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ABSTRACT

B-DNA flexibility, crucial for DNA-protein recogni-
tion, is sequence dependent. Free DNA in solution
would in principle be the best reference state to
uncover the relation between base sequences and
their intrinsic flexibility; however, this has long been
hampered by a lack of suitable experimental data.
We investigated this relationship by compiling and
analyzing a large dataset of NMR *'P chemical shifts
in solution. These measurements reflect the Bl <> Bll
equilibrium in DNA, intimately correlated to helicoi-
dal descriptors of the curvature, winding and groove
dimensions. Comparing the ten complementary
DNA dinucleotide steps indicates that some steps
are much more flexible than others. This malleability
is primarily controlled at the dinucleotide level,
modulated by the tetranucleotide environment. Our
analyses provide an experimental scale called TRX
that quantifies the intrinsic flexibility of the ten
dinucleotide steps in terms of Twist, Roll, and
X-disp (base pair displacement). Applying the TRX
scale to DNA sequences optimized for nucleosome
formation reveals a 10 base-pair periodic alternation
of stiff and flexible regions. Thus, DNA flexibility
captured by the TRX scale is relevant to nucleosome
formation, suggesting that this scale may be of
general interest to better understand protein-DNA
recognition.

INTRODUCTION

The DNA genomic sequence of numerous organisms is
now available. Nevertheless, this considerable amount of

data does not by itself illuminate the genetic messages
contained in these genomes. It is largely because these
messages must be deciphered by numerous DNA-
binding proteins such as transcription factors. The DNA
also influences chromatin folding via its recruitment
of histone octamers to form the nucleosomes. So, the cel-
lular DNA is continuously ‘read’ by proteins. Specific and
non-specific DNA—protein binding are known to depend
on the conformational preferences of the nucleotidic
sequences (1-10). Thus, understanding DNA-protein
interactions requires knowledge of the intrinsic flexibility
of DNA sequences.

Quantifying the sequence-dependence of DNA flexibil-
ity remains a major goal of molecular biology. The flexi-
bility of DNA can be studied at various levels of details,
from base-pair step properties to the long range behavior
of the double-helix considered as a flexible rod. Most
DNA-protein contacts engage 15-20 base pair (bp)
DNA fragments (11), apart from cases such as the
nucleosome where the interface covers 146—147 bp. Thus,
dinucleotide or tetranucleotide sequences provide an
appropriate (and ultimately required) resolution to
address intrinsic DNA flexibility as a determinant of
DNA /protein interaction. One approach to quantify the
dinucleotide/tetranucleotide flexibility is to observe their
conformational spread on populations large enough
for meaningful statistics. Assembling such a dataset
is not trivial.

A range of experimental methods has been used to
capture DNA deformability (12). Analyses of the variabil-
ity in X-ray structures of B-DNA devoid of proteins
contributed to characterize the conformational properties
of the ten dinucleotides in such context. This approach has
well-known limitations, notoriously the crystal packing
forces which impact the details of DNA structures
(13-16) and the effective temperature of the X-ray
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statistical ensemble (12). A large set of crystallized DNA—
protein complexes was also analyzed (5), assuming that
deformations in bound DNA are likely to reflect its
intrinsic structural properties, and that protein-bound
DNA may be less subjected to crystal packing than
free DNA. The dataset was deemed large enough to
average the DNA distortions imparted by the proteins.
Extracting the fluctuations and correlations of bound
DNA, structural parameters yielded a complete set of
sequence-dependent empirical energy functions, providing
a quantification of the dinucleotide step malleabilities,
aimed at predicting the energetic cost of DNA
deformations upon protein binding. The ranking of step
malleability depended on the helicoidal parameter consid-
ered, but YpR appeared the most easily deformed steps.
This approach was applied to the question of DNA
folding in chromatin, accounting quite well for
nucleosome locations in six nucleosome-positioning
sequences (17,18).

However, a comparison of free and bound X-ray DNA
(19) showed that, in contrast with free DNA, all DNA/
protein oligomers exhibited numerous north sugars and a
large range of o/B/y backbone conformations. In addition,
the range of helical parameter values are larger in bound
than in free DNA (5). Yet, the couplings between various
helical parameters (5) or between helical parameters and
BI/BII backbone states (19) were qualitatively retrieved
in free and bound DNA ensembles. Thus, free and
bound X-ray DNA structures obey the same overall
intrinsic mechanics. This reinforces the idea that proteins
exploit the free DNA dynamical properties upon binding.
At the same time, proteins are able to extend the DNA
energy landscape, probably altering some conformational
energetic barriers, in particular in the DNA backbone
(20). It is thus unclear to which extent the sequence-
dependent flexibility of free B-DNA in solution can be
extrapolated in practice from the distortions observed in
X-ray bound DNA structures.

Two recent reports analyzed datasets mixing X-ray and
NMR DNA structures (21,22), but the accuracy of DNA
NMR structures is still an issue. NMR provides experi-
mental restraints which are combined with molecular
simulations. With unlabeled DNA, the low density of
protons, together with relatively frequent overlaps in the
NOE peaks, limit the number of measured distances.
Hence, the derived structures may depend on the refine-
ment protocols and the force-fields (23). Developments
requiring labeled DNA (24-27) increase the number of
observables, and improve the quality of the refined
structures, although the interpretation of these additional
data is not straightforward and may introduce specific
biases (28). Approaches using numerous restraints
combined with potentials of mean-force (29) or extensive
MDs in explicit solvent (23) seem to provide another
avenue to produce reliable structures of DNA free in
solution, with a representation of their dynamics.
Unfortunately, such accurate structures are too few to
provide a general guide to DNA intrinsic flexibility.

Computer modeling methods have frequently been used
to study DNA deformability, based on simple potential
energy calculations or molecular dynamics (MD) in
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explicit solvent (1,30), reviewed in (12). In particular, the
elastic properties of the ten complementary dinucleotides
were evaluated from MD trajectories (30-35). Studies in
the same vein were performed with a variety of
MD protocols: (i) with different force-fields [AMBER
parm94: (31,32,35,36); parm99: (1,33,34); parmbscO and
CHARMM27: (30)], (ii) unconstrained (1,30-33,35,36)
or under stress (34), and (iii) considering the six helicoidal
parameters [twist, roll, tilt, rise, shift and slide (31-33,306)]
or focusing on specific parameters [twist: (34); roll: (35)].
These studies reached convergent conclusions in identify-
ing three distinct groups of steps in terms of purine (R)/
pyrimidine (Y) classification: the flexible YpR, intermedi-
ate RpReYpY, and stiff RpY steps. However, force-field
limitations still exist (23,37-40). The comparison of NMR
observables to their MD counterparts has unveiled
shortcomings in the representation of salient details of
B-DNA structure and dynamics by the commonly used
DNA force-fields (23). It showed that the best current
force-fields do not reproduce the modulation of DNA
dynamics by its sequence, although they implement
much of the intrinsic mechanical couplings within
B-DNA. Therefore, the characterization of DNA
sequence-dependent intrinsic flexibility still requires exper-
imental input.

Here, we approach the intrinsic flexibility of DNA by
probing its backbone properties in solution, in absence of
proteins. The phosphate groups in B-DNA can adopt two
conformations, the BI and BII states (Figure 1). They
differ in the torsion angles &€ and { which are trans/g-
in BI (e—{ centered at —90°) and g-/trans in BII (¢ —C
centered at +90°). These two states, initially identified
from crystallographic studies (541), were then detected in
NMR by measurements of “Jysz.p spin-spin coupling
constants and/or *'P chemical shifts (8P) (42,43).
Backbone and deoxyribose conformations are correlated
(19,44,45). Most importantly, BI and BII conformations
are also mechanically coupled to the DNA helicoidal
parameters of roll, twist and X-disp, related to curvature,
winding and groove dimensions, respectively (19,23,46-52).
Furthermore, the propensity to undergo the BI/BII tran-
sition is sequence dependent (19,48,53). A method was
recently devised to quantify for the first time the BI and
BII populations in solution, from the very sensitive and
accurate measurements of dP (48). Indeed, NMR studies
highlighted strong linear correlations between dP and the
three measured internucleotide distances H2';,—H6/8; - 1,
H2”—H6/8; +; and H6/8,—H6/8;+, (48,54). These
correlations, also present in very high resolution X-ray
structures where 6P can be substituted by (e—{) values,
allowed to establish a quantitative relation between oP
and BI/BII ratios. They also confirm that the BI/BII
ratio is associated to inter base pair parameters. The
couplings between the BI<>BII equilibrium, deoxyribose
conformational exchange (44) and helicoidal parameters
(48) establish that the BI<>BII motions reflect the overall
B-DNA structure and dynamics in solution.

In the present work, 328 6P values previously reported
for various B-DNA sequences in solution were collected.
The influence of the dinucleotide and tetranucleotide
sequence context on OP was analyzed. It provides
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evidence that DNA flexibility of a given step is pri-
marily dominated by the corresponding dinucleotidic
sequence, although secondary sequence effects beyond
this immediate environment are observed on several
steps. This forms the basis of a new and general experi-
mental scale that characterizes the intrinsic properties of
all 10 DNA complementary dinucleotides in terms of
Twist, Roll and X-disp parameters, and is thus called
the TRX scale.

Applying this new concept to sequences identified
to preferentially bind to histone octamers and form
nucleosomes (55-57) illustrates how the TRX scale
provides new insights into the structural organization of
DNA and its biological importance.

MATERIALS AND METHODS
BI/BII propensities in solution, from NMR

We previously (48) explained how *'P NMR chemical
shifts could be converted to BII percentages by the
equation BII(%) = 143 6P + 85 for 6P referenced to phos-
phoric acid, or BII(%) = 143 6P + 621 for dP referenced
to trimethylphosphate. This conversion is based on the
linear cross-correlations observed between the three
H2/i —H6/8, + 1s HZ//i — H6/8l + 1 and H6/8, — H6/81 + 1
sequential distances and dP in NMR or € —( values in
X-ray structures. Both 6P and &—( reflect the
interconversion between the backbone BI (e —(<0°)
and BII (¢ —{>0°) states. The same method was used
to compile the BII percentages per dinucleotide presented
here. These statistics were gathered from a total of 328
3P chemical shifts reported in the literature for
B-DNA without mismatches, chemical modifications
or ligands (see Supplementary Table S1). The BII
propensities per complementary dinucleotides
(NipN; ; jeN;pN; ;) are the half-sum of the BII
percentages for the two corresponding phosphates. BI
propensities are equal to 100-(BII propensities).

Crystallographic datasets

The X-ray structures of free B-DNA include the 37 DNA
oligomers (2 octamers, 23 decamers, 11 dodecamers,
1 oligomer with 15bp) of 2.0 A resolution or better, the
same dataset used in a previous analysis (19). These
structures are all double-stranded DNAs, and do not
include mismatches or modified bases, sugars or
backbones.

Numerous nucleosome core particle (NCP) X-ray
structures are available, but, to benefit from reliable
structural details, we examined only the structures with
resolution <2.5A, crystallized without histone mutants or
groove ligands [PDB codes: 1EQZ (58), 1IKX5 and 1KX3
(59), IM19 (60), 2CV5 (61)]. 1IEQZ and 1KX3 structures
are quasi identical (RMSD ~0.8 A); the significance of the
2CVS5 DNA fine structure appeared problematic, due to
tight DNA-DNA contacts within the crystal that notably
altered the DNA conformation (61). Therefore, the NCP
DNA structures analyzed here are those from entries
1KX3, IM19 and 1KXS5.

Nucleosomal sequences

The sequences used in the ‘Implications for DNA
recognition by proteins’ section came from Dr. Segal’s
web site http://genie.weizmann.ac.il/pubs/nucleosomes06/
index.html. The sequences are given in Supplementary
Table S4.

Structure analysis

Analyses of DNA structures were carried out using
CURVES (62), which calculates the optimal helical axis
and a complete set of conformational and helicoidal
parameters. Analyses were made in terms of both local
and global parameters; however, since both analyses give
quasi-identical values, only the global values are reported
here. X-disp values are given for base pairs, i.e. for strand
1 with strand 2.

The phosphate conformations were analyzed in terms
of BI and BII states, defined by the values of the two
torsion angles & (C4—C3-03—P) and { (C3—03—P-0y),
with BI corresponding to ¢/ =t/g- (e—{<0° and
centered around —90°), and BII corresponding to
g/l = g-/t (e —{>0° and centered on +90°).

Fourier analysis

Values from the TRX scale for all the dinucleotidic steps
along the DNA sequences were taken as input signal.
Subtracting the average value <trx> = (trx(l) + .- +
trx(N))/N gives a centered signal b(n) = trx(n)— <trx>.
The Fourier series is the sum, over the N steps of the
segment, of plane waves

N
fiky = N7 " b(n) exp(—i2mkn).
n=1

The function f is periodic of period 1; as such, it is
completely specified by its values in the unit interval
[0,1], best seen as a unit circle. All our Fourier analyses
(Figure 6 and Table 2) represent the Fourier intensity or
power spectrum |f(k)|.

Correlation length

The Fourier intensity at period ~10 is not enough to
match the relative affinities for nucleosome formation.
Some coherent flexibility/stiffness is also required. The
dinucleotides can be classified into two categories
delimited by the average TRX score of 21 (Table 1):
those, flexible, with a significant propensity to adopt BII
conformation (TRX score > 21, coded as + 1) and those,
stiffer, predominantly confined to BI (TRX score <21,
code —1). Then the DNA sequence is naturally subdivided
into blocks of consecutive equal values, the flexible blocks
of consecutive + 1 and the stiff blocks of consecutive —1.
The mean length of these blocks, readily computed
from histograms of the type depicted in Figure 7, defines
a characteristic length, one for each category: the flex &
and the stiff & characteristic lengths. The overall average
is the correlation length & = (& + &;)/2.
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Figure 1. Illustration of the BI (left) and BII (right) phosphate linkage
conformations with a CpA dinucleotide. BI and BII backbone
conformations differ in the torsion angles € and { which are respectively
trans/g- in BI (e —{ = —90°) and g-/trans in BII (¢ —{ = +90°).
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Figure 2. Influence of the dinucleotide sequences on BII percentages in
B-DNA. BII percentages (%BII) of free B-DNA inferred from 6P in
solution (black circles, with vertical bars for standard deviations)
compiled from data published in the literature (see Supplementary
Table S1). The conversion of dP in terms of BII percentage, using a
published procedure (48), is detailed in ‘Materials and Methods’
section. BII percentages in solution are compared with those extracted
from X-ray structures (triangles; blue: all structures, red: decamers
only).

RESULTS
BI/BII dinucleotide sequence effect in B-DNA

The phosphate linkages in B-DNA adopt both the
BI (e—{<0) and BII (¢—{>0) states (Figure 1). *'P
chemical shifts (6P), very accurately measured in solution
by NMR, reflect the BI<>BII equilibrium (48,63). We col-
lected from the literature a large set of 328 OP values
previously reported for various B-DNA sequences in
solution, excluding the phosphate linkages submitted
to end effects at the sequence termini (Supplementary
Table S1). Although monovalent counterions can
modulate the BI/BII equilibrium (54), these subtle effects
are expected to be averaged in our data-set, the dP being
measured in variations of the physiological conditions.
Each of the 16 B-DNA dinucleotides is characterized by
a specific 6P average value (Supplementary Figure S1),
with small standard deviations (0.06 ppm on average).
This influence of dinucleotide sequences on the BI<>BII
equilibrium is presented in Figure 2, translating the oP
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Table 1. Influence of DNA base sequence on the BII percentages in
free DNA in solution

N %BII TRX score
CpGeCpG 25 43043 43
CpAeTpG 28 5231 42
GpGeCpC 11 47037 42
GpCeGpC 22 2525 25
GpAeTpC 25 33el1 22
TpAeTpA 12 14e14 14
ApGeCpT 19 180 9
ApAeTpT 17 110 5
ApCeGpT 23 8e0 4
ApTeApT 22 0e0 0

The DNA sequence is expressed in terms of the 10 complementary
dinucleotides, of frequency N in the NMR data collected from the
literature. The BII percentages (%BII) are given for each partner in a
complementary dinucleotide. The average standard deviation of %BII
is £8. The TRX scores are the half-sums of the %BII observed for two
facing phosphates in a complementary dinucleotide. The %BII and
TRX scores higher (in bold) and lower than average (which is 21)
correspond to enhanced and restricted flexibilities, respectively.
A maximal flexibility on this scale corresponds to a TRX score of 50.

from our data set to BII percentages with an established
method (48) (see ‘Materials and Methods’ section). This
analysis shows that (i) the averaged BII percentage in
solution is 21% and (ii) 7 out of the 16 dinucleotides
exhibit BII populations higher than average. These steps
can thus be regarded as BlI-rich steps. The maximal flex-
ibility is observed for the phosphates of CpG, CpA and
GpG, with a BI/BII ratio close to 1 (50% BI, 50% BII).

Considering the BII propensities of the 10 possible com-
plementary dinucleotide sequences N;ipN; . jeN;pN; |
(Table 1; N: any base) highlights that the facing
phosphates tend to exhibit similar behaviors overall. In
a first group containing ApNeNpT and TpAeTpA, the
phosphates are very rarely in BII. This group, mainly
confined in BleBI, is thus characterized by a restricted
backbone flexibility. In another group of dinucleotide
steps  (GpGeCpC, CpGeCpG, GpCeGpC and
CpAeTpG) the facing phosphates can adopt BI and BII
conformations, with a higher-than-average BII per-
centage. This family exhibits an enhanced backbone flex-
ibility, potentially able to explore the three possible
combinations, BleBI, BleBII (and its counterpart form
BlleBI) or BlleBIl. GpAeTpC is the only case where
the two facing phosphates exhibit behaviors in marked
contrast, with GpA able to significantly populate BII,
but not TpC.

The BII percentages in solution can be compared
with those extracted from crystal structures of free
B-DNA (Figure 2). Considering the 16 dinucleotides, the
backbone of ApA, (A/T)pC and NpT is overwhelmingly
in BI in both environments. In contrast, the solution and
crystal states often differ for steps with a significant pro-
pensity to populate BII. These propensities are either
lower (CpG, CpC, GpG, GpA) or higher (CpA, TpG,
GpC) in crystals than in solution. In X-ray structures,
the behavior of the phosphates in GpGeCpC remains
ambiguous since these steps are underrepresented
(6 cases). Dinucleotides GpC and CpG most likely
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illustrate crystalline packing biases. Indeed, a large
majority of GpC and CpG (34/44 and 51/69, respectively)
are located at dodecamer ends, where adjacent molecules
are in contact via their grooves (64). There are no such
contacts in the decamers that are stacked end-to-end,
where the GpC and CpG BII percentages are very close
to those inferred from NMR data (Figure 2). The
remaining apparent discrepancy concerns CpAeTpG,
due to a tetranucleotide sequence bias in the crystal
structures, explained in the next section.

In addition, the NMR BII propensities do not fit with
those from the protein-bound DNA X-ray structures.
Actually, a previous study (19) comparing high resolution
X-ray structures of free and protein-bound DNA showed
that, although the global DNA intrinsic mechanics is
preserved (for instance the coupling between several
helical parameters and the backbone states), the BII
populations are globally reduced in protein-bound DNA.

For free B-DNA, taking the solid state biases into
account allows to sufficiently reconciliate sequence
effects in solution with their crystal counterpart. The
fact that the BII propensities follow the same trends
overall in both environments is a very strong indication
that these trends represent intrinsic properties of the DNA
molecule.

BI/BII tetranucleotide sequence effect in B-DNA

Experimental (65-68) and theoretical (21,33,53,69) results
indicated that the behavior of some dinucleotides in
B-DNA is influenced by their two bracketing nearest
neighbors (flanking bases). The size of our NMR data
set does not allow the analysis of all the 136 tetrameric
combinations. A reasonable simplification is to consider
instead the 3’- and 5'-contexts of the dinucleotides in terms
of purine R or pyrimidine Y (Y-Y, R-R, Y-R, R-Y). In
our NMR data set, these four categories are significantly
populated for most dinucleotides (Supplementary Table S2).

The flanking bases do influence the BI < BII equilib-
rium of the central phosphate in most BII rich
dinucleotides (Figure 3). Indeed, a Y-R context reinforces
the BII populations in CpA, GpG, CpG, TpG. The BI-
rich steps, together with GpA, appear mainly indifferent
to their flanking bases (Figure 3). Yet, in this category, it
seems possible to obtain substantial BII populations in
YApAR, RTpCY and RApCY (Figure 3), but YApAY
and RTpCY are represented by only two cases, and the
four 6P collected for RApCY are especially scattered
(from —0.39 to —0.19 ppm).

Overall, the four possible sequence contexts are so
unequally populated in crystals that it prevents a system-
atic analysis of the tetranucleotide effect in this environ-
ment. However, the tetrameric sequence effect can account
for the differences observed in Figure 2 between the NMR
and X-ray BII percentages of CpAeTpG and CpG.
Indeed, 14 out of 21 CpAeTpG steps in the X-ray data
belong to the Y(CpA/TpG)R pattern that enhances BII
and thus leads to dinucleotide average BII percentages
higher than those found in solution. Conversely, 13 out
of 18 CpGeCpG in crystals are surrounded by R—-YeR-Y
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Figure 3. Influence of the tetranucleotide sequence on the BII
percentages of the central phosphate group. BII percentages (% BII),
compiled and translated from 6P values published in the literature (see
‘Materials and Methods’ section and Supplementary Table SI), are
given for the dinucleotide steps in four different tetranucleotide
contexts: R-R in green, R-Y in red, Y-R in blue and Y-Y in
magenta. Categories that contain more or less than three cases are
represented by filled and open circles, respectively.

or R-ReY-Y, reducing their apparent global BII
propensity.

More work is needed to understand the tetranucleotide
effects, probably under-estimated, although potentially
crucial for DNA-protein recognition (23,68). For the
present purpose, this secondary influence does not
disrupt the flexibility rankings detected at the dinucleotide
level. In sum, the BI/BII propensities of phosphate groups
are primarily controlled at the dinucleotide level, finely
modulated at the tetrad level.

Relationship between helical parameters and
backbone states

X-ray B-DNA structures are useful to demonstrate the
general intrinsic mechanics of DNA. The principles under-
lying this mechanics do not depend on the sequence, and
sound statistical analyses can be undertaken on a large set
of high resolution oligomers. Such approaches have estab-
lished that roll and twist values are correlated in both free
and protein-bound DNA (5,46). Crucially, these inter-
base descriptors depend on the conformations of the two
phosphates facing one another across the strands
(19,23,46) (Figure 4). BleBI is associated with positive
rolls (2.7 &+ 4.1°), whereas BleBII (—4.2 + 5.1°) and espe-
cially BlleBII (—10.8.7 & 2.1°) correspond to negative
rolls. The twist values associated to BleBI (33.9 + 5.0°)
are lower than those with BleBII (39.4 &+ 2.8°) or
BlleBII (48.1 = 4.1°). The only exception is for the
semi-flexible GpAeTpC steps, their twist and roll
appearing rather uncorrelated, as previously noticed (5).
Phosphate conformational combinations are also
correlated to the slide (Supplementary Figure S2) that
becomes positive in BlleBII steps. This parameter is
very strongly correlated to the roll (5,18). For instance,
roll and slide variations work in concert to generate
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Figure 4. Influence of BII phosphates on helical descriptors. Inter base
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three possible conformational combinations of facing phosphates. Base
pair parameter: X-disp (A), averaged along whole oligomer sequences
plotted versus the BII percentage (%BII) per oligomer (number of BII
phosphates/total number of phosphates). The data were extracted from
high resolution X-ray structures of free DNA (19).

sharp bending in DNA/protein complexes (18). Due to
this equivalence, we do not elaborate further on the slide
in the following.

BII phosphates also act on groove dimensions, as
previously shown by solid state NMR studies on fibrous
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DNA (51) and by analyzing X-ray data (19,46). Indeed,
they displace base pairs towards the major groove,
influencing the X-disp parameter. X-disp is defined for
one base pair, positive and negative values reflecting dis-
placement towards the major and minor grooves, respec-
tively. Analysis of X-ray structures detects no more than
two BII among the four phosphate linkages pIpepJp sur-
rounding one base pair leJ. This is consistent with
previous X-ray analysis (19,46) and with a NMR study
of S? order parameters that highlighted that a BII rich
phosphate precludes high BII populations in its 5" and 3’
neighbors (44). Examining the X-disp values in the present
X-ray data set yields X-disp = —0.6 &= 0.4, —0.2 + 0.5 and
+0.85+0.7A when zero, one and two BII linkages
surround the central base pair leJ. Several proximal (but
not successive) BII phosphates enhance this effect,
preserving an optimal base stacking (47,53). So, the
average X-disp is >1.0 A for deca- and dodecamers in
which more than 22% of phosphates are simultaneously
in BII (for instance, 22% correspond to 4 BII on the 18
phosphates encountered in a decamer) (19,23) (Figure 4).
Such cumulative shifts in X-disp values mediate the influ-
ence of BII rich regions on the major groove overall shape,
making it convex (depth of —1.0£0.5A) instead of
concave (usual depth being +5 £ 2 A).

The helical parameters are not directly accessible by
NMR, but their mechanical couplings are revealed
through linear correlations between the SP values and
the three sequential internucleotide distances H2';—H6/
8 +1, H2',—H6/8;.; and H6/8,—HO6/8; ., (48,54),
related to the twist and roll parameters (49). Also, the
relationship between the BI/BII conformations and the
base pair displacements was confirmed by NMR on
fibrous DNA (51). In addition, these couplings were
retrieved by modeling of DNA in explicit solvent
(46,52), and in simulations under NMR constraints (23).

So, different facing backbone BI/BII conformations
define sub-states in B-DNA, influencing both the local
(e.g. roll and twist) and neighboring structure (e.g.
X-disp) of the double helix. In particular, strong
negative roll and very high twist appear distinctive of syn-
chronous facing BII phosphates.

The TRX scale

The strong correlations between BI <> BII phosphate
populations and helical parameters mean that the BII
propensities characterizing each of the ten complementary
dinucleotides reflect the intrinsic flexibility of the corre-
sponding twist, roll and X-disp. Consequently, the scale
of BII propensities at the dinucleotide level (Table 1) is a
realistic and general representation of the sequence depen-
dency of DNA intrinsic plasticity. Considering the above-
mentioned similar average behavior of facing phosphates,
this flexibility can be quantified by the half-sum of the BII
propensities of the two facing phosphates in a complemen-
tary dinucleotide (right-most column in Table 1). This
constitutes an experimental scale of local intrinsic flexibil-
ity, called “TRX’ in reference to the Twist, Roll and X-disp
parameters that it represents.
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The steps with a low TRX score (low BII propensity)
have a restricted flexibility: low or moderate twists
associated with null or positive rolls, respectively; those
bases tend to be minimally displaced away from the axis
of the double helix. The steps associated with higher than
average TRX score (>21) are characterized by plurimodal
conformational populations. They can explore a larger
conformational space, from low twists/positive rolls (‘BI
state’) to high twists/negative rolls (‘BII state’); the
movement of these bases towards the major groove is
facilitated. High plasticities are observed for steps
CpAeTpG, CpGeCpG, GpGeCpC, with TRX scores of
42-43. These values are close to 50, the maximal flexibility
in the context of the TRX scale (50% of the time in BI,
50% of the time in BII). Thus, the value of the TRX score
has a physical meaning, directly related to the BII
populations in free B-DNA in aqueous solution. These
populations are a signature of the intrinsic mechanical
flexibility of the associated base steps.

The examination of the variability of inter-base helical
parameters in the X-ray datasets of free DNA [our dataset
and another reported on  http://rutchem.rutgers
.edu/~olson/pdna.html (5)] globally agree with the TRX
scale. The only serious discrepancy is the rank of step
TpA. According to the X-ray data, this step is more
flexible than GpGeCpC, CpGeCpG and GpGeCpC.
Conversely, the 6P based observations classify TpA in
the ‘stiff’ category while GpGeCpC, CpGeCpG and
GpGeCpC are ranked flexible (Table 1). But in the
X-ray dataset GpGeCpC are poorly represented (less
than 2% of the dinucleotide steps) and GpCeGpC and
CpGeCpG are subjected to intermolecular contacts, as
explained above. Another source of discrepancy could
come from the sugar north<>south exchange, coupled to
the BI<>BII equilibrium (44), but possibly underestimated
in solid phase, in particular on cytidine residues (27). So,
the TpA flexibility rank deduced from X-ray structures
could be biased by an incorrect estimation of the
properties of GpGeCpC, CpGeCpG and GpGeCpC
steps.

The TRX scale promises to be helpful for deciphering
the intrinsic flexibility of free DNA underpining DNA-
protein interactions. Indeed, intrinsic structural pre-
ferences of free DNA, and its possible pre-organization,
are expected to limit the energetic and entropic penalties
upon protein binding.

Implications for DNA recognition by proteins

To demonstrate the concrete use of the TRX scale, we
illustrate how it can be applied to DNA sequences
bound preferentially by the histone core. The nucleosome
core particle (NCP), consisting of 146-147bp of DNA
wound twice around an octameric core of four histone
proteins, is the fundamental building block of packaged
DNA in eukaryotic cells. Earlier studies on chicken
nucleosomal DNA established that some DNA sequences
favored the NCP formation (70,71). Sequences having an
exceptionally high affinity for histone octamers were then
identified using the SELEX technique (55-57), leading to
identify a consensus for the central 73 bp (56). Using large
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Figure 5. Relationship between roll and backbone conformations in
NCP X-ray structures. Roll (°) profile along the DNA sequence in
nucleosome X-ray structure 1KX5. The bars giving the roll values
are colored according to the state of the facing phosphates in the com-
plementary dinucleotide steps: blue for BleBI and red for BleBII or
BlleBII. The grey bar represents an unclassifiable step (BI on strand 1
and (e —{)~170°, i.e. neither BI nor BII, on strand 2). Structures
IKX3 and 1M19 give similar patterns.

pools of natural sequences, the nucleosome intrinsic
sequence preferences were recently characterized primarily
by ~10 bp periodicities of specific dinucleotides along the
nucleosome length, thought to facilitate the sharp bending
of DNA around the nucleosome (56,57,71-78). However,
in absence of reliable descriptors of dinucleotide pro-
perties, the physical basis of this organization remains
obscure.

The NCP X-ray structures revealed a periodic alterna-
tion of positive and negative roll tracts along the double
helix resulting in the DNA superhelical path (79). Our
analysis of several high resolution NCP X-ray structures
[PDB codes 1KX3 (59), IM19 (60) and 1KXS5 (59)] shows
that positive and negative rolls are mainly associated to BI
and BII phosphates, respectively (Figure 5 for 1KXY5).
Some steps escape this rule, as illustrated by steps 53
and 54in 1KXS5 (Figure 5). Step 53 is associated with an
atypical (e — ) value of ~170°, and in step 54 BleBII is
associated to a strong positive roll. Such peculiar
behaviors, together with unusual o/B/y angles, help to
remember that the backbone conformational landscape
of bound DNA is not exactly as in free DNA (19).
Nevertheless, rolls and (e—{) averaged on facing
phosphates are as well correlated in 1KX5, 1KX3 and
IM19 (correlation coeflicients from —0.72 to —0.65) as
in free X-ray DNA (correlation coefficient of —0.67).
Thus, the relationship between BI/BII and roll appears
robust, as well as those involving twist and X-disp (not
shown). So, BI and BII rich regions are the centers of
10bp fragments curved towards the major and the
minor grooves, respectively. Furthermore, the NCP BII
steps are in majority encountered on CpAeTpG,
GpGeCpC and GpCeGpC (Supplementary Table S3),
consistent with the TRX scale. That both BII structural
and sequence effects in free DNA are transferable to the



Table 2. Nucleosomal sequences characterized according to the TRX scale
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sequences %o 140 dinucleotide steps 72 dinucleotide steps AAG RA RA
POW & Ee POW;, & Er

601 46 0.0065 2.2 2.6 0.0064 2.4 2.8 -2.9 1

618 51 0.0054 1.9 2.0 0.0086 1.7 1.9 -23

2 58 0.0094 2.9 2.1 0.0102 2.5 2.3 2.47

f3 55 0.0065 24 23 0.0102 2.5 2.3 1.60

h2 47 0.0035 2.0 2.3 0.0029 2.4 2.1 0.11

h3 58 0.0021 2.7 2.0 0.0001 4.1 1.5 0.15

gl 45 0.0076 1.8 2.5 0.0082 2.0 2.6 1

g2 39 0.0025 1.8 32 0.0007 2.1 44 0.16

23 40 0.0031 1.6 2.7 0.0027 1.5 2.8 0.15

g4 36 0.0054 1.5 2.7 0.0047 1.4 2.8 0.14

g5 37 0.0020 1.4 3.1 0.0005 1.1 3.7 0.12

The 147bp sequences (Supplementary Table S4), their nomenclature and the relative affinities (RA) are from Dr Segal’s web site http://genie
.weizmann.ac.il/pubs/nucleosomes06/index.html. The relative affinities are referenced to either 601 (values in columns 9 and 10) or gl (values in
last column) sequences. The central regions of f2 and f3 are identical. The AAG (kcal/mol) values are referenced to that measured for the 5S
sequence (55). The percentage of stiff complementary dinucleotides (%) is given for each sequence. FT analyses were performed considering the
TRX scores as a signal along either the 140 innermost or the 72 central dinucleotide steps of the DNA sequences. POW is the integrated power of
the FT peak at 0.1 + 0.01 frequency (periodicity of 10 + 1bp). The characteristic lengths were calculated for the stiff (§) and flexible (&) blocks

defined by their TRX scores (Table 1).

NCP structures makes this system particularly relevant to
analyze how DNA intrinsic flexibility, quantified with the
TRX scale, influences its assembly with proteins.

We analyze here the structural properties of synthetic
sequences related to the SELEX approach for which
affinity measurements are available (Table 2 and
Supplementary Table S4). Artificial and natural sequences
exhibit the same lexicographic periodicities: ApAeTpT,
TpA and ApT oscillate out of phase with GpGeCpC,
CpGeCpG and GpGeCpC, with a period of ~10bp
(56). The related SELEX pool contains very high affinity
sequences that do not have their equivalent in genomic
positioning DNA. We wondered if the characteristics of
these very high affinity sequences would emerge particu-
larly clearly from a TRX analysis and contrast with those
of lower affinity sequences. So, we first considered the
SELEX sequence best at forming NCP (sequence 601),
and one of the worst (sequence 618) (57). These sequences
601 and 618 present a weak similarity, with ~30% of iden-
tical bases. A set of sequences deriving from sequence
601 were also analyzed (http://genie.weizmann.ac
.il/pubs/nucleosomes06/index.html). f2 and {3 correspond
to sequence 601 enriched in 10bp periodic TpA steps
either along the whole sequence (f2) or only in its
central part (f3). Thus the central regions of f2 and f3
are identical; their affinities for the histone core are
higher than that of sequence 601. h2-3 and gl-5 differ
from sequence 601 by ~50 mutated bases between
positions 31 and 122, i.e. in the central region of the
147 bp segment. Apart from gl, these sequences display
low propensities to form nucleosomes. Overall, a represen-
tative range of affinities is covered by these 11 sequences.

Considering the TRX scores as signals along the DNA
sequence, Fourier transform (FT) analyses were per-
formed on i) the 140 dinucleotides (141 bp) corresponding
to the DNA length in an NCP less its outermost base pairs
and ii) the central 72 dinucleotides (73 bp), given that most
of the considered sequences differ from the 601 reference

by mutations in this region. Regarding the NCP, the most
interesting spectrum section covers the frequencies from
0.09 to 0.11, corresponding to periodicities of ~11 and
9 bp, respectively. Indeed, the NCP sequence periodicities
inferred from various biochemical experiments vary within
this range [(80) and references herein]. The direct estimates
of periodicity offered by high-resolution crystal structures
of NCP reconstituted on a unique DNA sequence give
periodicity values from 10.15 to 10.3 bp (59,79).

Sequences 601, 2, f3 and gl are characterized by a
strong FT signal corresponding to a ~10bp periodicity
(see Figure 6 for 601 and f2). The corresponding powers,
i.e. integrated the FT signal between frequencies 0.09 and
0.11, show maximal scores (Table 2) that are further
strengthened in the central regions for f2, f3 and gl
(Table 2). This means that these preferential DNA sites
for assembling into nucleosome are characterized by
~10bp alternations of blocks of enhanced and restricted
flexibility. Considering that enhanced and restricted
flexibilities correspond to TRX scores higher and lower
than the average, respectively, we find that the average
lengths of each type of block are globally equivalent
(characteristic lengths in Table 2), especially in the
central region (Table 2 and Figure 7). This organization,
illustrated in Schema 1 for the sequences 2, 601 and g1,
correlates the X-ray NCP structures in which the BI or BIT
tracts include at least three consecutive dinucleotides
(Figure 5).

Incidentally, considering TpA as flexible as CpAeTpG,
as indicated by the X-ray data, results in a net decrease of
all the ~10bp FT signals. For instance, the power of the
10bp FT peak of 2 drops from 0.0094 (TpA stiff) to 0.003
(TpA flexible). When assuming a flexible TpA, the FT
analysis detects a strong 15bp periodicity on these high
affinity sequences, not compatible with the NCP. This
reinforces the notion developed above that the flexibility
of TpA estimated from X-ray datasets could be inappro-
priate to DNA in solution.
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Figure 6. Fourier analysis of the TRX signal along DNA nucleosomal sequences. Fourier transform (intensity in arbitrary units) as a function of
wave vector k (bp~!) of the TRX signal along sequences representative of high (601 and f2), moderate (618) and low (h3, g2 and g4) propensity for
forming nucleosome (Table 2). The Fourier analysis was performed considering the TRX scores (Table 1) as a signal along the innermost 140
dinucleotides of the nucleosomal sequences, apart from sequence 618, analyzed on the 72 central dinucleotides. The dotted vertical lines indicate the

window corresponding to the period 10 £ 1 bp.

Sequence 618, less attractive than 601 for the histone
core, gives a less intense TRX-FT signal at frequency of
0.1 £ 0.01 when the entire sequence is taken into account,
but the 10bp periodicity is noticeably enhanced in its
central part (Figure 6 and Table 2). Nevertheless, the
block lengths are globally shorter than those of very
high affinity sequences (Table 2, Figure 7 and
Scheme 1), implying that the number of steps pushed at
the inverse of their intrinsic structural trends in NCP is
greater with 618 than with 601.

The ~10bp periodicity is even more subdued for the
low affinity sequences h2, h3 and g2-5 (Figure 6 for h3,
g2 and g4). FT peaks at 0.1 £ 0.01 are still observable but
their intensities are very low (Table 2). In addition, the
average lengths of stretches of restricted and enhanced
flexibility are not balanced (Table 2). Either stiff (h3) or
flexible (g2—5) dinucleotides are dominant in the central
region of these low affinity sequences (Table 2, Figure 7

and Scheme 1 for h3, g2 and g4). Such configuration is
likely to increase the energetic penalty in NCP formation,
with a large deformation cost (excess of stiff dinucleotides)
or a loss of entropy (excess of flexible dinucleotides). This
idea is supported by the very poor affinity of sequence g4
that presents a significant 10bp periodicity (Figure 6,
Table 2) but with almost all its central blocks of restricted
flexibility corresponding to only one dinucleotide
(Figure 7, Table 2, Schema 1).

In sum, the TRX scale reveals that the preferential
DNA sites for assembling into nucleosome are primarily
characterized by a 10 bp periodicity that corresponds to an
alternation of blocks characterized by restricted and
enhanced flexibility. Our analysis also suggests that
blocks of minimal length are required to define a high
affinity sequence. The central 72 dinucleotides may be
more crucial for the positioning than their flanking
external parts since both the periodicity and the block
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Figure 7. Histograms of the length (expressed in number of dinucleotides) of stiff (left panels, in blue) and flexible (right panels, in red) blocks in the
central 72 dinucleotides of the nucleosomal DNA sequences. The sequences presented here are the same as in Figure 6, with nucleosomal affinity

ranging from very high (f2) to low (h3, g2, g4).

length balance found for the best assembling sequences are
especially marked in the central parts of the 147bp
fragments analyzed here.

DISCUSSION AND CONCLUSION

In B-DNA, any phosphate group is potentially able to
oscillate between the BI and BII states, the BI/BII ratio
reflecting the helicoidal twist, roll and X-disp values of the

corresponding step (19,23,46-52). The BI/BII ratio is
accessible by the solution NMR measurements of *'P
chemical shifts (6P) (48).

The present work establishes firmly the dinucleotide
sequence effect on the BI<«<-BII equilibrium and its
populations, based on a new and extensive compilation
of the available 6P measured on free B-DNA in
solution. The influence reflecting the category (purine or
pyrimidine) of the nearest neighbors bracketing the
dinucleotide is detected but this secondary effect does
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The sequences represented here are representative of high (f2, 601 and g1), moderate (618) and low (h3, g2 and

g4) propensity for nucleosome formation. Each sequence contains 146 phosphodiester linkages scanned in terms of
stiff (blue, TRX scores higher than average, see Table 1) or flexible (red, TRX scores lower than average)
dinucleotides (vertical bar). The semi-flexible GpAeTpC step is not colored. The first line of black bars marks the

dimeric steps at position 10, 20, 30 ... bp from the left end.

Scheme 1. Nucleosomal sequences coded by the TRX flexibility scale.

not disrupt the flexibility rankings detected at the
dinucleotide level. Due to the predominant impact of the
dinucleotide sequence, each complementary dinucleotide
step can be characterized by a number corresponding to
the experimental average BII population of its facing
phosphates (Table 1) and thus the phosphate group flex-
ibility. Crucially, this number also represents the mallea-
bility in terms of Twist, Roll and X-disp (base pair
displacement), due to the tight coupling between helical
parameters and backbone states. Thus, the numbers
associated to the ten complementary dinucleotide steps
result in a scale of intrinsic flexibility that we call “TRX".
The most inherently flexible and rigid steps correspond to
TRX scores of 50 (50% BI/50% BII) and 0 (100% BI),
respectively.

Broadly speaking, two dinucleotide categories emerge
from the TRX scale. The first has restricted flexibility,
i.e. low or moderate twists associated with positive and
null rolls. Their corresponding bases are preferentially
located close to the axis of the double helix. The second
group exhibits an enhanced flexibility where the
dinucleotides can adopt either low twists/positive rolls or
high twists/negative rolls. Such bases are more easily
displaced towards the major groove, away from the
helical axis. According to the TRX scale, ApAeTpT,
ApTeApT, TpAeTpA have restricted flexibility. In
contrast, GpGeCpC, GpCeGpC, CpGeCpG have
enhanced flexibility. The steps which are mixed in terms
of base composition have flexibilities either restricted
(ApCeGpT and ApGeCpT) or enhanced (CpAeTpG),
GpAeTpC being intermediate. Thus, the DNA dynamical
properties are not easily assigned solely by reading the
lexicographic nucleotide chaining.

Our approach of flexibility may go beyond the intrinsic
plasticity of DNA in its B form, since the contrasted
behavior of GpGeCpC, GpCeGpC, CpGeCpG on one
hand, and ApAeTpT, ApTeApT, TpAeTpA on the
other hand, according to &P echoes the influence of
sequences on double helix polymorphism. Indeed,
contrary to AeT rich sequences, GeC and CpAeTpG
rich DNAs can adopt the Z form (81-83) and facilitate
the B to A transition (84-86). The A and Z forms
correspond to large molecular reorganizations occurring
generally in non-physiological environments, but their for-
mation may take advantage of the dinucleotide properties
highlighted here.

Most importantly, the TRX scale emerges as useful to
understand how the DNA /protein interactions depend on
DNA sequence-dependent intrinsic malleability. Here, the
TRX scale was used to investigate the properties of
nucleosomal positioning sequences. Indeed, it is estab-
lished that the nucleosome reconstitutes better on certain
DNA sequences than others (56,77,87). Our analysis of
the high resolution NCP crystal structures reveals that
the tight coupling between BI and BII backbone states
and helical parameters, together with the marked
sequence dependency of the BI/BII propensities, echoes
our findings on free DNA. This supports the idea that
intrinsic DNA properties reduce the cost of marked
distortions required by wrapping in the NCP complex
(56,77,87).

Our TRX analysis was performed on artificial sequences
that offered a range from very high to low affinity for
nucleosome reconstitution. We show that the high
affinity sequences are characterized by a ~10 bp periodic-
ity, corresponding to a regular alternation of stiff (limited
to positive and null rolls) and flexible stretches (able to
adopt negative rolls). Thus, high affinity sequences consist
of a succession of blocks phased to distort as required in
the NCP structure. This periodicity is maximal when con-
sidering the central 73 bp. It appears also that, in these
73bp central parts, a minimal length of both stiff and
flexible blocks is required to obtain optimal nucleosomal
sequences.

These findings are consistent with several observations.
First, our analysis explains why sequences considerably
enriched in AeT, unable to adopt negative rolls without
conformational strain, function as nucleosome exclusion
signals (70,71,88,89), likely due to a large deformation
energy penalty. Also, it suggests that too much DNA flex-
ibility (e.g. with a flexible dinucleotide at every step) may
lower the DNA/protein affinity because of a loss of
entropy when going from the flexible free form to the
nucleosomal structure (90,91). Second, the importance of
the sequence central part is consistent with (i) the consen-
sus found in the central part of artificial nucleosomal
sequences (56); (ii) the nucleosome reconstitution in vivo
and in vitro that begins with the central (H3-H4),
tetrasomal part, followed by incorporation of the two
terminal (H2A-H2B) dimers (92,93) and (iii) a recent
study showing that 73bp fragments are efficient to
analyze the nucleosome occupancy along the genomes of



Saccharomyces cerevisiae and Drosophila melanogaster
(94). Third, the TRX scale allows to rationalize the
dinucleotide position frequencies found on both artificial
(56,57,87) or natural nucleosomal DNA sequences in vitro
(72,75-78) or in vivo (95). These studies converge to char-
acterize the nucleosome sequence preferences primarily by
a ~10bp periodicity of ApT, TpA and ApAeTpT that
oscillate out of phase with GpC, CpG, GpGeCpC and
CpAeTpG along the nucleosomal DNA constituent.
Both groups are each composed by a mixture of YpR,
RpReYpY and RpY. Neither the modeling nor the
crystallographic approaches do properly account for
DNA plasticity since they all conclude to flexible YpR,
intermediate RpReYpY, and stiff RpY steps. From the
TRX point of view, ApT, TpA and ApAeTpT are
characterized by a restricted plasticity, contrary to
the flexible GpC, CpG, GpGeCpC and CpAeTpG.
Thus, the TRX approach clarifies the lexicographic
periodicities encountered in nucleosomal sequences, artifi-
cial and natural.

In sum, examination of free DNA backbone motions in
solution, monitored by P, correlated to several helical
parameters, allows to uncover the intrinsic B-DNA
flexibility. This flexibility appears dominated by the
dinucleotide sequence, although finely modulated at
the tetranucleotide level. The quantification of the
DNA intrinsic malleability of the ten complementary
dinucleotides yields an experimental scale, called
TRX (Table 1). We started to decipher the affinity of
artificial DNA sequences for nucleosome formation in
terms of their TRX signals. This shows that the TRX
scale offers an understanding of the preferred recognition
of DNA sequences by proteins, based on flexibility
criteria.

A key strength of the TRX scale is its experimental
foundation, directly inferred from very precise P NMR
measurements in solution, free from dependence on any
structural models or limitations (e.g. force-field influences
or crystal packing). To our knowledge, the TRX
scale is currently the only experimental quantitative
scale characterizing the ten B-DNA complementary
dinucleotide steps in terms of average structure and flexi-
bility, thus offering a conceptual and practical framework
to make progress regarding the role of DNA dynamics in
DNA-protein recognition mechanisms.
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