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Objective. The purpose of this study was to determine if high functioning children with Juvenile Idiopathic Arthritis (JIA) with
minimal disease activity have different biomechanics during high loading tasks compared to controls. Patients were included if
they had minimal inflammation documented in one or both knees. Methods. The subject groups consisted of eleven patients
with JTIA and eleven sex, age, height, and weight matched controls. Sagittal plane kinematic and kinetics were calculated during
a drop vertical jump maneuver. The Child Health Assessment Questionnaire (CHAQ) was collected on each patient with JIA.
Results. The subjects with JIA had increased knee (P = .011) and hip flexion (P < .001) compared to control subjects. Subjects
with JTA also demonstrated decreased knee extensor moments during take-off (P = .028) and ankle plantar flexor moments
during landing (P = .024) and take-off (P = .004). In the JIA group, increased hip extensor moments were predictive of increased
disability (R? = .477, SEE = .131). Conclusions. Patients with JIA may demonstrate underlying biomechanical deviations compared
to controls. In addition, biomechanical assessment of hip extensor mechanics during dynamic tasks may provide an objective
assessment tool to determine overall function in patients with JIA.

Copyright © 2009 Kevin R. Ford et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Juvenile Idiopathic Arthritis (JIA) is a childhood disease
characterized by chronic, recurrent inflammation of the
joints [1]. Although JIA is rarely a life-threatening condi-
tion, it can affect growth and is associated with disability,
increased need for joint arthroplasty, and decreased quality
of life. Articular effusion, synovial hypertrophy, stiffness, and
pain are hallmarks of the disease [2]. The mechanical effects
of these abnormalities, compounded by the potentially
erosive effects of the inflammatory process, can lead to
transient or long-term musculoskeletal defects [3]. Delayed
neuromuscular development, muscular weakness, ligamen-
tous laxity and generalized or localized growth disturbances

can all be factors that contribute to musculoskeletal changes
[4]. Historically, patients with JIA have been managed with
medication and conservative exercise. The condition usually
requires long-term drug therapy treatment and may result in
at least some restrictions of physical activity, which depend
on the type and severity of the disease. The immediate effects
of improved physical function and decreased pain in patients
with JIA are decreased self-limitation of functional activities
and potentially increased involvement in recreational or
competitive sports.

JIA is characterized by periods of quiescence and
exacerbation. In times of quiescence, when patients may
have normal clinical measures of range of motion and
strength, the underlying disease is still present, which results
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in difficult decisions about participation in high-impact
activities. Frequently, the activities that patients request to
participate in are basketball, volleyball, and soccer. Although
pain may be absent, the potential presence of underlying
biomechanical and neuromuscular deficits and ultimately
the long-term implications of high-impact loading are
unknown. Abnormal joint mechanics in young athletes may
be associated with an increased risk of sports injuries.
Abnormal joint use may consist of decreased knee joint
moments or increased moments at the ankle and hip. In
order to investigate the risks and benefits of high-level
sports participation in children with JIA, knowledge should
first be obtained about the characteristic lower extremity
joint mechanics in times of disease control. The purpose
of the current study was to determine if high functioning
children with JIA with minimal disease activity have different
biomechanics during high loading tasks and whether these
biomechanical measures relate to subjective measures of
function. The first hypothesis was that patients with JIA
would demonstrate decreased peak knee joint moments
compared to matched controls. The second study hypothesis
was that increased ankle and hip joint moments would be
related to subjective functional disability measures in the
patient group.

2. Materials and Methods

2.1. Subjects. The study cohort consisted of eleven patients
with JIA who had documented minimal inflammation in
one or both knees on pediatric rheumatologist exam at the
time of enrollment (4 male, 7 female; age: 13.0 = 2.6 years;
height: 154.7 = 14.1 cm; mass: 45.0 + 12.2kg). Excluded
were patients with JIA who had range of motion limitations
as measured goniometrically in hips, spine, knees, ankles,
or shoulders, as well as those with active inflammation of
the hips, ankles, and spine. Eight patients when enrolled in
the study had oligoarticular joint involvement and three had
polyarticular joint involvement.

As expected, the patients had a low level of physical
functional deficit with a mean Child Health Assessment
Questionnaire (CHAQ) score of 0.148 (range 0-0.5). The
CHAQ is a commonly used outcome measure in the field of
pediatric rheumatology and has been previously determined
to be both valid (Kendall’s tau b = 0.77, P < .0001)
and reliable (internal reliability: Cronbach’s « = 0.94, test-
retest: P > .9) [5]. The disability index utilizes thirty items
to assess function in eight areas—dressing and grooming,
arising, eating, walking, hygiene, reach, grip, and activities.
Possible scores range from 0.0 (optional functional status) to
3.0 (severe disability) [5].

Eleven healthy control subjects without a history of lower
extremity joint disease were tested. Controls were matched
to JIA subjects according to sex, age, height, and weight
(Controls: age: 12.9 = 1.9 years; height: 157.0 + 13.1 cm;
mass: 40.7 + 15.6kg). The 11 JIA patients had a total of 16
involved knees with minimal arthritis. Each lower extremity
with an affected knee was considered separately for the
purposes of the analysis and was compared with 16 matched
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lower-extremities (based on dominant and nondominant
limb) of the control group. All subjects parents or guardians
read and signed the informed written consent, approved
by the Cincinnati Children’s Hospital Institutional Review
Board and in compliance with the Helsinki Declaration,
prior to participation.

2.2. Procedures. Fach subject was instrumented with 37
retroreflective markers placed on the sacrum, left posterior
superior iliac spine (PSIS), sternum and bilaterally on the
shoulder, elbow, wrist, anterior superior iliac spine (ASIS),
greater trochanter, mid thigh, medial and lateral knee, tibial
tubercle, mid shank, distal shank, medial and lateral ankle,
heel, dorsal surface of the midfoot, lateral foot (5th metarsal)
and toe (between 2nd and 3rd metatarsals). A static trial was
first collected in which the subject was instructed to stand
still and was aligned with the laboratory coordinate system.
This measurement was used as each subject’s neutral (zero)
alignment; subsequent kinematic measures were in relation
to this position.

The subjects were shown the drop vertical jump and
allowed to practice the maneuver. The drop vertical jump
involved the athlete dropping off a 31 cm box and immedi-
ately performing a maximum vertical jump. Three trials were
collected for analysis.

2.3. Instrumentation. Movement was recorded using a
motion analysis system consisting of eight digital cameras
(Eagle cameras, Motion Analysis Corporation, Santa Rosa,
CA) sampling at 240 Hz. Two force platforms (AMTI, Water-
town, MA) were sampled at 1200 Hz and time synchronized
with the motion analysis system. The force platforms were
positioned so each foot would contact a separate platform
during the DV] trials.

2.4. Data Analysis. Data were collected with EVaRT (Version
4.2, Motion Analysis Corporation) and imported into Kin-
Trak (Version 6.2, Motion Analysis Corporation) for data
reduction and analysis. The three-dimensional Cartesian
marker trajectories were filtered through a second-order low-
pass Butterworth digital filter at a cutoff frequency of 15 Hz.
Ankle and knee joint centers were defined as the midpoint
between the medial and lateral ankle and knee markers,
respectively. The hip center was identified based on the
greater trochanter and ASIS markers [6]. A joint coordinate
system was defined within KinTrak [7] with the proximal
and distal segments of each joint (6 degrees of freedom).
Ankle, knee, and hip flexion-extension range of motion from
initial contact to the maximum angle during the initial stance
phase (landing off the box) was calculated. Joint moments
were calculated from the motion and force data using a
standard inverse dynamics approach within KinTrak. The
force data were also filtered at the same cutoff frequency
of 15Hz in order to minimize possible impact peak errors
during the calculation of joint moments [8]. Net internal
moments are described in this paper and represent the
body’s response to the external load on the joint. Maximum
extensor moments were calculated during both the landing
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FiIGUurRe 1: Lower extremity joint moments from one subject
illustrating identification of landing and takeoff phases during the
drop vertical jump maneuver. Phases were divided based on the
lowest point of the body’s center of mass. Maximum extensor
moments were determined for the ankle, knee and hip during each
phase.

and take-off phases of the drop vertical jump maneuver and
normalized to percent of body weight (Newton) multiplied
by height (meter). The landing phase was defined as when
the body’s center of mass was decelerating and the take-off
phase was when the body’s center of mass was accelerating
(Figure 1). Total contact time and the distribution of phases
were not different between groups.

2.5. Statistical Analyses. Means and standard deviations for
each variable based on the three trials performed were
calculated for each subject. A one-way MANOVA was utilized
to determine the effect of JIA on the dependent variables (P <
.05). A post-hoc univariate analysis was then performed to
determine whether the knee joint moments were decreased
and ankle and hip increased in the patient population com-
pared to controls. Joint range of motion was also examined
to determine if the patients with JIA had increased range of
motion compared to the controls. Stepwise multiple linear
regression was utilized to determine which biomechanical
variables significantly predict the CHAQ score (criteria F <
0.100). Statistical analyses were conducted in SPSS (SPSS,
Version 12.0, Chicago, IL).

3. Results

A significant difference between JIA and controls was found
when all the dependent variables within the MANOVA
were examined. (F22) = 2.7, P = .027). There were no
differences in the dependent variables (hip, knee, and ankle
ROM and moments) between the unilaterally and bilaterally
involved patients (F(o6) = 1.2, P = .44). Figure 2 shows the
ankle, knee, and hip sagittal plane angles during the DV]
for each group. Involved JIA limbs had significantly greater

TABLE 1: Mean (SD) kinematic and kinetic variables for the involved
sides of the JIA and Control groups. Multivariate analysis was
significantly different between groups (Fop) = 2.7, P = .027).
Univariate post-hoc analysis is listed for each variable (*P < .05).

JIA Control Univariate
Kinematics—Angular
ROM
Ankle (o) 53.8 55.2 F(])30> =0.2
(10.3) (5.8) P =.329
Knee (°) *67.5 60.5 Fli30) = 6.0
(8.8) (7.5) P =.011
Hip (°) 415 25.4 Flis0) = 22.8
(12.5) (5.0) P <.001
Kinetics—Landing
Ankle Moment % n
10.2 11. F =4.2
((Nm/(bw*ht))*100) 0 3 (130
(1.6) (1.3) P =.024
Knee Moment _
((Nm/(bw*ht))*100) 85 o7 Fom = 1.4
(2.5) (3.3) P=.122
Hip Moment _
(M (bweht)) *100) 13.4 13.1 Fus0 = 0.1
(2.8) (2.6) P =380
Kinetics—Take-off
Ankle Moment % «
E 11.2 F, = 8.
((Nm/(bw*ht))*100) o8 a0 = 8.3
(1.6) (1.2) P =.004
Knee Moment % %
7.0 8.4 F, =4.0
((Nm/(bw*ht))*100) (130
(1.8) (2.2) P =.028
Hip Moment _
(M (bweht)) 100) 11.3 11.7 Fis0 = 0.2
(2.3) (2.3) P =332

range of motion at the knee (P = .011) and hip (P < .001)
compared to the matched controls (Table 1). There were
no differences between groups in ankle range of motion
(P =.329).

Lower extremity joint moments are presented in Figure 3.
The knee joint moment during the take-off phase was
significantly decreased in the JIA group compared to the
controls (P = .028). Knee joint moments were not different
between groups during the initial landing phase (P =
.122). The ankle plantar flexor moments were significantly
decreased in the JIA groups during both the landing and
take-off phases (P = .024, P = .004) of the drop vertical
jump when compared to controls (Table 1). Groups did not
differ in hip extensor moments during either phases of the
drop vertical jump (Table 1).

In order to examine the potential biomechanical pre-
dictors of CHAQ (physical function or disability), a step-
wise multiple linear regression was performed. The only
statistically significant predictor of the CHAQ was the hip
extensor moment during landing. Hip extensor moments
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FIGURE 2: Ensemble averaged (mean + 1 standard deviation) lower extremity joint angles during the drop vertical jump.
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FIGURE 3: Ensemble averaged (mean + 1 standard deviation) lower extremity joint moments during the drop vertical jump.

alone correlated to CHAQ with an R value of 0.69 and
predicted 48% of the variability of the CHAQ score (R?* =
0.48, SEE = 0.131). In patients with JIA, increased hip
extensor moments were predictive of a poor CHAQ score.

4. Discussion
The purpose of the current study was to determine if high

functioning children with JIA with minimal disease activity
have different biomechanics during high loading tasks and

whether these biomechanical measures relate to subjective
measures of function. JIA is a chronic autoimmune disease
characterized by periods of quiescence and exacerbation. In
times of quiescence, when patients appear to have normal
or near normal clinical measures of range of motion and
strength, the underlying disease is still present, which results
in difficult decisions about participation in high-impact
activities. Therefore, the investigation of a landing and
jumping activity in these well-controlled, high functioning
patients is warranted to compare with matched control
athletes.
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Patients with JIA did exhibit decreased knee joint
moments during the take-off phase of the DV]J, partially
supporting the first study hypothesis. These findings may
indicate that the patients transfer the joint moments to other
lower extremity joints. However, increased joint moments
at the ankle and hip were not found in the JIA group
compared to controls in the current study. It is possible that
the decreased knee extensor moment may be indicative of
quadriceps weakness. Further evaluation of lower extremity
strength measures in patients with JIA may help determine if
knee extensor strengthening exercises are warranted in this
population. In addition, overall performance (i.e., vertical
jump height) may also be an important variable to investigate
in this population.

Patients with JIA demonstrated increased range of
motion on the involved side at the knee and hip compared to
the control group. Increased sagittal plane range of motion
may be an adaptive strategy used by patients with JIA
to reduce ground reaction forces and joint loads. In the
current study, these patients appeared to have adapted an
increased sagittal plane motion strategy to control joint
loading. Similar landing strategies have been identified and
termed either a soft, flexion style landing or a stiff, bounce
landing [9, 10]. The “softer” type of landing appeared to be
adopted by the patients with JIA. While this landing strategy
does not necessarily indicate a “safer” or less injurious style of
landing, it may be a neuromuscular adaptation, due in part to
the disease history. Whether this may translate into a higher
or lower risk of injury is unknown.

With regard to kinetic measures, significant differences
during the landing phase were found between patients and
controls in ankle plantar flexor moments. The patients with
JIA exhibited decreased ankle torques compared to controls.
Decreased ankle moments were unexpected in the patients
with JIA, since prior studies indicated that patients with
symptomatic or postoperative knees utilized increased joint
loading patterns at adjacent joints. Specifically, patients with
reconstructed knees increased ankle joint loads by nearly
40% [11]. However, Devita and Skelly [10] found that soft
style landing was associated with decreased ankle plantar
flexor moments, without changes in knee and hip extensors,
when compared to stiff landings. Therefore, the mechanisms
behind the decreased ankle moments in the current study
group appeared to relate to different landing mechanics.

In the JIA group, as the CHAQ score increased (indicative
of increased functional deficits) the hip extensor moments
also increased during landing. These findings indicate that
the patients with higher disability utilize increased hip
strategies during dynamic tasks. This partially supports
the second study hypothesis, since patients with decreased
function appeared to adapt with greater hip extensor torque
during the landing. Objective assessment of hip dynamics
may be a useful tool to aid clinicians in the determination
of functional status and may be helpful for making activity
restrictions related to sports participation. A direct link
between injury risk and altered landing mechanics in this
patient population is difficult to ascertain. Follow-up studies
with a larger range of CHAQ scores may be necessary to

further develop the relationship between the hip and poor
function. However, this study does appear to be an important
step towards developing functional outcome measures in
children with JIA. Future investigations should examine the
relationship between injury risk and landing mechanics in
patients with JIA.
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