to con-
verge, the method is thus guaranteed to correctly estimate
the true number of sorting reversals in an unbiased fashion.

Results

We implemented the methods described above in Java
1.5 software called ‘‘MC4Inversion.’’ MC4 stands for
Model Changing Metropolis-Coupled MCMC. ‘Model
Changing’ emphasizes the fact that parallel Markov chains
walk on different state spaces. The method implements d
þ 1 Markov chains denoted by C0, C1, . . ., Cd, where
d is the reversal distance of the input permutation. The chain
Ci takes a random walk on the i-long prefixes of possible
sorting scenarios as described in ‘‘MCMC Strategy.’’ The
program is downloadable from http://phylogeny-cafe.elte.
hu/MC4Inversion.tar.gz.

The program is fast in practice; about 15 min is enough
for 5 million Markov chain steps on a permutation of inver-
sion distance 68 using a Macintosh MacBook with an Intel
2.0GHz Core 2 Duo processor.

Empirical Benchmarks of Mixing Time

In the Methods, we explain the relationship between
our method and previous ones, providing some upper
and lower compute time bounds for our methods. Unfortu-
nately, we cannot prove that the proposed Markov chain
always converges quickly to the prescribed distribution.

Comparing MC4Inversion and BADGER

Despite the lack of a theoretical guarantee regarding
the mixing time of any known inversion sampling method,
they may mix very well in practice. To examine whether our
method improves upon the mixing time in practice, we
compare the performance of our method to that of BAD-
GER (Larget et al. 2005). When operating on a pair of ge-
nomes, BADGER’s MCMC sampler keeps a single
complete sorting path as its current state. The sorting path
is updated by randomly choosing a portion of the path, de-
leting those inversions, and proposing new inversions to
replace them. BADGER does not restrict the proposed sort-
ing paths to only sorting inversions, thereby allowing
sorting paths with more than the minimum number of in-
versions to be sampled. The default BADGER sampler pa-
rameters propose sorting inversions with high probability,
neutral inversions (which do not change the reversal dis-
tance) with lower probability, and ‘‘bad’’ inversions (which
increase the reversal distance) with still lower probability.

When running in parallel tempering mode (c . 1),
BADGER runs multiple Markov chains in parallel, each
with their own sorting path and ‘‘temperature.’’ Chains with
a higher temperature have a flattened probability distribu-
tion relative to the cold chain (temperature 1) from which
posterior samples are drawn. Chains with higher tempera-
ture are thus more likely to accept moves that have low
probability in the cold chain. In that way, heated chains
can in theory avoid getting stuck in local optima in the like-
lihood surface and by periodically swapping with the cold
chain, facilitate jumps among distant local optima that im-
prove mixing. In BADGER’s probability model, heated
chains are more likely to accept sorting paths longer than
the minimum possible length.

We compare BADGER with and without parallel tem-
pering to our method on several data sets. Each data set rep-
resents a pair of complete Yersinia genome sequences and
were chosen to represent organisms with low, moderate, and
high levels of rearrangement relative to each other (table 1).
The Progressive Mauve genome alignment method (Darling
2006) was applied to each pair of organisms to identify
synteny blocks and generate a signed permutation matrix

Table 1
Data Sets Used for Empirical Evaluation of Mixing Time

Divergence Organisms Breakpoints Min. Inversions

Low Y. pestis KIM** Y. pestis Nepal516* 16 11
1, 5, �13, 7, �10, 9, �8, 11, �12, �6, 3, �14, 16, �4, 2, �15, 17

Medium Y. pestis KIM [2] Y. pestis Antiqua* 36 25

1, �11, 7, 6, �26, �23, �24, �25, �22, 21, �20, 19, �18, 17, �16, 15, �14, 13, �12, �36, 28, �34, 27, �4, �8, �5, 2, 32, 29, �9, �3, �33, 31,
�10, �30, 35, 37

Medium 2 Y. pestis Antiqua* Y. pestis 91001*** 51 35

1, 2, �41, 6, �37, �33, 32, �31, �49, �4, �34, �30, 13, �15, �17, �11, 29, �12, �16, 14, 18, �19, 20, �22, �23, 21, 24, 28, �27, 26, �25, �10,
9, �36, �3, 45, 5, �40, 47, 51, 38, 7, �8, 42, �43, 44, �50, 48, �46, �39, �35, 52

High Y. pestis Antiqua* Y. pestis Angola 97 79

1, �81, 11, 8, �84, �13, 75, 59, �60, 51, 49, 56, �85, 9, �77, 2, �95, 6, 93, 83, �97, 91, �69, 72, 76, �88, �92, �62, 5, �94, �30, 21, 32, 31, 22,
�33, �29, 50, 61, �80, 52, 24, 23, 34, �39, 35, 37, �42, 41, �40, �38, �43, �36, 44, �20, 54, �87, �47, 46, �53, �63, 70, 82, 26, 64, 28, �55,
18, �65, �27, 25, �17, 67, 14, 16, 66, 79, �19, 68, �71, 86, 48, �45, 58, �57, �10, 78, �74, �12, 15, �7, �3, 96, �4, �73, �89, 90, 98

NOTE.—The four data sets were chosen to represent low, medium, and high degrees of genomic rearrangement. All genomes are circular. Signed permutations for each

data set are given in the next row. *Chain et al. (2006); **Deng et al. (2002); ***Song et al. (2004).

Sampling of Parsimonious Inversion Histories in Yersinia 159

http://phylogeny-cafe.elte.hu/MC4Inversion.tar.gz
http://phylogeny-cafe.elte.hu/MC4Inversion.tar.gz

(table 1). Data sets with few rearrangements are expected to
have only a small number of optimal sorting paths, whereas
our high-divergence data set has so many optimal sorting
paths that enumeration of all sorting paths within a reason-
able amount of time is not possible.

Based on the results in table 2, we find MC4Inversion
and BADGER to be competitive in speed. When the inver-
sion distance of the input permutation is small, MC4Inver-
sion and BADGER find a comparable number of optimal
sorting paths per second. For high-divergence data sets,
BADGER finds substantially fewer optimal sorting paths
per second. This is in part because at higher inversion dis-
tances, suboptimal paths have greater probability mass in
the posterior distribution sampled by BADGER. However,
we observe that BADGER with c 5 4 samples many more
optimal paths than with c 5 1 in the case of the high-
divergence data set, suggesting that parallel tempering
is required to sample effectively and that BADGER with
c 5 1 may be mixing very slowly.

We also investigated the diversity of paths sampled by
MC4 and BADGER. One way to measure the diversity of
paths is to calculate the average inversion distance between
the intermediate genomes at a given position on different
sampled paths. We calculated that metric and found that
the average distance was slightly greater for MC4 than
for BADGER (data not shown). The analysis suggests that
MC4 visits a slightly larger area of the total solution space
than does BADGER.

Estimating the Total Number of Optimal Sorting Paths

For each data set, we estimated the total number of
sorting paths using the method described above. In practice,
we do not estimate the number of sorting paths at each
MCMC step, but instead do it periodically, after every
25,000 steps. To initially verify that our method provides
correct estimates of the number of optimal sorting paths, we
compare results from our stochastic method to solutions
given by the exact method (Braga et al. 2007). Because
the exact method requires O(n2nþ3) compute time, it was
only feasible to run the method on the low-divergence data
set, where n 5 16. For that data set, the exact number of
optimal sorting paths is computed to be 24,631,200, using
about 45 min of compute time. On the same machine, our
stochastic method converges within seconds on an estimate
of 107:38 � 24; 000; 000 sort paths. To further verify that
our method correctly estimates the true number of sorting

paths, we constructed a permutation wherein all inversions
commute. In that case, the method correctly estimates that
there are k! sorting paths, where k is the number of oriented
small cycles in the reality–desire graph.

We then investigated how well our method estimates
the number of sorting paths for the high-divergence Yersi-
nia data set, which is too large for exact estimation. Figure 4
shows the base-10 logarithm of the estimated number of
sorting paths for that data. The change in estimates over
50 million MCMC steps subsampled every 25,000 steps
is shown. The light orange line indicates the estimation
when all samples in the Markov chain contribute. At the
beginning of the chain, the estimation was too small, im-
plying that the initial sampling visited only a negligible por-
tion of the solution space. The continual and gradual
increase of the light line happens because the averages
of estimated descendant counts at each Ci contain samples
from the beginning of the chain, which was far from the
equilibrium distribution. Initially, the chain started at nodes
in the tree that had fewer than average descendants.

The dark line in figure 4 shows the estimated number
of sorting paths when the first 10 million MCMC steps are

Table 2
Mixing Speed of Our Method and of BADGER (Larget et al. 2005) with Various Numbers of Parallel Chains

Program

Unique Optimal Samples per Second All Unique Samples per Second

Low Medium Medium 2 High Low Medium Medium 2 High

MC4 1887.0 398.0 206.0 29.0 1887.0 398.0 206.0 29.0
BADGER c 5 1 1493.0 102.0 112.0 0.08 2577.0 645.0 365.0 55.0
BADGER c 5 4 437.0 30.0 34.0 0.97 790.0 184.0 113.0 18.0
BADGER c 5 16 33.0 2.6 4.7 0.0 57.0 17.0 12.0 3.2
BADGER c 5 64 5.7 1.3 1.0 0.0 10.0 4.2 2.8 0.7

NOTE.—For each level of divergence, the mixing time is given as the number of unique optimal sorting paths discovered per second and the total sorting paths

discovered per second. Each program was run for exactly 10 min of CPU time. BADGER only used updates which modify sorting paths (i.e., tree topology updates were

disabled) and a number of parallel chains given by c with temperatures ranging from 1 to 1.04. Other BADGER parameters were fixed at default values. At low levels of

divergence, BADGER and the new method perform comparably. At medium and high divergence, the new method samples optimal paths more efficiently.

FIG. 4.—Estimated number of sorting paths for the highly divergent
permutation in table 1. The y axis shows the base-10 logarithm of the
estimated number of sorting paths, and the x axis shows the index of the
samples from the Markov chain. The estimation is based on our MCMC
sampler, see the text for details. In total 50 million Markov chain steps
were made, and the total sorting path count estimates were sampled every
25,000 steps. The orange curve shows the estimations based on all the
samples up to the current index, and the black curve shows the
estimations when the first 10 million steps were discarded as burn-in of
the MCMC. As more samples are taken, our estimates converge on the
true number of sorting paths.

160 Miklós and Darling

discarded. The estimated number of sorting paths reaches
a plateau, suggesting that 10 million steps are enough to
get MCMC convergence on the high-divergence Yersinia
data set.

Because the target distribution is the uniform one, the
usual log-likelihood trace cannot be used for empirical test-
ing of convergence. Instead, we suggest comparison of this
estimator across independent chains as an empirical check
for convergence.

Comparing IS and MC4 Sampling

Ajana et al. (2002) proposed a method for sampling
optimal sorting paths. In that method, random paths were
generated by uniformly choosing from the sorting reversals
of the actual intermediate genome. Because the number of
sorting path extensions that exist after application of the
first sorting reversal might be unequal for each initial rever-
sal, this method will not generate samples from the uniform
distribution. Likewise for reversals sampled at intermediate
genomes. Samples could be reweighted such that estima-
tions for expectations of interesting statistics will remain
unbiased after weighting, and such a sampling strategy is
called Importance Sampling (Liu 2001). An importance
sampler might be superefficient and simultaneously yield
a smaller sampling variance than a regular sampler. On
the other hand, if the importance sampler visits a part of
the distribution very rarely, the sampling variance will
be extremely large. Indeed, if the upper tail of a distribution
is undersampled, then the importance sampler will under-
estimate the statistics of interest with high probability. Al-
though expected values of estimates will be identical to that
of the background distribution (and hence, the sampling
method will yield unbiased estimates), such an importance
sampler will be unreliable in practice due to the large sam-
pling variance. We now show that this is the case with the
method of Ajana et al. (2002).

Comparing the Estimated Number of Sorting Paths

To test the hypothesis that the IS underestimates the
total number of paths, we generated 100,000 independent
samples of sorting paths for the highly divergent permuta-
tion in table 1 using the method of Ajana et al. (2002).
Based on those samples, we estimated the number of com-
plete sorting paths, see Methods for details. The estimation
is 10109.75 ± 0.75, which is a significant underestimation. The
MC4 method estimates the true number of sorting paths to
be nearly seven orders of magnitude larger (about 10116.54).

Generating 100,000 samples under the IS protocol took
substantially more time—more than 12 hours—than 50 mil-
lion MCMC steps under the MC4 protocol (less than 3 h).
There are two reasons for this. First, generating a sorting path
with 79 steps in the Ajana et al. protocol invokes calculating
the set of proposed reversals 79 times and then taking ran-
dom reversals until one of them is indeed a sorting reversal
(see also ‘‘Rejection Sampling’’). Hence, this procedure
takes about two orders more running time than an MCMC
step. Second, estimating the portion of reversals that are in-
deed sorting reversals takes significantly more time than an

MCMC step. In the MCMC run, we had only 2,000 samples,
and thus, called this procedure only 2,000 times. On the other
hand, the estimation procedure has to be called for all the
100,000 samples coming from the IS protocol.

We can thus conclude that the IS strategy has an ex-
tremely large sampling variance. Although in theory the
method yields unbiased estimates, the estimation based
on 100,000 samples is a huge underestimation. Many more
samples would be needed to get the first large overestima-
tion that compensates for the general underestimation, and
even more samples would be needed to get a reasonably
small standard error for the estimation.

Sampling Histories with Short Inversions

Previous studies showed that short inversions are more
frequent than long inversions (Sankoff et al. 2005; Darling
et al. 2008). Therefore, one might want to consider sam-
pling from a distribution of sorting scenarios wherein short
inversions are preferred. To demonstrate that our method is
capable of sampling from such a distribution, we defined
the following Boltzmann distribution of sorting scenarios:

pðsÞ}e

P
inv2 S

lðinvÞ

T ; ð12Þ

where the sum runs over the inversions in the sorting sce-
nario S, l(inv) is the length of a particular inversion inv, and
T is a hypothetical temperature. As T tends to 0, the distri-
bution gets frozen in a distribution of sorting scenarios that
have the minimum sum of inversion lengths. When T tends
to N, the distribution tends to the uniform one.

We set the prescribed distributions for all parallel
chains as in equation (12), and we changed the Metropo-
lis–Hastings ratio such that all chains converge to their pre-
scribed distributions. In our experiments, we set T 5 100.
The convergence of the Markov chain was quick based on
the log-likelihood trace (data not shown)

We also calculated the length distribution and the ex-
pected breakpoint usages for this modified distribution. The
results are shown on figures 5 and 6.

One shortcoming of the approach to sampling short
inversions is that the temperature parameter is rather

FIG. 5.—Distribution of inferred inversion lengths. Estimates based
on three methods are shown: IS (orange), MC4 (blue), and MC4
modeling a preference for short inversions (black). Short inversions are
more common than long inversions, and the IS method exhibits an
unexplained bias away from short inversions that can be ascribed to its
high sampling variance. When modeling a preference for short inversions
we use equation (12) with T 5 100.

Sampling of Parsimonious Inversion Histories in Yersinia 161

arbitrary. The lower the temperature, the more short inver-
sions are preferred, but at sufficiently low temperatures, the
mixing will be poor because scenarios with long inversions
cannot be easily ‘‘bubbled out.’’ We now give an example
that would lead to poor mixing. Consider a partial scenario,
S, in which the final step is a short reversal, but it is not
commutative, so that it must be the last reversal. Assume
also that S contains some very long reversals, so it is other-
wise a low probability scenario. Imagine a situation where
partial scenarios U with one fewer inversion than S contain
mostly short reversals and end with a longer reversal.
Should that be the situation, such scenarios U and S cannot
be swapped because shortening S means creating a scenario
with only long inversions, whereas extending U means add-
ing a longer reversal to U. So the acceptance probability
will be low. Although bubbling out S (i.e., shortening S un-
til it becomes the empty partial scenario) would be desir-
able, our method cannot handle this situation.

Inversion Lengths Distributions

We estimated the distribution of inversion length from
the 1600 samples collected on the high-divergence data set
using the IS method, the MC4 method, and the MC4 with
short-inversions method. The distributions are shown on
figure 5.

In general, all methods give qualitatively similar re-
sults for inversion length statistics. However, the relative
difference in probabilities between the IS method and
MC4 method is more than 10% in some cases, despite
the fact that they supposedly sample from the same distri-
bution. The largest difference is observed for the shortest
inversions. Although both estimators indicate that short in-
versions are more frequent than long inversions, the MC4

protocol finds more sorting paths with short inversions than
the IS protocol.

Estimates of Breakpoint Usage

By definition, the left and right boundaries (break-
points) of every synteny block have been end points of
at least one inversion event. However, some block bound-
aries have been end points for multiple inversion events. In
previous work, we demonstrated that block boundaries lo-
cated near the origin of chromosome replication tend to be
used as inversion end points more frequently than those
near the terminus. We now evaluate how each method es-
timates those values. Based on the estimation of the number
of sorting paths (fig. 4), we discarded the first 10 million
MCMC steps as burn-in. From the remaining 40 million
steps, we sampled 1600 sorting paths, one after every
25,000 steps. From these paths, we computed the average
number of times each breakpoint had been used and plotted
the results on figure 6 with blue color.

We also estimated the number of breakpoint
usages using the IS protocol. The estimations are plotted
on figure 6 as orange dots. The difference between the
two estimations is not as striking as differences in estimates
of the total number of sorting paths. However, there are dif-
ferences between the two statistics, and the difference is
more than 10% in several cases. Such a difference would
be statistically significant if we had 1600 and 100,000 in-
dependent samples from each protocol. However, MCMC
methods give correlated samples, and hence, calculating
statistical significance is not possible. Regardless, the
10% difference would be statistically significant even if
the effective sample size of the MCMC was only 100.

Discussion

We introduced a novel parallel MCMC method for
sampling optimal reversal sorting scenarios. The parallel
Markov chains walk in different state spaces. State spaces
are nested and range from trivial to complete. The trivial
Markov chain walks in empty prefixes of any sorting sce-
nario, the complete chain walks in optimal sorting scenar-
ios, and intermediate chains Ci walk in the i-long prefixes of
possible optimal sorting scenarios. In Methods, we describe
theoretical lower and upper bounds on the mixing time of
the Markov chain and showed that the new sampler can out-
perform another sampling methodology in some cases of
interest.

Efficiency

In terms of speed, MC4Inversion and BADGER are
comparable, but MC4Inversion appears to sample a slightly
larger portion of the solution space on the Yersinia data in
a fixed amount of time. The sampling strategy used by
MC4Inversion could potentially be made faster in practice
because our implementation was written in Java. BADGER
is written in Cþþ, which generally yields faster running
programs. MC4Inversion also offers a natural extension

FIG. 6.—Estimated number of times each block boundary has been
used as an inversion endpoint. Block boundaries are arranged according
to their occurrence in the reference genome. Some blocks are extremely
short, leading to points that appear to overlap. Estimates made by three
methods are shown: IS (orange dots), MC4 (blue squares), and MC4 with
a preference for short inversions (black triangles). When modeling
a preference for short inversions, we set T 5 100 in equation (12) as
described in the text. As previously reported (Darling et al. 2008), we find
fewer inversions surrounding the replication terminus, which is marked
with a cyan vertical bar.

162 Miklós and Darling

to multiprocessor parallelization that should scale linearly
in the number of CPUs up to the inversion distance, modulo
interprocess communication overhead. In such a paralleliza-
tion, a swap between chains Ci and Ciþ1 can be performed
independently from the swap among Cj and Cjþ1, where iþ
1 , j.

We believe MC4Inversion’s performance is due to
both better Markov chain mixing and the rejection method
that proposes a new inversion in O(n) time instead of the
theoretical X(n3) worst-case scenario, whereas the accep-
tance probability of the applied rejection method decreases
by only a constant factor.

Future Directions

Attention toward Bayesian approaches for reconstruct-
ing inversion distance and scenarios has been growing in
recent years. Such methods have been applied to mitochon-
drial genomes (Larget et al. 2002, 2005), bacterial genomes
(Darling et al. 2008), fly genomes (York et al. 2002, 2007),
and even metazoans (Durrett et al. 2004). In every case,
Bayesian analysis provides a statistically robust framework
for testing hypotheses regarding the rates and patterns of
genome rearrangement in the organisms of interest. We an-
ticipate that our new methods will further enable such stud-
ies by making analysis of large data sets and development
of phylogenetic methods more practical.

One possible extension of our method would allow
sampling suboptimal sorting paths and their prefixes, and
the prescribed sampling distribution would be similar to
those of programs like BADGER (Larget et al. 2005) or
ParIS Genome Rearrangement (Miklós et al. 2005), which
implements a method to sample inversion and transposition
histories. In such a context, the shorter sorting paths are
taken to be more likely than longer paths according to some
prescribed distribution such as an exponential. Such a sam-
pler might involve construction of a series of additional
chains for each suboptimal sorting path length.

The new inversion sampling methodology would be
most useful as a component in a phylogenetic sampler
for inversions. Such samplers propose new inversion sce-
narios in a pairwise fashion that is compatible with our
method. When used in conjunction with a method like de-
layed rejection (also known as a minisampler), the tech-
nique could provide substantially improved mixing time,
not only because it can resample histories on an individual
branch efficiently but it might also improve acceptance of
topology updates. Complex topology updates can require
multiple new sorting path proposals and the ability to
quickly propose an optimal sorting path is essential to good
mixing. As we showed, the IS protocol does not sufficiently
explore the state space, and hence, good sorting scenarios
on the changed topology might not be proposed frequently.
We would like to emphasize that all previously imple-
mented methods propose a new sorting scenario on the
new topology in an IS way (Larget et al. 2002, 2005). A
novel protocol based on the ideas introduced in this man-
uscript might improve the mixing of multiple genome re-
arrangement MCMC samplers. Indeed, in a previous
work, we found that parsimonious sorting scenarios of

the same Yersinia genomes contain many breakpoints that
have been reused three times (Darling et al. 2008). As the IS
method seems to undersample scenarios with intensive
breakpoint reuse, the probability that a most parsimonious
scenario is proposed by a Partial IS technique—the tech-
nique applied in BADGER and also in ParIS (Miklós
et al. 2005)—will be very small, and hence, the mixing
of the MCMC will be slow.

Funding

This work was is supported by a Bolyai postdoctoral
fellowship [to I.M.]; Orszagos Tudomanyos Kutatasi Alap
[grant F 61730]; Biotechnology and Biological Sciences
Research Council [grant BB/C509566/1]; and National
Science Foundation [grant DBI-0630765 to A.E.D.].

Acknowledgments

We would like to thank the three anonymous re-
viewers from a previous edition of this manuscript for pro-
viding excellent feedback.

Literature Cited

Achaz G, Coissac E, Netter P, Rocha EP. 2003. Associations
between inverted repeats and the structural evolution of
bacterial genomes. Genetics. 164:1279–1289.

Ajana Y, Lefebvre JF, Tillier ERM, El-Mabrouk N. 2002.
Exploring the set of all minimal sequences of reversals—an
application to test the replication-directed reversal hypothesis.
In: WABI ’02: Proceedings of the Second International Work-
shop on Algorithms in Bioinformatics; 2002 Sep 17–21,
Rome, Italy. London: Springer-Verlag. p. 300–315.

Alekseyev MA, Pevzner PA. 2008. Multi-break rearrangements
and chromosomal evolution. Theor Comput Sci. 395:
193–202.

Altekar G, Dwarkadas S, Huelsenbeck J, Ronquist F. 2004.
Parallel Metropolis coupled Markov chain Monte Carlo for
Bayesian phylogenetic inference. Bioinformatics; 2002 Sep
17–21, Rome, Italy. 20:407–415.

Bader DA, Moret BM, Yan M. 2001. A linear-time algorithm for
computing inversion distance between signed permutations
with an experimental study. J Comput Biol. 8:483–491.

Bader M, Ohlebusch E. 2006. Sorting by weighted reversals,
transpositions, and inverted transpositions. Lect Notes Bio-
informatics. 563–577.

Bergeron A, Chauve C, Hartman T, St-Onge K. 2002. On the
properties of sequences of reversals that sort a signed
permutation. In: Coste F, Lebret E, editors. Proceedings of
JOBIM; 2002 Jun 10–12, St Malo, France. Available from:
http://www.irisa.fr/manifestations/2002/jobim/index_en.html.
p. 99–107.

Braga A, Sagot MF, Scornavacca C, Tannier E. 2007. The
solution space of sorting by reversals. Lect Notes Bioinfor-
matics. 4463:293–304.

Chain PS, et al. 2006. Complete genome sequence of Yersinia
pestis strains Antiqua and Nepal516: evidence of gene
reduction in an emerging pathogen. J Bacteriol. 188:
4453–4463.

Darling AE. 2006. Computational analysis of genome
evolution. [PhD thesis], Chapter 5. Alignment of genomes

Sampling of Parsimonious Inversion Histories in Yersinia 163

with lineage-specific content. [Madison (WI)]: University of
Wisconsin-Madison.

Darling AE, Miklós I, Ragan MA. 2008. Dynamics of genome
rearrangement in bacterial populations. PLoS Genetics.
4:e1000128.

Deng W, et al. 2002. Genome sequence of Yersinia pestis KIM.
J Bacteriol. 184:4601–4611.

Durrett R, Nielsen R, York TL. 2004. Bayesian estimation of
genomic distance. Genetics. 166:621–629.

Geyer C. 1991. Markov chain Monte Carlo maximum likelihood.
In: Keramigas EM, editor. Proceedings of Computing Science
and Statistics: The 23rd symposium on the interface. p.
156–163.

Hannenhalli S, Pevzner PA. 1995. Transforming men into mice
(polynomial algorithm for genomic distance problem). In:
FOCS ’95: Proceedings of the 36th Annual Symposium on
Foundations of Computer Science (FOCS’95). Washington,
DC: IEEE Computer Society.

Hastings W. 1970. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika. 57:97–109.

Kaplan H, Shamir S, Tarjan RE. 1997. Faster and simpler
algorithm for sorting signed permutations by reversals. In:
SODA: ACM-SIAM Symposium on Discrete Algorithms. (A
Conference on Theoretical and Experimental Analysis of
Discrete Algorithms); 1997 Jan 3–7; New Orleans (LA):
ACM press.

Larget B, Simon DL, Kadane J. 2002. On a Bayesian approach to
phylogenetic inference from animal mitochondrial genome
arrangements. J R Stat Soc B. 64:681–693.

Larget B, Simon DL, Kadane JB, Sweet D. 2005. A Bayesian
analysis of metazoan mitochondrial genome arrangements.
Mol Biol Evol. 22:486–495.

Liu JS. 2001. Monte Carlo strategies in scientific computing.
New York: Springer-Verlag.

Mélykúti B. 2006. The mixing rate of Markov Chain Monte
Carlo methods and some applications of MCMC simulation in
bioinformatics. [master’s thesis]. Budapest, Hungary: Eötvös
Loránd University. Available from http://ramet.elte.hu;/;
miklosi/Melykuti thesis.pdf

Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E.
1953. Equations of state calculations by fast computing
machines. J Chem Phys. 21:1087–1091.

Miklós I, Hein J. 2005. Genome rearrangement in mitochondria
and its computational biology. Lect Notes Bioinformatics.
3388:85–96.

Miklós I, Ittzés P, Hein J. 2005. ParIS Genome Rearrangement
server. Bioinformatics. 21:817–820.

Miklós I, Mélykúti B, Swenson K. Forthcoming 2009. The
Metropolized Partial Importance Sampling MCMC mixes
slowly on minimum reversal rearrangement paths. IEEE/
ACM Trans Comput Biol Bioinform.

Perna NT, et al. 2001. Genome sequence of enterohaemorrhagic
Escherichia coli O157:H7. Nature. 409:529–533.

Sankoff D, Lefebvre J, Tillier E, Maler A, El-Mabrouk N. 2005.
The distribution of inversion lengths in bacteria. Lect Notes
Bioinformatics. 3388:109–122.

Siepel AC. 2002. An algorithm to enumerate all sorting reversals.
In: RECOMB ’02: Proceedings of the sixth annual in-
ternational conference on Computational biology. New York:
ACM. p. 281–290.

Siepel AC. 2003. An algorithm to enumerate sorting reversals for
signed permutations. J Comput Biol. 10:575–597.

Sinclair A, Jerrum M. 1989. Approximate counting, uniform
generation and rapidly mixing Markov Chains. Inform
Comput. 82:93–133.

Song Y, et al. 2004. Complete genome sequence of Yersinia
pestis strain 91001, an isolate avirulent to humans. DNA Res.
11:179–197.

Swenson K, Lin Y, Rajan V, Moret B. 2008. Hurdles hardly have
to be heeded. Lect Notes Comput Sci. 5267:241–251.

Tannier E, Sagot MF. 2004. Sorting by reversals in subquadratic
time. Lect Notes Comput Sci. 3109:1–13.

von Neumann J. 1951. Various techniques used in connection
with random digits. Monte Carlo methods. Natl Bur Stand.
12:36–38.

York T, Durrett R, Nielsen R. 2002. Bayesian estimation of
inversions in the history of two chromosomes. J Comp Biol.
3:808–818.

York TL, Durrett R, Nielsen R. 2007. Dependence of paracentric
inversion rate on tract length. BMC Bioinformatics. 8:115.

Emmanuelle Lerat, Associate Editor

Accepted June 14, 2009

164 Miklós and Darling

http://ramet.elte.hu/~miklosi/MSc/Melykuti_thesis.pdf
http://ramet.elte.hu/~miklosi/MSc/Melykuti_thesis.pdf

