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ABSTRACT

Gene duplication is integral to evolution, providing
novel opportunities for organisms to diversify in
function. One fundamental pathway of functional
diversification among initially redundant gene
copies, or paralogs, is via alterations in their expres-
sion patterns. Although the mechanisms underlying
expression divergence are not completely under-
stood, transcription factor binding sites and
nucleosome occupancy are known to play a signifi-
cant role in the process. Previous attempts to
detect genomic variations mediating expression
divergence in orthologs have had limited success
for two primary reasons. First, it is inherently
challenging to compare expressions among
orthologs due to variable trans-acting effects and
second, previous studies have quantified expres-
sion divergence in terms of an overall similarity
of expression profiles across multiple samples,
thereby obscuring condition-specific expression
changes. Moreover, the inherently inter-correlated
expressions among homologs present statistical
challenges, not adequately addressed in many
previous studies. Using rigorous statistical tests,
here we characterize the relationship between
cis element divergence and condition-specific
expression divergence among paralogous genes in
Saccharomyces cerevisiae. In particular, among all
combinations of gene family and TFs analyzed, we
found a significant correlation between TF binding
and the condition-specific expression patterns in
over 20% of the cases. In addition, incorporating
nucleosome occupancy reveals several additional
correlations. For instance, our results suggest that
GAL4 binding plays a major role in the expression
divergence of the genes in the sugar transporter
family. Our work presents a novel means of

investigating the cis regulatory changes potentially
mediating expression divergence in paralogous
gene families under specific conditions.

INTRODUCTION

Gene duplication is a major driver of evolutionary inno-
vation, allowing an organism to elaborate existing biolog-
ical functions via specialization or diversification, while
avoiding negative fitness effects (1-4). One of the ways
in which gene duplicates diversify in function is through
divergence in their expression patterns. While the
mechanisms underlying this expression divergence are
not completely understood, cis-regulatory elements, and
in particular, transcription factor (TF)-binding sites in
promoter regions are likely to play a significant role.
Therefore, investigation of evolutionary changes within
the TF-binding sites may yield insights into the processes
mediating the expression changes among homologs.
Various studies have attempted to identify genomic
variations responsible for observed expression divergence
in orthologs (5). However, the investigation of expression
divergence based on orthologs is handicapped not only by
the difficulty in establishing analogy between differing
cell types and developmental times across species, but
also by the differences in trans-acting factors and regula-
tory programs. In contrast, gene expressions are more
directly comparable in paralogs. These observations
suggest a novel avenue for exploiting the relationship
between expression divergence of paralogous gene
families and their corresponding TF-binding sites to
explore the mechanisms underlying regulatory evolution.
In a prior study, Zhang et al (6) reported a weak correla-
tion between changes in TF-binding sequences and the
gene expression between pairs of yeast gene duplicates.
It is worth noting that this previous study measured a
global gene expression divergence based on multiple
expression samples. However, regulatory mechanisms
rely on a combination of diverse switches, both internal
and environmental and, therefore, it is likely that the
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mutations in specific TF-binding sites may affect gene
expression only in specific environmental conditions.
Consequently, a global measure of expression divergence
may obscure such condition-specific cis effects. As such,
it seems most beneficial to compute expression divergence
in a condition-specific manner. Previous investigations
have also considered expression divergence in a pair-wise
fashion. Nevertheless, a global analysis of entire gene
family as opposed to individual pairs of paralogs, is
likely to be more informative, and will additionally
provide a global view of gene family evolution.

Here, we investigate the relationship between TF
binding and condition-specific expression divergence in
S. cerevisiae paralogous gene families. Our study differs
from previous related studies in several important aspects.
First, the analyses presented here focuses on paralogous
gene families, as opposed to pairs of homologs. Second, in
order to reduce the effect of confounding parameters such
as trans-acting factors, expression divergence is quantified
individually for specific conditions, as opposed to an
overall expression similarity derived from multiple expres-
sion samples using global measures of correlations.
We also employ novel, rigorous statistical technique to
account for non-normal data and dependence among
genes in a family. Our results demonstrate that a signifi-
cant number of expression divergence patterns in yeast
paralogous families strongly correlate with TF-binding
site changes under specific sample conditions. We also
find that incorporating nucleosome occupancy in conjunc-
tion with the TF-binding site data increases the number of
strong correlations between TF binding and expression in
paralogous gene families. Several interesting cases of
correlated cis element and expression divergence emerge,
further elucidating functional diversification in gene
families. For instance, our analysis reveals GAL4-
mediated expression divergence of GAL2 — a galactose
transporter — from other members of the sugar trans-
porter family. Collectively, our results suggest that in a
large number of cases, functional diversification of
paralogous gene families has arisen at least in part, due
to condition-specific expression divergence. In turn, this
expression divergence is likely to be mediated by diver-
gence in the corresponding cis elements of the genes.

METHODS
Overview of method

Figure 1 illustrates the overall approach. For a family of
N paralogous genes, we estimate the probability that a
particular TF binds to the promoter (defined as the
600 bp upstream region) of each gene. Thus, for each TF
x, and each family F, an N-tuple of binding scores Bp(x),
is obtained. Similarly, Ex(s) represents the corresponding
normalized expression values for the genes F in a given
expression sample, s. The correlation between Br(x) and
Er(s) is then compared with a background expectation
for the family in order to yield a P-value representing
how extreme the correlation is. Thus, a P-value is
computed for each triplet of TF, gene family, and expres-
sion sample. A significant correlation is interpreted as ‘the
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divergence in the TF binding among the paralogs
underlies the sample-specific expression divergence’.
The details of the method are presented below.

Yeast gene families

A list of paralogous yeast gene pairs was obtained from
Ensembl’s Compara 52 homology database (http://www
.ensembl.org) for S. cerevisiae (SGD 1.01). We used
complete-linkage clustering of the paralogy relationship
to define disjoint paralogous gene families. In addition,
an alternative list of gene families was obtained using
the Pfam families and their corresponding genes
(pfam.sanger.ac.uk). The Ensembl-derived families are
prefixed with ‘FY’ and the Pfam families are referenced
by their Pfam accession numbers and prefixed with ‘PF’.
We performed a number of filtering steps to improve data
fidelity. For instance, we excluded families consisting pri-
marily of hypothetical genes. In general, Ensembl-derived
paralogy relationships are much more stringent than those
of Pfam-derived families which are based on shared
domains. To ensure that Pfam-derived families did not
contain distant paralogs, we removed outlier genes from
Pfam-derived families such that the minimum protein sim-
ilarity of pairs of genes in Pfam families was larger than all
pair-wise similarities between genes in each Ensembl-
derived family. Finally, to ensure that families were
mutually disjoint, if two families shared a gene, only the
larger family was retained. All of our analyses were
done independently on all the 16 resulting families after
these filters. The family information is provided in
Supplementary File 2 (worksheet Family Information).

Genome-wide expression profiles in yeast

For consistency of comparison across expression samples,
we used the Affymetrix GeneChip Yeast Genome S98
Array YG-S98 platform, because it contains probes for
all known 6400 yeast genes and candidate open reading
frames. In addition, numerous studies have explored the
use of Affymetrix data and associated noise correction
(20,21). Hence, this platform served as a reasonable
choice for a single, consistent platform with a large
amount of data for our analysis. The data corresponds
to strain S288C and GEO accession GPL90. The gene
expression data is summarized in Supplementary File 2
(worksheet Gene Expression Samples). We normalized
the raw CEL data using the gcRMA algorithm in
Bioconductor (22).

For a given paralogous family, several expression
samples have very similar expression for the genes in the
family. Thus, for sample-specific analyses of this family,
various expression samples cannot be considered indepen-
dent. To minimize this redundancy among samples, for
the gene family in question, we computed the pair-wise
Kendall Tau correlation coefficient (KTC) between each
pair of samples using the expression values for the genes in
the family. If two expression samples have a significant
(P <0.05) KTC greater than 0.9, the samples were
clustered using complete-linkage clustering into one aggre-
gate sample in which the expression for each gene was
computed as the mean value among all samples in the
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cluster. The sample clustering information is provided in
Supplementary File 2 (worksheet Sample Expression
Mapping). Note that the sample clustering is done
independently for each gene family to minimize the
biases caused by redundant samples while retaining the
maximal amount of expression data.

Many previous studies have assumed that the
expression is normally distributed, which is clearly not
the case here. To account for non-normal expres-
sion data, we exploit the Box-Cox transform (23),
T(x) = (1/A)(x* —1), where x>0 is the response
variable and 4> 0 is the transformation parameter. Each
family was transformed independently, and a family-
specific 4 estimated using maximum likelihood and the
box.cox.powers function in the car R package. After
applying the Box-Cox transformation, the distribution of
the transformed expression data resembles a normal one.

Since we are interested in identifying the samples in
which a set of genes are either up or down-regulated, we
normalize the Box-Cox transformed expressions of each
gene across all samples, as follows. For each gene g in a
family F, the normalized expression is given as,
zr(g,5) = (xr(g,8) — ur(g))/or(g), where xp(gs) is the
Box-Cox transformed expression of g in F and sample s,
and up(g) and op(g) are the mean and standard devia-
tion, respectively of g in F across all expression samples.

Promoter sequence, TF-binding probability and
nucleosome occupancy

We used two sources of data to estimate the probability
that a TF binds a gene promoter. The first one is based on
ChIP-chip experiments reported in (8). The authors
provide a P-value for each TF-gene pair, which we con-
verted into a probability following a mixture modeling
approach reported in (24). In addition to ChiP-chip, we
also used the published available DNA-binding motifs for
124 TFs in (25) to estimate the TF’s-binding scores in gene
promoter. We extracted the 600 bp upstream regions of all
yeast genes from the UCSC database (genome.ucsc.edu),
to be used as our promoters. The choice of a 600 bp
upstream promoter region is consistent with many
previous works (8,26,27). For each TF-binding motif
(represented as a positional weight matrix or a PWM),
using the previously published tool PWM_SCAN tool
(9), we estimated the best overall TF-binding score
(referred to as TFMax) as follows. We first measure the
maximum percentile score for the PWM of a particular
TF in the entire promoter and convert this score into a
P-value based on the background distribution of per-
centile scores (all TFs, all promoters, and all positions).
The minimum P-value (corresponding to the maximum
percentile score) is then used as our measure of binding.
We also compute another variant of motif-based binding
score from the average of the three best (largest) percentile
scores for the TF from non-overlapping regions in a gene
promoter (referred to as TFAvg). An aggregate of these
three values offers more resolution and is less prone
to outliers than the using the single minimum value
directly. In order to account for variations in promoter
length, we also computed TF motif-binding scores for

promoter lengths of 500bp, 750bp and 1kb. The
Pearson correlation coefficient (PCC) between both
TFMax and TFAvg for a 500b5) length promoter and
the default 600bp length are R° = 0.92 and R? = 0.96,
respectively. The PCC between both TFMax and TFAvg
for a 750 bp length promoter and the default 600 bp length
are RZ=091 and R’=0.96, respectively. Finally, the
PCC between both TFMax and TFAvg for a 1kb length
promoter and the default 600 bp length are R = 0.82 and
R’ = 0.91, respectively. Therefore, we conclude that small
differences in promoter length will not significantly affect
our results.

Nucleosome occupancy probability for the promoter
regions was estimated using the computational model
reported in (28). Once again, the Box-Cox transform
was applied to the occupancy probabilities to ensure
that the data distribution resembled a normal one. As in
the case of expression data, a family-specific A was
computed using maximume-likelihood. Strictly speaking,
after transformation the binding probabilities are no
longer valid probabilities. However, we still refer to the
scores as probabilities to avoid pedantry, since the trans-
formation is only relevant to the technical details
of computing the significance of correlation outlined in
subsequent sections.

For a given TF and gene family with N genes, we
consider this pair for analysis only if at least 1 and at
most N—/ gene promoters contained a binding score
above the 95th percentile. This filtering step is designed
to ensure that we only analyze the gene families where
there is sufficient evidence of TF-binding divergence in
the gene promoters. We have tested our procedure using
varying thresholds for binding scores for robustness, and
found that the choice of threshold does not significantly
impact the results.

To incorporate nuclesome occupancy information
in estimating the TF-binding probability, we used two
separate methods for computing the nucleosome occu-
pancy probability. The first method computes the
nucleosome occupancy probability by averaging the occu-
pancy probability at each base location across the enter
promoter. The second method uses the best predicted
binding location based on DNA-binding motifs as the
putative binding site for the TF. The nucleosome occu-
pancy score is then computed as the average of the
nucleosome occupancy predicted at each base within this
specific binding site. The binding probability is then
computed as the product of the nucleosome occupancy
probability and TF-binding probability from ChIP. In
the case of the motif-based scores (TFAvg and TFMax),
we compute the nucleosome occupancy probability at the
exact putative binding site (averaged across the binding
site positions) and multiply this probability by the percen-
tile score for the binding of a particular TF to the site to
obtain a new score incorporating nucleosome occupancy
data. We then select the largest and average of the largest
three such scores to compute our new TFMax and TFAvg
scores, respectively. In investigating the effect of
nucleosome occupancy alone, we required a minimum
nucleosome occupancy of 0.9 for at least one gene in the
family.



Correlating TF-binding probabilities with expression values

Previous studies have argued that many of the so-called
low affinity binding sites are likely to be functional and
these should not be removed based on arbitrary thresholds
(27). We therefore treat TF binding as an analog quantity
as opposed to a binary variable using an arbitrary thresh-
old. As such, we use a regression based approach to
quantify the relationship between TF binding and expres-
sion. Since both the transformed TF binding probability
and expressions scores are approximately normally
distributed, there are a number of metrics available for
computing correlation between these scores. The PCC
was chosen as our measure of correlation. We measured
the significance of the PCC as follows. Note that the
obvious dependency of both the TF-binding scores and
expression scores among paralogous genes has a
profound effect on the computation of the significance
of correlation. To account for this dependency, the
protein sequence similarity is a reasonable proxy for evo-
lutionary time since duplication, and thus is a practical
choice for capturing the statistical dependency among
paralogous genes in a family. For each pair of genes X
and Y in a family, we compute the normalized protein
sequence  similarity as = NW(X,Y)/ max(NW(X,X),
NW(Y,Y)) where NW(X,Y) represents the Needleman—
Wunsch similarity score of proteins corresponding to
genes X and Y, using the BLOSUMG62 matrix. For the
genes with multiple transcripts, we chose the longest tran-
script. This function gives an indication of the relative and
overall similarity between two proteins, and produces a
score in [0,1]. From these scores a correlation matrix Xz
of the genes in a family F is estimated.

In order to incorporate the dependency structure of
the genes in a family, we compute the significance
of correlations using a form of permutation tests,
called (rotation tests) (29). To perform these rotation
tests, we compute a distribution of correlations based on
randomly generated data, and then obtain a P-value by
determining the rank of the actual correlation amongst the
randomly generated correlations. To compute a random
PCC, the values of the TF-binding probabilities are kept
constant, but random outcomes for the expression data
are generated from a multivariate normal distribution.
Effectively, both the expression and TF-binding data
after Box-Cox transformations can be modeled as
outcomes of multivariate normal distributions of dimen-
sion N, where N is the number of genes in a family.
As such, we generate random multivariate normal
outcomes (for fixed TF-binding probabilities) with corre-
lation matrix Xy for family F, where X captures the
dependency structure of the genes in F. Using these
random multivariate normal outcomes, a random distri-
bution of PCC values can then be obtained. Once we have
the necessary random expression outcomes, a PCC is
computed between the actual binding probability scores
and the random expression scores to yield a random dis-
tribution of PCC values.

In order to account for multiple testing, we estimate the
family-wise error rate (FWER) using Hommel’s method
(7), which is more conservative than False Discovery Rate
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(FDR) approaches and does not assume independence
among P-values. There are two contexts viewed in this
paper, and in both contexts we employ the FWER. The
first is in identifying significant correlations between TF
binding and expression in at least one expression sample
for a known TF-family regulatory relationship. In this
case, for a gene family-TF pair, we obtain a P-value for
the significance of correlation for each sample. We then
adjust these P-values for each gene family-TF pair
independently, using Hommel’s method. The second
context is the case of identifying interesting biological
examples of significant correlation between TF binding
and expression sample divergence. Since our intent here
is discovery of ‘TF-gene-sample’ triplets with significant
correlations in a given family, we compute the adjusted
P-values from all of the P-values obtained for that family,
i.e. for all TFs and all samples.

RESULTS
Summary of data and approach

Our analysis is based on S. cerevisiae, which has been
studied extensively, is well annotated, and contains
a well-defined promoter (600bp wupstream region).
We assembled gene families in S. cerevisiae using two
resources: (i) paralogy data from Ensembl version 52
(family identifiers are prefixed with ‘FY’), and (ii) using
the Pfam database (family identifiers are prefixed with
‘PF’). A summary of the family data is provided in
Supplementary File 1. We restricted the analysis to
families having at least five paralogous genes, and after
a thorough manual filtering (see ‘Methods’ section) of can-
didate families, arrived at 2 Ensembl-derived and 14 Pfam-
derived families. We used a compendium of 106 publicly
available genome-wide S. cerevisiae expression profiles
measured under a variety of experimental conditions (see
‘Methods’ section).

Figure 1 illustrates the overall approach, and the
methods section provides further details. Briefly, for a
given paralogous family and a given TF, we obtain the
probability that the TF binds to the promoter of each gene
in the family. For each gene family and for each TF
regulating at least one gene in the family with high score
(above the top 5th percentile of all binding scores), we
tested how strongly and significantly the TF’s binding
scores for the genes in the family are correlated with the
genes’ expression levels in each of the expression samples.
Using rigorous statistical tests, we estimated a P-value of
the correlation for each gene family—TF pair and for each
expression sample, separately. To correct for multiple
testing, we utilized Hommel’s method for estimating the
family-wise error rate (FWER) (7). However, we note
that, even if we apply the very stringent Bonferroni cor-
rection in lieu of Hommel’s method, all of the following
results remained unchanged, that is identical numbers and
hence, percentages of significant correlations are detected.
A significant P-value suggests that the divergence within
the TF-binding site underlies the sample-specific expres-
sion divergence. A significant correlation is defined as a
gene family—TF pair wherein the expression in at least one
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Figure 1. Overview and illustration of IPF approach. For a family of
N paralogous genes (N = 10), each promoter sequence is scanned to
identify putative TF-binding sites. For each TF, we obtain TF-binding
probabilities in each gene promoter which are then correlated with the
corresponding expression values in a specific condition. This correlation
is then compared to a random distribution of correlations to obtain
a P-value.

condition was correlated with the TF’s binding scores with
P-value <0.01 and FWER <0.10.

TF binding in paralogous genes’ promoters are often
significantly correlated with their condition-specific
expressions

The global analysis reveals a few interesting results at a
cursory level. Figure 2 summarizes the results, illustrating
a total of 67 significant positive correlations (potential
activators of expression) between TF binding and expres-
sion, as compared to 48 significant negative correlations
(potential repressors of expression). Moreover, the
detected significant correlations are distributed across
many families and TFs, i.e., there is no bias towards
specific TFs or families. Figure 3 summarizes the results
for each family, showing the percentages of TFs whose
binding showed significant correlations with gene expres-
sion in at least one sample. There is at least one significant
correlation between TF binding and expression in all but
one of the families. The families are ordered by decreasing
average protein similarity of the genes within the family
(see ‘Methods’ section). It is apparent that the average
within-family protein similarity does not affect our
ability to detect correlations. In the following sections,
we elaborate on these results.

Using ChIP—chip data to quantify TF—gene interaction

In vivo binding for 102 S. cerevisiae TFs in all gene
promoters has been previously determined using ChIP-
chip experiments (8). The authors provide a P-value for
each TF—gene pair. We converted this P-value into a prob-
ability value representing the likelihood of the TF binding
to the gene promoter (see ‘Methods’ section). For each of
the 144 qualifying gene family and TF pairs, we tested
independently for each expression sample, whether the
TF’s binding scores for the genes in the family are

significantly correlated with the genes’ expression levels
in the expression samples.

As shown in Figure 4a, for 31 of 144 (21.5%) gene
family and TF pairs analyzed, the expression in at least
one condition was significantly correlated with the TF’s
binding scores (P <0.01 and FWER < 0.10). In a majority
(90%) of these 31 significant cases, a significant correla-
tion was observed in exactly one expression sample.
These results suggest that TF-binding divergence
correlates with expression divergence only under specific
conditions. While an exhaustive analysis of all experimen-
tal conditions is not practical, it is plausible that a larger
compendium of conditions will reveal a greater number of
gene family and TF pairs having significantly correlated
cis element and expression divergence.

Using motif-based methods to identify TF—gene interaction

In addition to ChIP-chip data, motif-based scanning
techniques using positional weight matrices (PWMs) are
commonly used for identifying potential TF-binding sites.
Among these techniques, we used two different measures
to quantify the strength of TF binding in a gene promoter.
The first, subsequently referred to as TFMax, is the
maximum percentile score using the previously published
PWM_SCAN tool (9). The second hereafter referred to as
TFAvg, is the average of the top three non-overlapping,
maximum percentile scores for a given TF PWM in the
600 bp promoter region, and accounts for multiple
putative binding sites. For a suitable comparative
analysis among different TF-binding metrics, we chose
thresholds for binding scores which yielded a comparable
number of putative binding sites as the number obtained
from the ChIP-chip binding probabilities. Based on these
thresholds, the ChiP-chip binding and motif-based
measures of binding yield similar numbers of significant
family-TF interactions but these interactions have little
intersection. Once again, Figure 2 illustrates the results
from employing these two measures of TF-binding prob-
ability. Figure 3a also summarizes the results for TFAvg
and TFMax binding scores, wherein 19 of 121 (15.7%)
and 14 of 169 (8.3%), respectively, TF-family pairs
showed significant correlation in at least one expression
sample (P <0.01 and FWER <0.1). Among the significant
correlations, the overlap of results between the three
measures of TF binding is not significant. Thus, each
binding metric reveals different yet significant correlations
between TF binding and expression divergence.

Incorporation of nucleosome occupancy data yields
additional significant correlations between TF binding
and expression specifically for motif-based measures of
TF binding

TF binding, and thus transcriptional regulation, is
mediated by nucleosome occupancy by controlling acces-
sibility of DNA to TFs. To assess the effect of nucleosome
occupancy on the relationship between TF binding and
expression divergence, we repeated our analysis after
incorporating nucleosome occupancy in conjunction
with TF-binding scores using two separate measures
(see ‘Methods’ section). Since the exact location of
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Figure 3. Summary of significant correlations between TF-binding scores and expression in TF—family pairs. The families shown on the y-axis of the
bar plot are listed in decreasing order from top to bottom of average protein similarity of the genes in the family. For instance, PF00270 has
the highest average protein similarity of genes, and PF00069 has the lowest. The x-axis shows the percentage of significant correlations between
TF-binding scores and expression in putative TF-family pairs, for the three different TF-binding probability metrics, both with and without

nucleosome occupancy information.

binding in the TF promoter is unknown using ChIP-chip
binding data, the first measure computes the nucleosome
occupancy as the average nucleosome occupancy within
the entire promoter. For the second measure, we choose
the location of binding site in the promoter predicted from
the best score obtained from DNA-binding motifs. The
corresponding nucleosome occupancy score is then based
on the predicted nucleosome occupancy of this specific
location. The cases showing significant correlation
(P<0.01 and FWER <0.10) based on the first measure
are summarized in Figure 2, and the percentages of
significant correlations are depicted in Figure 4a. For
ChIP-chip derived probabilities, there is little change in
the percentage of significant correlations between TF-
binding scores and expression divergence, with 27 of 133
(20.3%) significant correlations. As illustrated in Figure
4b, a large majority (26) of TF-family pairs are common
between results with and without nucleosome occupancy
information. In terms of the second measure of nucleo-
some occupancy, we detected similar numbers as the first
measure, 27 of 132 (20.5%) significant correlations. All 27
TF-family pairs are common between results with and
without nucleosome occupancy, hence the results are
consistent regardless of which measure of nucleosome
occupancy is employed.

The previous trend does not hold when we incorporate
nucleosome occupancy to the motif-based-binding
metrics (Figure 4b). There are a total of 12 significant
correlations each after incorporating nucleosome occu-
pancy for TFAvg and TFMax. Of these significant

correlations, however, the intersection of gene family-TF
pairs deemed significant using nucleosome occupancy data
and those deemed significant without nucleosome occu-
pancy data is negligible, for either TFAvg or TFMax.
Therefore, it seems that incorpoarting nucleosome posi-
tioning information yields additional correlations
between cis element and expression divergence.

We next investigated the extent to which nucleosome
occupancy exclusive of TF binding, correlates with
sample-specific expression divergence. In general, the
differences in nucleosome occupancy among paralogs do
not significantly correlate with their condition-specific
gene expression. In fact, the only significant correlation
was detected in a family of histone proteins (PF00125).
The biological significance of this finding is unclear. In
summary, even though there is little to no correlation
between nucleosome occupancy alone and sample-
specific expression, we detect significant correlation if we
incorporate both nucleosome occupancy and TF binding.
Thus, it appears that expression divergence is mediated
partially by TF-binding changes and facilitated by
nucleosome positioning. Below, we discuss specific
examples of paralogous expression divergence and the
TFs that potentially mediate the expression divergence,
as detected by our analysis. With the focus being on
the discovery of the most informative results, we restrict
our discussion to those cases where there is a strong
evidence of in vivo binding (in the 99.5th percentile,
and a more conservative FWER estimation, see
‘Methods’ section).
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Figure 4. (a) Stacked bar plot showing percentage of correlations in
TF-family pairs between TF binding and expression divergence for
putative TF binding sites identified by three different measures of
binding probabilities: ChIP-chip, TFAvg and TFMax. The shaded
(unshaded) area indicates the number of significant (non-significant)
correlations. See text for definitions of significance. (b) Effect of using
nucleosome occupancy information with respect to significant
correlations between TF binding and expression divergence for three
different measures of binding probability: ChIP-chip TFMax and
TFAvg. The plot shows for each metric, the total number of significant
correlations (red) detected if we use the TF metric with the nucleosome
occupancy information as well as the number of significant family—TF
pairs common (green) in the case of using the TF-binding metric
without the nucleosome occupancy information.

GAL4 binding strongly correlates with the expression
divergence of the sugar transporters

Within the sugar permease family (PF00083) shown in
Figure 5, GAL4 binding is inversely correlated (TFAvg
P =1.5E-4, FWER = 0.04) with expression in a low
glucose expression sample (GSM29914). As shown in
Figure 6, the three genes (GAL2, HXT3 and HXTS)
in this family with the greatest TF-binding score also
have the lowest expression. GAL4 is known to activate
GAL2 when galactose is present, but under nor-
mal conditions (including the low glucose condition)
GAL4’s activity is repressed by GALSO via interaction
with GAL4.

Members of the hexose transporter family differ in their
capacity to transport glucose (10). For instance, HXT6
and HXT?7 are high-affinity transporters, and therefore,
are active when glucose is scarce. Consistently, as shown
in Figure 6, we observe that HXT6 and HXT7 have the
highest expressions compared to other genes in the family.
In addition, HXT3 is likely a low-affinity transporter,
i.e., active only under high glucose concentrations.

Maltose Transparter Inosital
Family Permease

Mal11 Family
Mph2
¢ Ydr3g7

at

Hexose Transporter Family

Figure 5. Phylogenetic tree of the sugar transporter family (PF00083)
in yeast. This figure is a reproduction of Figure 1 of (30). Only the
genes relevant to our analysis are shown.

As expected, HXT3 is expressed at low level in the low
glucose sample. The low expressions of HXT14, HXT16
and HXTS8 are also consistent with previous studies
which remark that these genes are either unable to trans-
port glucose or expressed at low levels under normal
conditions. Finally, GAL2 is expressed only when
galactose is available. Not surprisingly, the level of
GAL2 has the lowest expression in GSM29914 among
the PF00083 genes, and is the sample with the third
lowest expression among other samples.

Our findings are consistent with the known biology of
the glucose metabolism pathway in yeast and they suggest
that one specific member of the ancient sugar transport
family — GAL2 — was recruited to initiate galactose
transport in yeast. Sugar transport is vital to yeast, and
our analysis demonstrates that the expression of the sugar
transport genes strongly correlate with GAL4 binding in
their promoters. In many environmental conditions the
genes in this family serve redundant functions, however
a closer inspection of various experimental conditions
reveals that the capacity of these genes to metabolize
sugar vary in subtle but important ways (10). Our
results further suggest that certain aspects of these func-
tional differences are due to differences in expression,
likely to have been mediated by variable GAL4 binding
in these genes’ promoters. The above findings underscore
the importance of wusing condition-specific gene
expressions, and a reliance on global or aggregated expres-
sion profiles could obscure these subtleties.
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Figure 6. Correlation between GAL4 binding and expression in the sugar transport family, PF00083. The figure shows a schematic of putative
GAL4 binding in the multiple alignment of the promoters of sugar transporters (locations are in scale but approximate), and the corresponding
expressions of the genes in a sample cluster corresponding to GSM29914. The transcription start site (TSS) is indicated by the red arrow. The
putative binding sites are categorized by percentile scores. In general, highly expressed genes (shown in green shades) have a greater number of strong

binding sites.

MCMI1 binding strongly correlates with divergence in a
family of cell wall proteins

Pfam family PF00399 includes a number of genes involved
in cell wall stability and integrity. We detect a strong
positive  correlation (P = 1.83E-4, FWER = 0.020)
between the ChIP-chip binding of MCMI1 to the
member genes and the corresponding expressions in a
cluster of expression samples which include several stress
responses induced by the addition of various chemicals
and galactose (PF00399, Sampleld 2, see Supplementary
File 2). In particular, many of the samples included
histone modifications and treatment with methyl
methanesulfonate which is known to produce heat-labile
DNA damage (11). This correlation remains strong in the
same sample even if we incorporate nucleosome position-
ing data (P =293E-4, FWER =0.013). PF00399
comprises the genes PIR1, PIR2, PIR3, PIR4, TIR1 and
TIR3, among which, PIR2 (HSP150) exhibits the
strongest binding to MCMI1. PIR2 is a heat shock
protein which attaches to the cell wall to promote cell
wall stability under stress conditions including heat
shock, oxidative stress and nitrogen starvation (12).
MCMI1 is an established transcriptional activator and
was recently shown to regulate PIR2 for filamentous
growth (13), and PIR2 is the only gene in this family
regulated by MCMI1. In addition, both MCM1 and
PIR2 have their highest expression levels in Sampleld 2.
TIR1 and TIR3 are induced by cold-shock and
anaerobiosis (14) and PIR1,3,4 are primarily regulated
by RLMI1. Collectively, it appears that members of this
family have functionally diverged and in particular PIR2
has garnered a distinct function as a MCMI1-mediated
stress response gene.

Divergence in a family of amino acid permeases

Ensembl-derived family, FY00077 consists of five genes—
BAP2, BAP3, HIP1, AGP1 and UGAA4. The first three are

amino acid permeases with narrow substrate range. AGPI
is a low-affinity amino acid permease with broad substrate
range and UGA4 serves as a gamma-aminobutyrate
(GABA) transport protein and is involved in the utiliza-
tion of GABA as a nitrogen source. Only the latter two
genes—AGP1 and UGA4—are involved in nitrogen
catabolism repression (15,16) while BAP2 is involved
in carbon catabolism repression (17). The expression of
this family is negatively and significantly (P = 9.8E-4,
FWER = 0.047) correlated with the affinity to transcrip-
tion fact GZF3/DEH1 based on TFAvg score in a cluster
of expression samples consisting primarily of wildtype
yeast in rich media conditions (FY00077, Sampleld 13,
see Supplementary File 1). Only UGA4 and AGPI
(involved in nitrogen catabolism repression) have high
binding scores for GZF3 in their promoter. GZF3 is a
key regulator of nitrogen catabolism repression and is
known to directly regulate, as a negative regulator, both
AGPI1 (18) and UGA4 (15). For instance, under high
nitrogen conditions when nitrogen catabolism is not
needed, GZF3 acts as a negative regulator of UGA4 by
competing for a GATA-binding site with another factor
Gatl (15). In fact, the ratio of GZF3 expression to GATI
expression is amongst the highest in Sampleld 13 versus all
other samples. The observed negative correlation between
the GZF3 binding and the expression of these genes is
consistent with the GZF3’s role as a negative regulator
of these two genes. Thus, the specific binding of GZF3
to promoters of two of the permeases is consistent with
their role in nitrogen catabolism repression.

DISCUSSION

Gene duplication events provide the necessary ‘spare
parts’ for evolutionary innovation by facilitating elabora-
tion of existing biological functions (1-4). Diversification
of gene functions can involve at least two distinct
pathways: (i) alteration of gene expression pattern, and
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(i1) alteration of protein’s sequence, structure and eventu-
ally its interactions and biochemical activity. Alteration of
expression patterns is likely to involve changes in the cis
regulatory elements. Extensive work has been carried out
to identify, model, and analyze regulatory evolution and
evolution of novel gene function. Typically, many
computational analyses have exploited highly conserved
non-coding regions as a proxy for putative functional
elements. Such analyses fail to capture divergent aspects
of sequence that might underlie functional diversification
of gene families. Other approaches have attempted to cor-
relate sequence changes in cis regulatory regions with
expression divergence in pairs of orthologs. However,
not only is it inherently difficult to compare expressions
across multiple species, but expression profiles across
multiple samples obscure the effects of regulation in
specific, individual conditions.

In view of the above remarks, we have investigated the
correlated changes between TF-binding sites and the
condition-specific expressions of paralogous genes in the
model organism S. cerevisiae, using rigorous statistical
analysis. Moreover, we have attempted to characterize
the impact of regulatory sequence evolution on expression
divergence in paralogous gene families, as opposed to
analyzing paralogous pairs of genes, as was done
previously. Our genome-wide analysis in yeast has
revealed several significant correlations between changes
in TF-binding scores in the promoters of paralogous genes
and their expression values in specific experimental
conditions. We have also observed that diverse measures
of TF binding appear to capture different aspects of TF-
binding site variation and evolution, which underscores
the value of incorporating TF-binding data from a
variety of sources. In general, incorporating nucleosome
occupancy probabilities in the promoters yields additional
significant correlations. It is worth emphasizing that since
ChIP-chip captures in vivo binding and thus implicitly
incorporates nucleosome occupancy, we observed negligi-
ble additional significant correlations after incorporating
nucleosome occupancy data to ChIP-chip-binding
probabilities. The additional significant correlations
retrieved are most likely due to the fact that ChIP-chip
experiments are executed for a specific and limited set of
conditions, and may not capture the effect of nucleosome
occupancy in other experimental conditions. This fact
reinforces the value of our analysis, as we are able to
gain further insights from utilizing several different exper-
imental samples. Finally, we have highlighted a few
specific examples of significant correlations between TF-
binding site divergence with expression divergence in
specific conditions. Collectively, our findings suggest that
during evolution, alterations in TF-binding sites contrib-
ute to condition-specific expression changes among
paralogous genes. Our results further suggest that evolu-
tion of nucleosome occupancy within paralogous families
potentially underlie the expression divergence among the
paralogs, as noted in a recent review (19).

Although we have identified a number of significant
correlations between TF-binding site and expression,
there are obviously a large number of cases in which
we could not detect any significant correlations in any

expression sample. Expression divergence is potentially
mediated by a multitude of factors including genomic,
epigenomic and transcriptional changes that are not
captured solely by mutations in the proximal promoters
of genes. There are also other mitigating factors including
the lack of known TF-binding sites and the relatively
small gene families, thereby reducing the power of the
statistical tests. In addition, our compendium of expres-
sion samples is far from being comprehensive, and so
many correlations would not be detected due to the
unavailability of relevant expression samples. Despite
these limitations, we have found significant correlations
between cis regulatory elements and sample-specific
expression, and even capture the effect of nucleosome
positioning in transcriptional evolution.

The statistical challenges involved in performing the
analysis presented here should not be understated.
Expressions and TF-binding scores in paralogous genes
cannot be assumed to be either normally distributed or
statistically independent. While many studies neglect or
discount such details, we have adopted conservative, but
rigorous statistical technique. It is also worth mentioning
that due to stringent multiple testing corrections, a
genome-wide application of our technique potentially
diminishes the percentage of significant correlations. In
view of this observation, we believe that a careful appli-
cation of our method, perhaps even in additional
organisms, to specific gene families utilizing a smaller
but more relevant subset of putative TFs and expression
samples will be more fruitful.

The methods presented here will uniquely reveal novel
functional cis elements that may underlie the expression
divergence among paralogs, as illustrated by several
known cases. For instance, we found that GAL4 binding
may underlie the expression divergence within the sugar
permease family in yeast. We were able to capture relevant
correlations between TF binding and expression in this
family, precisely because we investigated sequence-
expression relationships at the level of families in a
condition-specific manner. Sugar transporter genes have
evolved to perform related, but subtly distinct functions.
Our analysis suggests that this functional diversification is
facilitated, at least in part, by expression divergence,
which in turn is mediated by divergence in TF binding.
Moreover, by analyzing the entire family, as opposed to
one gene at a time, our approach affords a greater statis-
tical power. From a broader perspective, genome-wide
applications of our method may provide a means of
generating testable hypotheses as well as insights into
the evolutionary process by which members of gene
families diversify their functions.
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Supplementary Data are available at NAR Online.
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