

RESEARCH ARTICLE

Open Access

Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes

Jaroslav Nunvar*, Tereza Huckova, Irena Licha

Abstract

Background: Bacterial repetitive extragenic palindromes (REPs) compose a distinct group of genomic repeats. They usually occur in high abundance (>100 copies/genome) and are often arranged in composite repetitive structures -bacterial interspersed mosaic elements (BIMEs). In BIMEs, regularly spaced REPs are present in alternating orientations. BIMEs and REPs have been shown to serve as binding sites for several proteins and suggested to play role in chromosome organization and transcription termination. Their origins are, at present, unknown.

Results: In this report, we describe a novel class of putative transposases related to IS200/IS605 transposase family and we demonstrate that they are obligately associated with bacterial REPs. Open reading frames coding for these REP-associated tyrosine transposases (RAYTs) are always flanked by two REPs in inverted orientation and thus constitute a unit reminiscent of typical transposable elements. Besides conserved residues involved in catalysis of DNA cleavage, RAYTs carry characteristic structural motifs that are absent in typical IS200/IS605 transposases. DNA sequences flanking *rayt* genes are in one third of examined cases arranged in modular BIMEs. RAYTs and their flanking REPs apparently coevolve with each other. The *rayt* genes themselves are subject to rapid evolution, substantially exceeding the substitution rate of neighboring genes. Strong correlation was found between the presence of a particular *rayt* in a genome and the abundance of its cognate REPs.

Conclusions: In light of our findings, we propose that RAYTs are responsible for establishment of REPs and BIMEs in bacterial genomes, as well as for their exceptional dynamics and species-specifity. Conversely, we suggest that BIMEs are in fact a special type of nonautonomous transposable elements, mobilizable by RAYTs.

Background

Transposable elements (TEs), or transposons, are a large group of mobile genetic elements with ability to actively transfer themselves into new locations in their host's DNA. This process, called transposition, is catalyzed by transposases, coded for by TEs themselves. Insertion sequences (ISs) present the simplest examples of TEs.

The IS200/IS605 family of transposable elements was first described in genus *Salmonella* [1] and further in many other bacterial and archaeal genomes [2]. Contrary to the majority of TEs that transpose using

transposases whose active site is composed of a triad of acidic residues (DDE transposases), known members of the IS200/IS605 family lack terminal inverted repeats and do not generate larger target site duplications upon transposition [3]. Crystal structures of two IS200/IS605 transposases have been solved (PDB IDs: 2a60 and 2f4f) [4,5]. Their fold is remarkably similar to proteins involved in rolling circle (RC) replication - conjugative plasmid relaxases and viral Rep proteins [4,5]. This similarity is further supported by shared mechanism of DNA cleavage: transesterification reaction takes place between DNA strand and conserved tyrosine residue, resulting in covalent protein-DNA intermediate. A histidine-hydrophobic-histidine motif and a divalent metal (magnesium) cation are another mandatory components of properly

^{*} Correspondence: nunvar@natur.cuni.cz Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic

assembled active site, aiding the nucleophilic attack of catalytic tyrosine [6,7]. Next trait common for both IS200/IS605 transposases and RC enzymes is that the cleavage of DNA depends on the recognition of stemloop structures, present at either the origin of RC replication or IS termini [6,7]. IS200/IS605 transposases are the smallest transposases known, with average length below 150 amino acids. To encompass size limitation, they work as a homodimer with two hybrid active sites, each composed of tyrosine from first unit and the histidine-hydrophobic-histidine motif from second unit [4,5].

As determination of eukaryotic genomic sequences progressed in the last two decades, it has become obvious that their genetic information is littered with highly repetitive, "junk" DNA. More detailed analyses of these repetitive elements revealed that many of them are actually special cases of TEs. They generally retain conserved terminal sequences (for example inverted repeats) of their corresponding full-length transposons, which are important for transposition initiation, but lack completely or partially the transposase gene. Therefore, transposase encoded by "parental" full-length transposons needs to be supplied in trans. These repetitive elements are thus called nonautonomous TEs. Three groups of nonautonomous TEs account for substantial fractions of eukaryotic genomes. The first group is represented by short interspersed nuclear elements (Alu-like), derived from non-LTR-retrotransposons [8]. Helitrons, the second type of nonautonomous TEs, are thought to be mobilized by Y-2 type transposases, that are homologous to RC replication relaxases [9]. The last type, miniature inverted repeat transposable elements (MITEs), is present in both eukaryotes and prokaryotes. Most studied MITEs are related to two homologous insertion sequence families, IS630 (prokaryotic) and Tc-Mariner (eukaryotic) [10], both employing DDE catalytic mechanism. IS630-derived MITEs in prokaryotic genomes include Correia elements in Neisseria species [11] and RUP elements in Streptococcus pneumoniae [12]. Besides these, MITEs related to other IS families have been identified in prokaryotes [2].

Repetitive extragenic palindromic sequences (REPs) were originally identified in enteric bacteria [13] and later in several other bacterial taxa [14-16] as a class of abundant repeats with characteristic architecture. REP elements contain imperfect palindrome in their sequence. The majority of REPs are arranged in repeats of higher order, bacterial interspersed mosaic elements (BIMEs) [17]. In BIME-1, two oppositely orientated REPs are located close to each other. The inter-REP sequence interacts with integration host factor (IHF) [18]. BIME-2 and atypical BIMEs are composed of several tandemly repeated BIME-1-like units [19] and have been shown to strongly bind DNA gyrase [20]. REPs

themselves interact with DNA polymerase I [21] and facilitate Rho-dependent transcription termination [22].

Our present results describe an intimate relationship between REP and BIME elements and one apparently monophyletic group of IS200/IS605 transposases. Because of striking similarities to known nonautonomous TEs, we propose that BIMEs are in fact nonautonomous TEs and that IS200/IS605 transposases are responsible for their mobilization.

Results

Case study - genus Stenotrophomonas

We have studied mechanisms of high-level tetracycline resistance in bacteria from agricultural soil treated with manure from tetracycline-fed animals. Among tetracycline-resistant isolates, identified as Stenotrophomonas maltophilia, Variovorax paradoxus and Chryseobacterium balustinum, horizontal gene transfer from S. maltophilia to other two species was detected. The transferred nucleotide sequence was 90% identical to a histidine kinase/response regulator/sodium-symporter family gene, present in both sequenced S. maltophilia strains. We investigated the region surrounding this gene in sequenced stenotrophomonads for the presence of genes known to be involved in horizontal transfer of genetic information. A putative transposase of the IS200/IS605 family was found one gene away from histidine kinase in S. maltophilia R551-3. Analysis of sequences flanking the transposase gene revealed inverted repeats containing an imperfect palindrome. More sequences identical to these inverted repeats were observed scattered in several instances between neighboring genes (Figure 1A).

We performed a BLAST search that revealed five apparent homologs of this transposase in genomes of sequenced stenotrophomonads. Their genes were all found to be delimited by inverted repeats of the same architecture (Figure 1B). The 5-GT(A/G)G "head" is immediately followed by perfectly complementary, GCrich palindrome, interrupted by 2-4 bases in its middle (Table 1, bottom). Due to the presence of multiple copies of these repeated sequences in the proximity of the transposase gene (see above), we scanned whole Stenotrophomonas genomes for additional copies of repeats flanking each particular transposase homolog. The number of hits ranged from 37 up to 427 perfect copies of given repeat per genome (Table 1, bottom). Because of their palindromic nature and abundance, features they share with published REP sequences, they will be called REPs and their cognate transposases will be called REPassociated tyrosine transposases (RAYTs).

We noticed that some of the REPs identified were arranged in clusters. Ten clusters composed of REPs were then analysed in detail (Figure 2). The core (basic

Figure 1 *Stenotrophomonas* **RAYTs**. (A) Schematic representation of a segment of *S. maltophilia R551-3* genome containing putative IS200/ IS605 family transposase gene (orange arrow), histidine kinase/response regulator/sodium-symporter family gene (blue arrow) and several short palindromic repeats (red arrows). (B) General structure of *Stenotrophomonas rayt* genes flanked by REPs. The whole REPs and their orientation are denoted with red arrows. Details in REP structure (bottom) are marked with arrows: blue - GT(A/G)G head, green - palindrome-forming sequence, pink - noncomplementary middle part of palindrome.

module) of each of these compound structures consists at least of two inverted REPs, separated by two intervening segments. Several of these basic modules are connected to each other in a head-to-tail fashion. The inter-REP segments do not show any homology with each other and vary substantially in length, suggesting that these clusters arose repeatedly and independently. Because of their exceptional structural similarities with published BIMEs, they will be called BIMEs.

Stenotrophomonas BIMEs show several interesting aspects. Some of them are hybrid and contain REPs from two different RAYTs. Moreover, slightly modified REPs occur in BIMEs, differing only in a few nucleotide positions. Still, in all cases, the palindromic features of REPs are preserved, suggesting selection for complementary mutations. Intriguingly, one *rayt* gene (Smal4) is directly associated with a BIME, its downstream REP being one of the BIME-constituting REPs.

Since all six *rayt* genes are flanked by two inverted REPs, this type of organization is likely to be subject to evolutionary preservation. To estimate evolutionary relationship between these elements, phylogenetic trees were constructed from RAYT amino acid sequences and REP nucleotide sequences, respectively. Both phylograms display the same topology (Figure 3), suggesting that RAYTs coevolve with their cognate REPs and that their typical organization is ancestral.

RAYTs in other bacteria

We wondered if similar RAYTs, REPs and BIMEs also occur together in other bacterial taxa. Using Smal1 RAYT sequence as query, exhaustive BLAST search was

performed to identify RAYT homologs in other prokaryotic organisms. Retrieved homologs, all of which contained the "Pfam01797: Transposase_17" domain (peculiar to IS200/IS605 transposases), were tested for the presence of palindrome-containing inverted repeats flanking their genes. Subsequently, the number of these putative REPs in host genomes was determined. Only RAYTs associated with abundant REPs were further analysed. Detected RAYTs are listed in Table 1. RAYT homologs suiting our criteria were only found in gammaproteobacteria.

All detected REPs consist of GT(A/G)G head and GCrich imperfect palindrome with potential to form stemloop structures in single-stranded state (Table 1). Importantly, in all cases when REP sequences were determined in bacterial species taken into our analysis prior to this work, REPs identified by our approach are in agreement with these sequences. This concerns Escherichia coli [19], Salmonella sp. [23], Pseudomonas putida Pput2 [16] and Stenotrophomonas maltophilia Smal4 [24] REPs. For example, E. coli RAYT-coding gene (yafM) is delimited by two different REPs (Table 1). These are in fact Y and Z2 palindromic units, constituents of modular BIMEs (BIME-2 and atypical BIMEs) [25]. E. coli rayt itself is flanked by BIME-2 on both sides. Similar direct association with BIME was observed in total for one third of detected RAYTs (Table 1) in various species.

Further, we examined distribution of identified REPs in host genomes. Analysis revealed that most REPs are arranged in clusters (Additional file 1). In some cases

Table 1 Summary information on identified RAYTs and REPs

Fig. 1970 Fig. 12 Fig. 2004 Fig. 12 Fig. 2004 Fig. 20		L) A		(A)		
6.6 (1972)	Host strain	KAYI symbol	KAYI accession	KEP sequence:	Nr. of KEP copies	<i>ra</i> yt-BIME association
Majoration Feat Page Page Confedence (Confedence Confedence Confedence 17,100	Citrobacter koseri ATCC BAA-895	Ckos	YP_001455335	GTAG GCCcGgTAAGCGaaGCGCCaCCgGGC GTAG <u>GCCgGaT</u> AA <u>gGCGcttGCGCCgCCatccGGC</u>	9/46/77 16/23/65	Z
CTAGGANGCATA ACCOUNTING CTAGGANGCATA ACCOUNTING	Enterobacter sakazakii ATCC BAA-894	Esak	YP_001437784	GTAGGGGGTAAGCGgAGCGCACCCGCC GTAGGGTGGGTAAGCGCAGCGCACCCGCC	3/89/159 39/117/180	Z
Price serving Typhi str. CT/8 Serr NP_488883 TGTAGGCCGCAT/CGGCGC 1/10/16 Price serving Typhi str. CT/8 Kpme YP_002239241 GTAGGCCGCGCTCCGCCGCCGCCCCCCCCCCCCCCCCCC	Escherichia coli str. K-12 substr. MG1655	Ecol	NP_414763	GTAGGacgGATAAGgCGttCACGcCGCATCcGGCA GTAGGcatGATAAGaCGcgcCAgCGtCGCATCaGGCA	4/52/126 4/19/46	>
Rone YP_00239241 GTAGGCCONDANGCGANGCCCARGGGGC 81/2/0 All YP_00047616 GTAGGCGGGGANCCCCCARGGGCC 81/2/0 All YP_00047616 GTAGGGGGGCGTTTGACCCCCAC 20/22/32 All NP_2082461 GTAGGGGGCGTTTGACCCCCAC 5/16/21 All NP_208248385 GTAGGGGGCGTTTGACCCCCAC 5/16/21 All NP_208248385 GTAGGTGGCGTTTGACCCCCAC 29/38/40 All NP_20824388 GTAGGTGGCGTTGACCCCCAC 29/38/40 All NP_20824388 GTAGGTGGCGTTGACCCCCAC 29/38/40 All NP_20824388 GTAGGTGGCGTTGACCCCCAC 29/38/40 All NP_20824388 GTAGGTGGCGTTGCCCCCAC 29/38/40 All NP_20824388 GTAGGTGCGCTTGCCCCCAC 29/38/40 All NP_208256 TGTGGCACCCCCCCAC 21/23/40 B Pputs YP_208251 TGTGGCACCCCCCCAC 21/23/40 B Pputs YP_208251 TGTGGCACCTTGCTCCCCAC 21/23/40 B Pputs YP_208256 TGTGGCACCTCCCCCAC 21/23/40	Salmonella enterica subsp. enterica serovar Typhi str. CT18	Sent	NP_458983	TGTAGGCCGGATAAGgcgtagcCGCCATCCGGC TGTAGGCCGGATAAGcaacgCGCCATCCGGC	1/10/16 1/2/6	z
Hyar YP_002476161 GTAGGGTGCTCACC Apart Apart Apart Apart GTAGGGTGCCTACCCACC 6/14/21	Klebsiella pneumoniae 342	Kpne	YP_002239241	GTAGGCCcggcAAGCGcAGCGCCgccgGGC GTAGGCCggatAAgGCGaAGcCGCCatccGGC	8/12/20 2/11/13	>
Hinf NP_438385 GTAGGGTTGGCCTACACC 6/14/21 Cbur YP_001425033 GTAGGGTGGGTTACCTCCCACC 5/16/21 Cbur YP_001425033 GTAGGTGGGTTACCTCCCACCCCACC 29/38/40 Total YP_001214838 GTAGGTGGGCTTACCTCCGAA 38/53/118 Phuel YP_001214338 GTAGGTGGGCTTACCTCGGAA 38/53/118 Pput1 NP_247277 TGTGGAGCGGGGGTATACCCCGGAA 38/13/2285 Pput2 YP_001671454 TGTGGAGCGGGGTTACCCCGGAA 38/13/2285 Pput3 NP_242731 TGTGGAGCGGGGTTACCCCGGCAA 38/13/2285 Pput4 YP_001751446 TGTGGAGCGGGGTTACCCCGGAA 21/53/69 Pput4 YP_001751446 TGTGGAGCGGGCTTGGTGCGCAA 21/53/69 Pput4 YP_001871446 TGTAGGAGCGGGCTTGGTGCGCAA 38/15/7607 Phut4 YP_002877446 TGTAGGAGCGGGCTTGGTGCGCAA 38/15/263 Phut4 YP_00287781 TGTAGGAGCGGGATTCGCCGCAA 38/15/263 Phut4 YP_002871781 TGTAGGAGCGGCTTGCCCCGAA 38/15/263 Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	daemophilus parasuis SH0165	Hpar	YP_002476161	GTAGGGTGTCTTGACCCACC	20/22/42	Z
Cbur YP_001425023 GTAGGTIGGGCTGAGCTTGCAGCCCAAC 29/38/40 T_sp YP_002514838 GTAGGTIGGGCTTCAGGCGGA 38/33/118 Pmen YP_001186231 GTAGGTICGGCTTCAGGCGGA 38/33/118 Pputt YP_001186231 GTAGGCGGGGTTCAGCCGCAA 38/33/118 Pputt NP_747277 TGGGAGCGGGGTTCCCGCAA 38/12/285 Pputt YP_001671454 TGGGAGCGGGTTCCCCGCAA 38/12/285 Pput3 NP_74277 TGGGAGCGGGTTCCCCGCAA 38/12/285 Pput4 YP_001671454 TGGGAGCGGGTTCCCCGCAA 38/12/285 Pput3 NP_742731 TGGGAGCGGTTCGCGCAA 21/12/189 Pput4 YP_001751446 TGTAGGACGCGTTCGCGCAA 21/12/189 Pput4 YP_001751446 TGTAGGACGCGTTCGCGCAA 21/12/189 Pput4 YP_001751446 TGTAGGACCGCTTCGCGCAA 21/12/189 Pput4 YP_00287180 TGTAGGACCGCTTCGCGCAA 31/12/183 Pflu1 YP_00287181 GTAGGACCGCTTCGCGCAA 31/12/183 Xaxo NP_61192 YP_00287180 TGTAGGACCGCTCGCGCAA <td< td=""><td>demophilus influenzae Rd KW20</td><td>Hinf</td><td>NP_438385</td><td>GTAGGGTGGGCTTCAGCCCACC GTAGGGTGGGCTTtAGCCCACC</td><td>6/14/21 5/16/21</td><td>></td></td<>	demophilus influenzae Rd KW20	Hinf	NP_438385	GTAGGGTGGGCTTCAGCCCACC GTAGGGTGGGCTTtAGCCCACC	6/14/21 5/16/21	>
T-sp YP_002514838 GTAGGICGGCTTCAGGCGAC 38/33/118 Pmen YP_001186231 GTAGCCCGATCCAGCGA 75/136/162 Pput1 NP_24727 TGTGGAGCGGGGTGCCCGGAA 62/193/286 Pput2 YP_001671454 TGTGGAGCGGGGTTGCGCGAA 62/95/130 Pput3 NP_24727 TGTGGAGCGGCGTTGCGTCGCAA 62/95/130 Pput3 NP_247371 TGTGGAGCGGCTTGCGTCGCAA 62/95/130 Pput4 YP_001671454 TGTGGAGCGGCTTGCGTCGCAA 14/80/104 Pput4 YP_001751446 TGTGGAGCGGCTTGCGTCGCAA 21/53/69 Pent1 YP_001751446 TGTGGAGCGGCTTGCGTCGCAA 21/53/69 Pent2 YP_001871 TGTGGAGCGGCTTGCTGCGCAA 89/101/564 Phu1 YP_002873491 TGTGGAGCGCTTGCTGCGCAA 89/101/564 Phu2 YP_002871781 GTGGAGCGCCTTGCTGCGCAA 89/101/564 Phu3 YP_002871781 GTGGAGCGCGTGCCCCGAA 18/10/2023 YP_002871781 GTGGGAGCGCCTGCCCCAA 89/10/203 Xaxo NP_641493 GTGGGAGCGCCTCGCGCA 18/10/117/143	oxiella burnetii Dugway 5J108-111	Cbur	YP_001425023	GTAGGTTGGGCTGAGCTTGCGAAGCCCAAC	29/38/40	z
Pmen YP_001186231 GTAGCCCGGATCCGGGA 75/136/162 Pput1 NP_27277 TGTGGAGCGGGGTGCCCGGAA 62/133/286 Pput1 YP_001671454 TGTGGAGCGGGTGCCCGAA 62/13/286 Pput2 YP_001671454 TGTGGAGCGGTTCCCGCAA 14/80/104 Pput3 NP_242731 TGTGGAGCGCGTTCGCGCAA 14/80/104 Pput4 YP_001671454 TGTGGAGCGCGTTCGCGCAA 21/53/69 Pent1 YP_001751446 TGTGGAGCGCCTTGGTCGCGAA 21/53/69 Pent2 YP_001871 TGTAGGAGCGCCTTGGTCGCGAA 24/112/189 Pent3 YP_001871 TGTAGGAGCGCCTTGGTCGCGAA 24/112/189 Pent4 YP_001871 TGTAGGAGCGCCTTGGTCGCGAA 89/101/564 Pflu1 YP_002873491 TGTAGGAGCGCGCTTCGCGCAA 89/101/564 Pflu2 YP_002873491 TGTAGGAGCGCGCTTCCCCCGAA 89/101/564 Pflu3 YP_002873801 TGTAGGCGCTCCCCCGCAT 119/229/257 Xxxxx NP_641493 TGTAGGCGCCTCCCCCCGCCCCCCCCCCCCCCCCCCCCC	hioalkalivibrio sp. HL-EbGR7	ds_T	YP_002514838	GTAGGTCGGCCTTCAGGCCGAC	38/53/118	z
Pput1 NP_747277 TGTGGAGCGGGGTGCCCGGAA 62/193/286 Pput2 YP_001671454 TGTGGAGCGGTGCGAA 62/193/286 Pput3 YP_001671454 TGTGGAGCGGTTACCCGCGAA 14/80/104 Pput3 NP_742731 TGTGGAGCGGTTACCCGCGAA 14/83/69 Pput4 YP_001571446 TGTGGAGCGCTTGCGCGAA 24/112/189 Pput4 YP_001751446 TGTGGAGCCTTGCGCGAA 24/112/189 Pent1 YP_001871446 TGTAGGAGCGCTTGCGCGAA 24/112/189 Pent2 YP_010881 TGTAGGAGCGCTTGCGCGAA 24/112/189 Pent3 YP_010881 GTAGGAGCGCTTGCTGCGAA 24/112/189 Pflu1 YP_002873491 GTAGGAGCGCTTGCTGCGAA 89/10/15/64 Pflu2 YP_002873491 GTAGGAGCGCTTGCCCGGAA 104/192/232 Xaxo NP_641493 GTAGGAGCGCTTGCCCGCGAA 104/192/232 Xaxo NP_641493 GTAGGAGCGCTGCGCGCAA 23/58/88 Xmal YP_00203947 GTAGGACCCGCCCGCGCAA 23/58/88 Xmal YP_001970973 GGTAGGCCCTGCCCCGCAA 23/58/88	seudomonas mendocina ymp	Pmen	YP_001186231	GTAGCCCGGATGCAATCCGGG	75/136/162	z
Pput2 YP_001671454 TGTGGGAGCGGGTTACCCGCGAA 62/95/130 Pput3 NP_742731 TGTGGCAGCGGGTTACCCGCGAA 21/53/69 Pput3 NP_742731 TGTGGCAGCGGCTTGGTCGGAA 21/13/69 Pput4 YP_001751446 TGTAGGAGCGGCTTGGTCGGAA 24/112/189 Pent1 YP_608776 TGTAGGAGCGGCTTGGTCGCGAA 24/112/189 Pent2 YP_610581 TGTAGGAGCGGCTTGGTCGCGAA 89/101/564 Pflu1 YP_002873491 GTAGGAGCGGCTTGCTCGCGAA 88/101/564 Pflu2 YP_00287380 TGTAGGAGCGGCTTGCTCCCGAT 88/101/564 Pflu3 YP_00287389 GTAGGAGCGGCTTGCTCCCGAT 88/101/564 Pflu3 YP_00287380 TGTAGGAGCGGCTTGCTCCCGAT 88/101/264 Xxxx NP_641493 GTAGGAGCGCTTGCTCCCGGCT 88/217/263 Xxxx NP_641493 GTAGGAGCGCTTGCTCCCGCT 88/217/263 Smal1 YP_0028947 GTAGGACCCCGCGCCCCCCCCC 23/58/88 Smal2 YP_01970973 GTAGGACCCCCGCCCCCCCCCCCCCCCCCCCCCCCCCCC	seudomonas putida KT2440	Pput1	NP_747277	T GTGG GAGCGGGCgTGCCCGCGAA T GTGG GA <mark>GCGGGC</mark> aT <u>GCCCGC</u> GAA	62/193/286 35/172/285	Z
Pput3 TGTGGGAGCGGCTTTGGTGGGA 21/53/69 Pput4 VP_201751346 TGTGGGAGCGGCTTTGGTGGGAA 21/53/69 Pput4 YP_001751446 TGTAGGAGCGGCTTTGGTGGGAA 24/112/189 Pent1 YP_001751446 TGTAGGAGCGGTTTGTGTGGCAA 24/112/189 Pent2 YP_002873491 GTAGGAGCGGTTGCTCCCCGAT 116/17/1443 Pflu1 YP_002873491 GTAGGAGCGGTTGCTCCCCGAT 89/101/564 Pflu2 YP_002873491 GTAGGAGCGGCTTGCTCCCCGAT 18/10/17/443 Pflu3 YP_002873800 GTAGGAGCGGCTTGCTCCCCGAT 19/10/22/32 Pflu3 YP_002873800 TGTAGTGAGCGGCTTGCTCCCGCGT 19/10/22/32 Xaxo NP_641493 GTAGGAGCGCTTGCTCCGCGCT 9/49/85 Xaxo NP_641493 GTAGGAGCGCTTGCTCGCGCGCT 29/49/85 Small YP_00229847 GTAGGAGCGCTCTGCGCGCGCT 29/49/85 Small YP_001970973 GGTAGGCCCTGCGCGCGCCTGCCCGCGCATGCTGCGCGCATGCTCGCGCGCATGCTCGCGCCCCATGCTCGCCCCCCATGCTCGCCCCCATGCTCGCCCCCCATGCTCGCCCCCCATGCTCGCCCCCCATGCTCGCCCCCCCATGCTCGCCCCCCATGCTCGCCCCCCATGCTCGCCCCCCATGCTCGCCCCCCATGCTCGCCCCCCATGCTCGCCCCCCATGCTCGCCCCCCATGCTCGCCCCCCCATGCTCGCCCCCCCC	seudomonas putida GB-1	Pput2	YP_001671454	T GTGG GAGCGGGTTtACCCGCGAA T GTGG GA <mark>GCGGGT</mark> TC <mark>ACCCGC</mark> GAA	62/95/130 14/80/104	Z
Pput4 YP_001751446 TGTAGGGGGCCTTTGGTGGGAA 24/112/189 Pent1 YP_608776 TGTAGGGGGCTTTGTGTGGGAA 77/174/205 Pent2 YP_610581 TGTAGGAGCGGATTCATCCGCGAT 116/17/1443 Pflu1 YP_602873491 GTAGGAGCGGATTGCCCCGGAT 89/101/564 Pflu2 YP_002873491 GTGGAGGGGTTGCCCCGGAT 104/192/232 Pflu3 YP_002873800 TGTGGAGGGGTTGCCCCGGGT 104/192/232 Fflu3 YP_002873800 TGTGGGGGCTTGCCCCGGGT 83/217/263 Fflu3 YP_002873800 TGTGGGGGCTTGCCCGGGGT 104/192/232 Xaxo NP_641493 TGTAGGAGGGCTTGCCCGGGGT 34/9/88 Xxcam NP_636415 GTAGGAGCGCACTGGCGGGGA 23/58/88 Xmal1 YP_002039358 TGTAGGAGCGCACTGGCGGGAC 23/58/88 Smal2 YP_001970973 GGTAGGAGCCGACCGGGCCATGGCCGGGA 25/329/355 Smal2 YP_001970973 GGTAGGCCCATGGCCGCGAC 52/75/99 Smal4 YP_001970973 GGTAGGCCCATGCCGCGCAC 52/75/99 Spp1 YP_002706198 AGTAGGCCCACTGGGCCATGCGCAC	seudomonas putida KT2440	Pput3	NP_742731	T GTGG GAGCGGCCTTGcGTCGCGA T GTGG GA <u>GCGGC</u> CTTG <u>rGTCGC</u> GA	21/53/69 27/62/72	Z
Pent1 YP_608776 TGTAGGAGCGGATTCATCCGCGAT 116/171/443 Pent2 YP_610581 GTAGGAGCGGATTCATCCGCGAT 89/101/564 Pflu1 YP_610581 GTAGGAGCCAGCTTGCTCCCGGAT 89/101/564 Pflu2 YP_002873491 GTGGCAGGGGCTTGCTCCCGGT 104/192/232 Pflu3 YP_002873800 TGTGGCAGGGCTTGCTCCCGCGT 83/17/263 Xaxo NP_641493 GTGGCAGCTTGCTCCCGCGT 83/21/263 Xamal NP_636415 GTAGGAGCGCTCGGCGCGAC 24/8/85 Xamal NP_636415 GTAGGAGCGCTCGCGCGCAC 23/58/88 Smal YP_002030358 TGTAGAGCGCTCGCGCGCGCAC 28/329/355 Smal YP_001970973 GGTAGCGCCCGCGCGCGCAC 25/75/99 Smal YP_001970973 GGTAGCTCGCCCCGCTGGCCACCGTGGCCGCAC 25/75/99 Spl YP_001970878 AGTAGATGCCCACCGTGGCCAC 25/75/99 Spl YP_001970878 GGTAGGTGCCCACCGTGGCCAC 25/75/99 Spl YP_002028831 GGTAGGTGCCACCGTGGCCACCGTGGAC 25/75/99 Spl YP_0020208831 GGTAGGTGCCACCGTGGCACCTGGACACCTGGCACACCG	seudomonas putida W619	Pput4	YP_001751446	T GTAG GAGCGGCCTTGcGTCGCGAA T GTAG GA <u>GCGGC</u> CTTG <u>tGTCGC</u> GAA	24/112/189 77/174/205	>
Pent2 YP_610581 GTAGGAGCCAGCTIGCTGGCGAA 89/101/564 Pflu1 YP_002873491 GTGGAGGGGCTTGCCCCGGAT 387/557/607 Pflu2 YP_002871781 GTGGGAGGGCTTGCCCCGCGT 104/192/232 Pflu3 YP_002873800 TGTGGTGAGCGGCTTGCCCGCGCT 83/217/263 Xaxo NP_641493 TGTGGAGCGCTTGCCCGCGCT 9/49/85 Xaxo NP_641493 GTAGGAGCGCACCGGGAC 23/58/88 Xamal YP_002030358 TGTAGAGCGCACTGGCGCGAA 48/177/223 Smal1 YP_002030358 TGTAGAGCCGCATGCCGGCA 25/9329/355 Smal2 YP_001970973 GGTAGGTGCCGCCGCGCA 52/75/99 Smal4 YP_001972572 GGTAGGTGCCGCCGCGCA 52/75/99 S_5p1 YP_001972572 GGTAGGTGCCCCGTGGCCA 67/147/182 S_5p1 YP_002708831 GGTGGTGCCCCTTGGTGGCA 67/147/182 S_5p1 YP_001972572 GGTAGTGCCCCTTGGTGGAA 67/147/182 S_5p1 YP_002708831 GGTGGTGCCATGGTGGAA 67/147/182	seudomonas entomophila L48	Pent1	YP_608776	TGTAGGAGCGGATTCATCCGCGAT	116/171/443	z
Pflu1 YP_002873491 GTGGGAGGGGCTTGCCCCGAT 387/557/607 Pflu2 YP_002871781 GTGGCAGGGGCTTGCTCCCGCT 104/192/232 Pflu3 YP_002873800 TGTGGTGAGCGGCTTGCCCGGGCT 83717/263 Pflu3 YP_002873800 TGTAGTGAGCGGCTTGCCCGGGCT 83717/263 Xaxo NP_641493 GTAGGAGCGCACTGGCGGAC 9/49/85 Xaml NP_636415 GTAGGAGCGCACTGGCGGAC 9/49/85 Small YP_002030358 TGTAGAGCGCACTGGCGGAC 48/177/223 Small YP_001970973 GGTAGGCCCATGCCGGCA 52/75/99 Small YP_001970973 GGTAGGCCCATGCCGGCA 52/75/99 Small YP_001972572 GGTAGGCCCATGCCGGCA 52/75/99 Spl YP_001972572 GGTAGGTGCCCCGCTGGCCA 69/147/182 S_spl YP_002708831 GGTAGGTGCCATGCTGGCCA 68/147/182 S_spl YP_002708831 GGTAGGTGCCATGCTGGCCA 68/147/182	seudomonas entomophila L48	Pent2	YP_610581	GTAGGAGCCAGCTTGCTGGCGAA	89/101/564	z
Pflu2 YP_002871781 GTGGCGAGGGTTGCTCCGGT 104/192/32 Pflu3 YP_002873800 TGTGGTGAGCGGTTGCCCGGGTT 83/217/263 Xaxo NP_641493 GTAGAGCGCACCTGGGCGTGGC 9/49/85 Xaxo NP_641493 GTAGAGCGCACCTGGGGGGAG 9/49/85 Xaxo NP_641493 GTAGAGCGCACCTGGGGGAG 2/3/58/88 Small YP_002030358 TGTAGAGCGCGCTGGCGGGA 48/177/223 Small YP_002029847 GTAGGCCGCTGGCGGGG 2/59/329/355 Small YP_001970973 GGTAGGCCGCGGCCGGGG 2/59/329/355 Small YP_001972572 GGTAGGCCGCGCGCGGGG 5/27/59/9 Small YP_001972572 GGTAGGCCGCCGCGCGGGG 5/27/59/9 Spl YP_001972873 GGTAGGTGCCGCCGCGGGG 69/147/182 S_spl YP_002708831 GGTAGGTCCATGGTGGCAC 69/147/182 S_spl YP_002708831 GGTGGGTCCATGGTGGAG 8/14/182	seudomonas fluorescens SBW25	Pflu1	YP_002873491	GTGGGAGGGGCTTGCCCCCGAT	387/557/607	z
Pffu3 YP_002873800 TGT9GTGAGCGGCTTGCCCCGCGCT 83/217/263 Xaxo NP_641493 GTAGGAGCGCACCTGGGCGCGAC 9/49/85 Xcam NP_641493 GTAGGAGCGCACCTGGGCGCGAC 9/49/85 Xcam NP_636415 GTAGGAGCGCACCGGGGA 48/177/223 Smal1 YP_002030358 TGTAGAGCGCATGGCGGGA 48/177/223 Smal2 YP_001970973 TGTAGAGCCGATGCCGGCA 259/329/355 Smal3 YP_001970973 GGTAGGTGCCGATGGCCGGA 52/75/99 Smal4 YP_001972572 GGTAGGTGCCGCTGGCCGGA 427/556/644 S_sp1 YP_001972572 GGTAGGTGCCGCTGGCCGGA 69/147/182 S_sp1 YP_002706198 AGTAGGTCCACCGTGGCCGAG 69/147/182 S_sp1 YP_002708831 GGTGGGTGCCATGGTGGAG 69/147/182	seudomonas fluorescens SBW25	Pflu2	YP_002871781	GTGGCGAGGGAGCTTGCTCCCGCT	104/192/232	>
Xaxo NP_641493 GTAGGAGCGCACCTGGGCGGAC 9/49/85 Xcam NP_636415 GTAGGAGCGCACCGGGCGGAC 8/49/85 Small YP_00203358 TGTAGAGCGCGTCGCGCGGA 48/177/223 Small YP_002039847 GTAGGCCGGCCATGCCGGCG 259/329/355 Small YP_001970973 GGTGGGTGCCGCGCTGTGGCCGGC 52/75/99 Small YP_001972572 GGTAGGTGCCGCCGTGGCCGGC 52/75/99 Spl YP_001972572 GGTAGGTGCCGCCGTGGCCGGC 427/556/644 S_spl YP_002706198 AGTAGGTCCACCGTGGCGGAG 69/147/182 S_spl YP_002708831 GGTGGGTGCCATGGTGGAG 37/84/131	seudomonas fluorescens SBW25	Pflu3	YP_002873800	T GTgG TGAGCGGGCTTGCCCCGCGCT T GTaG TGA <u>GCGGGC</u> TT <u>GCCC</u> CG <u>C</u> GCT	83/217/263 119/229/257	>
Xcam NP_636415 GTAGGAGCGCTCGCGCGGA 48/17/223 Smal1 YP_002030358 TGTAGGCCGAGCCCATGCTCGGCT 49/90/113 Smal2 YP_001970973 GGTAGCCGACCGTGCCGGCG 259/329/355 Smal3 YP_001970973 GGTGGGTGCCGACCGTTGGTCGCAC 52/75/99 Smal4 YP_001972572 GGTAGTGCCGCCGTTGGCCGGCA 427/556/644 S_5p1 YP_002706198 AGTAGATCCACGCCATGCTGGCTGAAC 69/147/182 S_sp2 YP_002708831 GGTGGGTGCCAACCTTGGTTGGCAC 37/84/131	anthomonas axonopodis pv. citri str. 306	Хахо	NP_641493	GTAG GAGCGACCtGGGGGGAC GTAG GA <u>GCGCACC</u> GGCG	9/49/85 23/58/88	Υ
Small YP_002030358 TGTAGGCCGAGCCCATGCTCGGCT 49/90/113 Small YP_002029847 GGTAGCGCCGGCCATGCCCGGCC 259/329/355 Small YP_001970973 GGTGGTGCCGACCGTTGGTCGGCAC 52/75/99 Smald YP_001972572 GGTAGTGCCGCCGCTGGCCGCCGCGCGCGCGCGCGCGCGC	anthomonas campestris pv. campestris str. ATCC 33913	Xcam	NP_636415	GTAGGAGCGCGCTCGCGCGA	48/177/223	>
Smal2 YP_002029847 GGTAGCGCCGGGCCATGCCCGGCG 259/329/355 Smal3 YP_001970973 GGTGGTGCCGACCGTTGGTCGGCAC 52/75/99 Smal4 YP_001972572 GGTAGTGCCGGCCGTGGCCGGCA 427/556/644 S_sp1 YP_002706198 AGTAGATCCACGCCATGCGTGGAT 69/147/182 S_sp2 YP_002708831 GGTGGTGCCAACCTTGGTTGGCAC 37/84/131	tenotrophomonas maltophilia R551-3	Smal1	YP_002030358	TGTAGAGCCGAGCCCATGCTCGGCT	49/90/113	z
Small YP_001970973 GGTGGGTGCCGGCCGTTGGTCGGCCAC 52/75/99 Smald YP_001972572 GGTAGTGCCGGCCGCTGGCCGGCA 427/556/644 S_sp1 YP_002706198 AGTAGATCCACGCCATGCGTGGAT 69/147/182 S_sp2 YP_002708831 GGTGGGTGCCAACCTTGGTTGGCAC 37/84/131	itenotrophomonas maltophilia R551-3	Smal2	YP_002029847	GGTAGCGCCGGGCCATGCCCGGCG	259/329/355	z
Smald YP_001972572 GGTAGTGCCGGCCGCTGGCCGGCA 427/556/644 S_sp1 YP_002706198 AGTAGATCCACGCCATGCGTGGAT 69/147/182 S_sp2 YP_002708831 GGTGGGTGCCAACCTTGGTTGCAC 37/84/131	stenotrophomonas maltophilia K279a	Smal3	YP_001970973	G GTGG GTGCCGACCGTTGGTCGGCAC	52/75/99	z
S_sp1 YP_002706198 AGTAGATCCACGCCATGCGTGGAT 69/147/182 S_sp2 YP_002708831 GGTGGCGACCTTGGTTGGCAC 37/84/131	stenotrophomonas maltophilia K279a	Smal4	YP_001972572	G GTAG TGCCGGCCGCTGGCCGGCA	427/556/644	У
S_sp2 YP_002708831 G GTGG GTGCCAAC <u>C</u> TT <u>GGTTGGCAC_</u>	stenotrophomonas sp. SKA14	S_sp1	YP_002706198	A GTAG ATCCACGCCATGCGTGGAT	69/147/182	N
	itenotrophomonas sp. SKA14	S_sp2	YP_002708831	G GTGG GTGCCAACCTTGGTTGGCAC	37/84/131	Z

(A) REP sequences, as found flanking the royt gene, in 5/2/3′ direction. When upstream and downstream REPs differ, both are denoted (differing bases in lower case). Palindromic parts are underlined. Conserved head sequences are written in bold. (B) Number of REP sequences in host strain's genome, in following order: completely identical copies/copies with 1 mismatch/copies with 2 mismatches.

Figure 2 Schematic representation of *S. maltophilia R551-3* and *S. maltophilia K279a* BIMEs. Host strain is indicated, followed by BIME coordinates. Each unique inter-REP sequence is assigned a different letter. Basic modules are bracketed, their numbers are denoted. REPs and their orientation are marked with arrows: red - Smal4 REP, green - Smal3 REP, blue - S_sp2 REP. Asterisks indicate modified REPs. Large orange arrow denotes gene coding for Smal4 RAYT.

(pseudomonads, *Thioalkalivibrio sp.*), the most predominant type of clusters is a doublet of REPs in inverted orientation. These REP doublets, together with embedded inter-REP sequences, might themselves represent compound repeated elements, analogous to *E. coli* BIME-1. This is supported by structure of recently described *Pseudomonas fluorescens* repeats [26]. The R0 family consists of 612 repeats (89 bp in length) that have two inverted elements at their termini, identical with Pflu1 REPs.

In contrast to the doublet arrangement, *Xanthomonas campestris* REPs are in great majority found in large clusters, consisting of regularly spaced REPs in alternating orientations (Additional file 1), typical features of BIMEs. In remaining cases, solitary REPs are found along with doublets and BIMEs.

Preliminary analysis confirmed that the great majority of all identified REPs are extragenic (data not shown) and thus further fulfill the definition of REP elements.

Figure 3 Coevolution of RAYTs and REPs. Unrooted phylograms, constructed from (A) *Stenotrophomonas* RAYT amino acid sequences and (B) *Stenotrophomonas* REP nucleotide sequences.

Evolution of RAYTs and REPs

Since REPs share several common structural features, they are likely to represent a group of related elements. We wondered if the same is true for RAYTs. Because RAYTs were detected due to similarity of their protein sequences (see above), they are thought to be structurally related. To specify this relationship, an alignment of selected RAYTs together with reference set of "typical" IS200/IS605 transposases was constructed (Figure 4). The alignment reveals that all catalytically confirmed residues - histidine-hydrophobic-histidine motif and nucleophilic tyrosine - are conserved in both groups. It is thus reasonable to conclude that RAYTs are capable of cleaving DNA with formation of DNA-RAYT covalent intermediate. On the contrary, several motifs and conserved residues are peculiar only to RAYTs. This is in particular true for 100% conserved threonine near Nterminus and the NP(L/V)(R/K)xG motif that is located close to C-terminus adjacently to nucleophilic tyrosine.

The presence of these unique structural features could signify that RAYTs are monophyletic group of proteins.

The question therefore arises as to whether the entire RAYT clade has been evolving with their corresponding REPs, as seen in Stenotrophomonas (Figure 3). Due to rather high divergence of REPs, it is not possible to construct their accurate phylogram. However, REPs show group-specific features that correlate well with phylogenetic grouping of their cognate RAYTs. For example, enterobacterial RAYTs are clearly monophyletic (Additional file 2) and accordingly, their REPs are rather long, substantially dimorphic and their palindrome is interrupted twice (Table 1). Furthermore, uniquely for REPs of monophyletic Pseudomonas and Xanthomonas RAYTs (Additional file 2), 5'-GA-3' dinucleotide is inserted between their GT(A/G)G head and palindromeforming part (Table 1). Together, these observations support long-term coevolution of RAYTs and and their cognate REPs.

Next, we examined chromosomal localization of rayt genes. Among RAYTs listed in Table 1, three couples of orthologous rayt genes (Pput1 and Pput2, Pput3 and Pput4, Smal3 and S_sp2), located in the same genomic context in different host species or strains, were identified (Figure 5). These orthologs have, due to the shared synteny, unambiguously evolved from a common ancestor and allow us to trace back changes they have gone through following divergence event. Although orthologous rayt genes do not change their genomic position, their flanking REPs differ in up to three point mutations (Table 1) and still retain palindromicity and inverted repeat arrangement. Evidently, strong selective pressure works for preservation of these REP traits, underlining their functional importance. It is extremely improbable that repeated changes in REP sequences flanking these orthologs result merely from random fixation of successive random mutations.

Comparison of sequence identity between orthologous *rayt* genes revealed an interesting phenomenon. In all three cases, the degree of identity of the RAYT amino acid sequences was significantly less than that of the flanking genes (Figure 5), suggesting that RAYTs evolve more faster than protein products of common genes. Possible explanation for this accelerated evolution is included in the Discussion section.

Relationship of RAYTs, REPs and BIMEs

We have shown so far that RAYTs and REPs are evolutionarily and physically connected. Since REPs are known to be species (or strain)-specific and the same applies to RAYTs (Table 1), it is possible that the presence of a particular RAYT itself in one bacterium might be responsible for proliferation of corresponding REPs.

Where genome sequences suitable for comparison were available, strains differing by the presence or absence of a particular *rayt* gene were tested for

Figure 4 Multiple sequence alignment of selected RAYTs and reference set of IS200/IS605 family transposases. Conserved residues are highlighted: blue - conserved in RAYTs, yellow - conserved in reference IS200/IS605 transposases, green - conserved in both groups. Substitutions for residues with similar chemical properties are permitted: acidic - D, E, basic - H, K, R, aromatic - F, Y, W, branched-chain hydrophobic- I, L, V. Conserved residues that constitute catalytic center are denoted with red asterisk. Reference set of IS200/IS605 transposases, along with their symbols, was taken from [5].

prevalence of REPs in their genomes. In most cases, a strong correlation between *rayt* presence and total number of its cognate REPs was found (Table 2), *rayt*-bearing strains containing on average ten times more REPs in their genomes than strains devoid of *rayt* genes. These results indeed suggest that presence of a given RAYT is the direct cause of REP sequences proliferation over host chromosome.

proteins coded for by neighboring orthologous genes.

In search of support for this hypothesis, we found that in three marine gammaproteobacteria and one betaproteobacterium (all possessing clear RAYT homologs), the distribution of inverted palindromic repeats flanking their rayt genes is not genome-wide (as in other REP cases). Instead, REPs are accumulated proximally to particular rayt gene (Additional file 3). The REP-containing regions span at most two hundreds of kilobases. In the case of the marine gammaproteobacteria, the physical association between rayt genes and REPs is very pronounced. Thauera sp. (a betaproteobacterium) is of special interest because it has obviously acquired its RAYT by horizontal transfer from gammaproteobacteria. This RAYT displays highest sequence similarity to Pseudomonas RAYTs (56% identical residues), has no counterpart in other betaproteobacteria and its REP sequences are also Pseudomonas-like (Table 1, Additional file 3). High numbers of REPs are present in the *Thauera* genome. More than a third are located proximally to rayt gene. This suggests that, following acquisition of the rayt gene, new REP copies have been preferentially produced in its vicinity.

Physical association with *rayt* genes was already shown for BIMEs (Table 1). Upon closer examination, we detected four cases where 3' end of *rayt* gene, together with sequence between *rayt* stop codon and

downstream REP, is integrated into BIME, becoming a part of BIME's inter-REP segment (Additional file 4). This unexpected observation proves that the mechanism responsible for establishment of BIMEs is also directed to *rayt* genes.

Discussion

We have characterized a novel class of transposases, closely related to IS200/IS605 family. What makes these transposases (RAYTs) unique is the obligate delimitation of their genes by two inverted palindromic sequences (REPs), which are at the same time highly overrepresented in host genomes. We have shown that this type of organization (REP-rayt-REP, Figure 1B) has been preserved during evolution and that both RAYTs and REPs undergo long-term coevolution. Characteristic structural elements in both RAYT and REP sequences suggest that all detected RAYTs and REPs are descendants of a common ancestor. We propose that their origin dates to the period after branching of the gammaproteobacteria, since no homologs have been found in other major bacterial lineages.

The structure of a *rayt* gene flanked by two oppositely orientated REPs is strikingly reminiscent of the organization of a typical bacterial insertion sequence. The position of REPs as terminal sequences for RAYT-encoding genes is supported by the fact that they are in many cases located very close or even immediately downstream of the *rayt* gene stop codon (Additional file 4), excluding additional terminal sequences. There are other known transposase genes associated with REPs, however, all of them are contained in *bona fide* ISs, complete with their own terminal sequences [27-34]. These ISs use REPs as targets for their transposition.

We have not found typical signs of IS-like mobility for RAYTs, *i.e.* presence of their multiple copies in host genomes and changes of chromosomal location. This might indicate that RAYTs have lost the ability to transpose their own genes. Still, there are at least two reasons to assume that RAYTs recognize REPs and cleave DNA strand in their proximity. By mere analogy, transposases always bind and cleave sequences that flank their genes during the course of transposition. This precise positioning of REPs by *rayt* genes is conserved. Moreover, related IS200/IS605 transposases recognize stem-loop structures [4,5] that can readily arise from imperfect palindromes like those contained in REP sequences.

One of the most interesting outcomes of this study is the previously unrecognized wide distribution of BIME elements. BIMEs were detected in most of RAYT- and REP-carrying species (Figure 2 and data not shown). Apparently, there is a common mechanism of BIMEs formation. The mechanism is targeted to *rayt* genes, one third of which are directly associated with BIMEs

Table 2 Correlation between REP numbers and presence or absence of their cognate RAYTs in different bacterial strains

							_	REP symbol							
Host strain	Pput1	Pput2	Pput3	Pput4	Pflu1	Pflu2	Pflu3	Хахо	Xcam	Smal1	Smal2	Smal3	Smal4	S_sp1	S_sp2
Pseudomonas putida KT2440	62 35	4 ĸ	21 27	0 0	0	0	0 0	0 0	0	0	0	0	0	0	0
Pseudomonas putida F1	2 <mark> </mark> 8	4 4	26 86 87 87	0 0	0	0	0 0	0 0	0	0	0	0	0	0	0
Pseudomonas putida GB-1	91 4	62 14 17	4 23	63	0	0	00	00	0	0	0	0	0	0	0
Pseudomonas putida W619	00		00	24	0	0	00	00	0	0	0	0	0	0	0
Pseudomonas fluorescens SBW25	0 0	0 0	0 0	0 0	387	104	83 119	0 0	0	0	0	0	0	0	0
Pseudomonas fluorescens Pf0-1	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0	0	0	0	0	0	0
Pseudomonas fluorescens Pf-5	00	00	00	00	0	-	00	00	0	0	0	0	0	0	0
Xanthomonas axonopodis pv. citri str. 306	0 0	0 0	0 0	0 0	0	0	0 0	9 23	0	0	0	0	0	0	0
Xanthomonas. campestris pv. vesicatoria str. 85- 10	0 0	0 0	0 0	0 0	0	0	0 0	/III/	-	0	0	0	0	0	0
Xanthomonas campestris pv. campestris str. 8004	00	00	00	00	0	0	00	0 m	 	0	0	0	0	0	0
Xanthomonas. campestris pv. campestris str. ATCC 33913	0	0	0	0	0	0	0	− ε	48	0	0	0	0	0	0
Xanthomonas campestris pv. campestris str. B100	00	00	00	00	0	0	0 0	∨ 4	49	0	0	0	0	0	0
Stenotrophomonas maltophilia R551-3	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0	49	259	39	266	25	4
Stenotrophomonas maltophilia K279a	0	0	0	0	0	0	0	0	0	7	13	52	427	47	16
Stenotrophomonas sp. SKA14	0	0	0	0	0	0	0	0	0	3	7	7	323	69	37

The values represent the numbers of exact copies of REP sequences, flanking identified rayt genes (as denoted in Table 1), in bacterial genomes. For dimorphic REPs, the upper value corresponds to the number of upper REP sequences from Table 1 and vice versa. In cases where the cognate rayt gene or its close homolog (flanked by the same REPs) is actually present in the given genome, the numbers are written in bold and underlined.

(Table 1). Furthermore, 3´ termini of *rayt* genes were found captured between REPs in four *rayt*-adjacent BIMEs (Additional file 4). BIMEs are known to exhibit extensive interstrain differences in length and distribution [24,27] that seem unlikely to result solely from processes such as homologous recombination or DNA polymerase strand-slippage. We hypothesize that the putative RAYT-catalyzed reaction, as described further, may pose the driving force behind BIME establishment and dynamics.

In the simplest case, the information contained in a REP sequence would be sufficient for its recognition and cleavage by RAYT. Because of high level of conservation of the 5′ head sequences (Table 1), we hypothesize that they might serve as determinants of position of cleavage site. Presumed REP-targeted RAYT activity would then result, for example, in reversible formation of a free hydroxyl group and covalent attachment of 5′

terminus of REP sequence to RAYT protein (Figure 6A). Host genomes typically harbor hundreds of REPs and all of them present potential substrates for RAYTs. The RAYT activity can thus account for various imaginable DNA rearrangements. There are two important aspects of presumed RAYT catalysis. Firstly, the transiently present free hydroxyl group can serve as a primer for initiation of DNA replication. Secondly, *in trans* ligation (reverse RAYT-catalyzed reaction) might occur relatively frequently between two RAYTs that act on different REPs. Because the assembly of catalytic site in related IS200/IS605 transposases is achieved by dimerization (due to their limited size), RAYTs probably form dimers as well. The physical proximity of two subunits enhances the frequency of *in trans* ligations.

We suggest that REP-dependent RAYT activity is responsible for some of the unusual observations regarding REPs. For example, high number of REPs in host

Figure 6 Model of RAYT action. (A) REP-specific DNA cleavage and ligation - scheme of hypothetical reaction (B) Model of RAYT-dependent BIME proliferation. REPs are represented with red arrows at corresponding DNA strands. REP-complementary sequences at opposite strands are represented with striped arrows. Two inter-REP segments are denoted in green and blue, respectively. RAYTs that form one dimer are denoted in the same color. Asterisks denote free OH groups. For details about the model, see text.

genome is conditioned by presence of their cognate RAYT (Table 2). Further, the substitution rate for *rayt* genes was shown to greatly exceed the rate of substitutions in surrounding host genes (Figure 5). If RAYTs cleave in adjacency of their flanking REPs, resulting OH groups may prime DNA replication into *rayt* gene, leading to partial or complete replacement of one or both strands. When several rounds of such replication are performed during each cell cycle, excessive mutations accumulate. Although this is a rather complicated theory, the alternatives, like strong positive selection for mutated RAYTs, are equally uneasy to substantiate.

Another process we propose is RAYT-dependent is the preferential formation of new REPs in vicinity of a *rayt* gene (Additional file 3), following its horizontal transfer into the host. In this case, acquired RAYT obviously causes new REPs' production, possibly through multiplication of existing REPs flanking its gene.

A possible model of BIME formation is depicted in Figure 6B. Starting with one basic module of BIMEs (two directly repeated REPs and one REP between them in inverted orientation - Figure 2), RAYT dimer cleaves at both top-strand REPs. Another RAYT dimer works on bottom strand, due to presence of single REP, only one unit of the dimer is attached to REP after cleavage. Upon in trans ligation within the frame of "yellow" dimer, circularized basic module and bottom strand hold together by their complementary parts. The circle is primed by the free OH group resulting from RAYT cleavage of bottom strand. At this point, rolling circle replication of basic module begins. The main replicative DNA polymerase (Pol III holoenzyme in *E. coli*) might accomplish the process on its own, since it was shown to possess intrinsic moderate strand-displacement activity [35]. The amplified basic module (BIME) is cut off from the rolling circle after the second unit of "blue" RAYT dimer cleaves newly synthetized REP. Then, second in trans ligation within the frame of "blue" dimer integrates BIME into the bottom strand. Following replication of chromosome and separation of daughter cells, one of them contains a modular BIME in its genome.

Taken together, we have gathered considerable amount of *in silico* evidence to propose significant role of transposases in generation of bacterial intergenic repeats. If our assumptions are true, then REPs and BIMEs represent a novel class of nonautonomous TEs. To confirm this, additional experiments are needed to simulate interaction between RAYTs and REPs *in vivo* and *in vitro*.

Conclusions

Our findings offer an alternative approach for rapid identification of REPs in gammaproteobacterial genome

sequences. Putative RAYT homologs can easily be found by a simple BLAST of conserved C-terminal part of any of known RAYTs against particular genome sequence. Invertedly positioned REPs can then be located flanking the *rayt* gene. Known REPs proved to be a useful tool for typing of intraspecific isolates, with high discriminatory power due to extensive REP dynamics [16,36]. REP typing is, compared to other methods, very fast and inexpensive, since it only requires one PCR, run from REP-complementary primers against chromosomal DNA template.

Upon determination of REP sequences, BIMEs can readily be identified in host genomes. Since BIMEs exhibit exceptional length polymorphism, they have been utilized as reliable markers for strain determination. As in previous case, the procedure is advantageous because of its quickness and simplicity [24,27].

Methods

Bacterial genome sequences were downloaded from NCBI web site [37].

Direct and inverted repeats in *rayt*-flanking sequences were looked up with OligoRep [38].

REPs position and total number determinations and graphical plots were performed using pDRAW32 [39].

Multiple protein sequence alignments were constructed using MCOFFEE [40]. Phylogenetic trees were constructed using Drawtree or Drawgram applications from MOBYLE package [41]. Protein sequence trees were constructed from template CLUSTALX tree files (.ph) generated during MCOFFEE alignment. REP sequence trees were constructed from CLUSTALX guide tree files (.dnd) after being aligned with CLUSTALW [41].

Additional File 1: Distribution of REP sequences in genomes of

selected bacteria. REP coordinates, orientation and number of mismatches with respect to REP sequences in Table 1 are indicated. If dimorphic REPs appertain to a given RAYT (for example in *Enterobacter sakazakii*), they are denoted as REPA (upper line in Table 1) and REPB (lower line in Table 1).

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-2164-11-44-S1.PDF]

Additional File 2: Phylogram of all RAYT proteins listed in

Table1with reference IS200/IS605 transposases as outgroup. Putative root of phylogram is denoted with a star.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-2164-11-44-S2.PDF]

Additional File 3: Examples of colocalization of REP sequences with ravt genes.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-2164-11-44-S3.PDF]

Additional File 4: Incorporation of rayt gene 3' terminus into BIME. REPs are highlighted in red, their GT(A/G)G head is in bold and blue. rayt

gene is denoted in italics, bold and underlined.Inter-REP segments are highlighted in blue and yellow, or gray, or green, respectively. Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-2164-11-44-S4.PDF]

Abbreviations

BIME: Bacterial Insterspersed Mosaic Element; IS: Insertion Sequence; MITE: Miniature Inverted repeat Transposable Element; RAYT: REP-Associated tYrosine Transposase; RC: Rolling Circle; REP: Repetitive Extragenic Palindrome; TE: Transposable Element

Acknowledgements

This work was supported by Research Center LC06066 from the Ministry of Education, Youth and Sports of the Czech Republic.

Authors' contributions

JN carried out the analyses and wrote the manuscript. TH identified horizontal transfer in tetracycline-resistant strains. IL supervised the work and critically read the manuscript. All authors read and approved of the final manuscript.

Received: 22 June 2009

Accepted: 19 January 2010 Published: 19 January 2010

References

- Lam S, Roth JR: IS200: a Salmonella-specific insertion sequence. Cell 1983, 34(3):051-960
- Filee J, Siguier P, Chandler M: Insertion sequence diversity in archaea. Microbiol Mol Biol Rev 2007. 71(1):121-157.
- 3. IS Finder. http://www-is.biotoul.fr/.
- Ronning DR, Guynet C, Ton-Hoang B, Perez ZN, Ghirlando R, Chandler M, Dyda F: Active site sharing and subterminal hairpin recognition in a new class of DNA transposases. Mol Cell 2005, 20(1):143-154.
- Lee HH, Yoon JY, Kim HS, Kang JY, Kim KH, Kim DJ, Ha JY, Mikami B, Yoon HJ, Suh SW: Crystal structure of a metal ion-bound IS200 transposase. J Biol Chem 2006, 281(7):4261-4266.
- Barabas O, Ronning DR, Guynet C, Hickman AB, Ton-Hoang B, Chandler M, Dyda F: Mechanism of IS200/IS605 family DNA transposases: activation and transposon-directed target site selection. Cell 2008, 132(2):208-220.
- Monzingo AF, Ozburn A, Xia S, Meyer RJ, Robertus JD: The structure of the minimal relaxase domain of MobA at 2.1 A resolution. J Mol Biol 2007, 366(1):165-178.
- Prak ET, Kazazian HH Jr: Mobile elements and the human genome. Nat Rev Genet 2000. 1(2):134-144.
- Kapitonov W, Jurka J: Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 2001, 98(15):8714-8719.
- 10. Siguier P, Filee J, Chandler M: Insertion sequences in prokaryotic genomes. *Curr Opin Microbiol* 2006, **9(5)**:526-531.
- Buisine N, Tang CM, Chalmers R: Transposon-like Correia elements: structure, distribution and genetic exchange between pathogenic Neisseria sp. FEBS Lett 2002, 522(1-3):52-58.
- Oggioni MR, Claverys JP: Repeated extragenic sequences in prokaryotic genomes: a proposal for the origin and dynamics of the RUP element in Streptococcus pneumoniae. Microbiology 1999, 145(Pt 10):2647-2653.
- Higgins CF, Ames GF, Barnes WM, Clement JM, Hofnung M: A novel intercistronic regulatory element of prokaryotic operons. Nature 1982, 298(5876):760-762.
- Tobes R, Ramos JL: REP code: defining bacterial identity in extragenic space. Environ Microbiol 2005, 7(2):225-228.
- Tobes R, Pareja E: Repetitive extragenic palindromic sequences in the Pseudomonas syringae pv. tomato DC3000 genome: extragenic signals for genome reannotation. Res Microbiol 2005, 156(3):424-433.
- Aranda-Olmedo I, Tobes R, Manzanera M, Ramos JL, Marques S: Speciesspecific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. Nucleic Acids Res 2002, 30(8):1826-1833.

- Gilson E, Saurin W, Perrin D, Bachellier S, Hofnung M: Palindromic units are part of a new bacterial interspersed mosaic element (BIME). Nucleic Acids Res 1991, 19(7):1375-1383.
- Boccard F, Prentki P: Specific interaction of IHF with RIBs, a class of bacterial repetitive DNA elements located at the 3' end of transcription units. Embo J 1993, 12(13):5019-5027.
- Bachellier S, Clement JM, Hofnung M: Short palindromic repetitive DNA elements in enterobacteria: a survey. Res Microbiol 1999, 150(9-10):627-630
- Espeli O, Boccard F: In vivo cleavage of Escherichia coli BIME-2 repeats by DNA gyrase: genetic characterization of the target and identification of the cut site. Mol Microbiol 1997, 26(4):767-777.
- Gilson E, Perrin D, Hofnung M: DNA polymerase I and a protein complex bind specifically to E. coli palindromic unit highly repetitive DNA: implications for bacterial chromosome organization. Nucleic Acids Res 1990, 18(13):3941-3952.
- Espeli O, Moulin L, Boccard F: Transcription attenuation associated with bacterial repetitive extragenic BIME elements. J Mol Biol 2001, 314(3):375-386
- Gilson E, Perrin D, Saurin W, Hofnung M: Species specificity of bacterial palindromic units. J Mol Evol 1987, 25(4):371-373.
- Roscetto E, Rocco F, Carlomagno MS, Casalino M, Colonna B, Zarrilli R, Di Nocera PP: PCR-based rapid genotyping of Stenotrophomonas maltophilia isolates. BMC Microbiol 2008, 8:202.
- Distribution of repeated palindromes on E. coli K-12 chromosome. http://www.pasteur.fr/recherche/unites/pmtg/repet/distrib.html.
- Silby MW, Cerdeno-Tarraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang XX, Moon CD, Gehrig SM, Godfrey SA, et al: Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009, 10(5):R51.
- Bachellier S, Clement JM, Hofnung M, Gilson E: Bacterial interspersed mosaic elements (BIMEs) are a major source of sequence polymorphism in *Escherichia coli* intergenic regions including specific associations with a new insertion sequence. *Genetics* 1997, 145(3):551-562.
- Tobes R, Pareja E: Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements. BMC Genomics 2006, 7:62.
- Ramos-Gonzalez MI, Campos MJ, Ramos JL, Espinosa-Urgel M: Characterization of the *Pseudomonas putida* mobile genetic element ISPpu10: an occupant of repetitive extragenic palindromic sequences. J Bacteriol 2006, 188(1):37-44.
- Clement JM, Wilde C, Bachellier S, Lambert P, Hofnung M: IS1397 is active for transposition into the chromosome of Escherichia coli K-12 and inserts specifically into palindromic units of bacterial interspersed mosaic elements. J Bacteriol 1999, 181(22):6929-6936.
- 31. Choi S, Ohta S, Ohtsubo E: A novel IS element, IS621, of the IS110/IS492 family transposes to a specific site in repetitive extragenic palindromic sequences in *Escherichia coli*. *J Bacteriol* 2003, 185(16):4891-4900.
- Wilde C, Bachellier S, Hofnung M, Carniel E, Clement JM: Palindromic unitindependent transposition of IS1397 in Yersinia pestis. J Bacteriol 2002, 184(17):4739-4746.
- Wilde C, Escartin F, Kokeguchi S, Latour-Lambert P, Lectard A, Clement JM: Transposases are responsible for the target specificity of IS1397 and ISKpn1 for two different types of palindromic units (PUs). Nucleic Acids Res 2003, 31(15):4345-4353.
- Wilde C, Bachellier S, Hofnung M, Clement JM: Transposition of IS1397 in the family Enterobacteriaceae and first characterization of ISKpn1, a new insertion sequence associated with Klebsiella pneumoniae palindromic units. J Bacteriol 2001, 183(15):4395-4404.
- Canceill D, Viguera E, Ehrlich SD: Replication slippage of different DNA polymerases is inversely related to their strand displacement efficiency. J Biol Chem 1999, 274(39):27481-27490.
- Versalovic J, Koeuth T, Lupski JR: Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991, 19(24):6823-6831.
- National Center for Biotechnology Information. http://www.ncbi.nlm.nih. gov/.
- 38. **OligoRep system.** http://wwwmgs.bionet.nsc.ru/mgs/programs/oligorep/.
- 39. pDRAW32 DNA analysis software. http://www.acaclone.com/.

- Moretti S, Armougom F, Wallace IM, Higgins DG, Jongeneel CV, Notredame C: The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 2007, , 35 Web Server: W645-648.
- 41. **Mobyle, a portal for bioinformatics analyses.** http://mobyle.pasteur.fr/cgi-bin/portal.py.

doi:10.1186/1471-2164-11-44

Cite this article as: Nunvar et al.: Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes. BMC Genomics 2010 11:44.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

