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Purpose. Hypercholesterolemia and tight junctions play important roles in atherosclerosis. But the relationship between these
two factors is unclear. In the present study, we investigated whether hypercholesterolemic serum could change the permeability
of endothelial cells through altering expression and/or distribution of tight junction protein zonula occludens-1 (ZO-1).
Phosphatidylinositol 3-kinase (PI3K) signaling pathway was also examined. Materials and Methods. Cultured endothelial cells
were treated with different concentration levels of hypercholesterolemic serum. The expression and distribution of ZO-1, the
permeability of cultured cells and the involvement of PI3K signaling pathway were measured by various methods. Results. In the
present study, we found that hypercholesterolemic serum could not change the expression of ZO-1 either in mRNA or protein
level. However, hypercholesterolemic serum could change the distribution of ZO-1 in cultured endothelial cells, and increase
the permeability with a dose-dependent manner. When PI3K specific inhibitor wortmannin was used, the effects induced by
hypercholesterolemic serum could be partly reversed. The role of PI3K signaling pathway was further confirmed by PI3K activity
assay. Conclusions. Our results suggested that although hypercholesterolemic serum could not change the expression of ZO-1, it
could change the distribution and increase the permeability in endothelial cells through PI3K signaling pathway.

Copyright © 2009 Chang Bian et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Elevated permeability of endothelium is crucial in ather-
osclerosis because it allows circulating lipoproteins and
inflammatory cells to infiltrate into intima. The barrier
function is maintained partially by tight junctions between
adjacent endothelial cells [1]. Zonula occludens-1 (ZO-1)
plays an important role in binding occludin to cytoar-
chitecture [2] and regulating cellular permeability [3].
Hypercholesterolemia is known as a major risk factor
for atherosclerosis. However, whether hypercholesterolemic
serum can lead to atherosclerosis through influencing cell
junctions is still unclear. So in this study, we investigated the
effect of hypercholesterolemic serum on ZO-1 organization
and endothelial permeability. Due to the involvement in
the regulation of ZO-1, phosphatidylinositol 3-kinase (PI3K)
signaling pathway was also examined.

2. Material and Methods

2.1. Hypercholesterolemic Serum Preparation. Rabbits in
group A were fed with a 1% high cholesterol diet and rabbits
in group B were fed with normal diet for 4 weeks. Five
rabbits’ peripheral blood in each group was collected via
ear vein. Serum was isolated by centrifugation, respectively,
and mixed well for further studies. Total serum choles-
terol was measured with an enzymatic timed end-point
method automatically. All procedures were in accordance
with the guiding principles of Zhejiang University School of
Medicine, the principles of the American Heart Association
on Research Animal Use, and the Guide for the Care and
Use of Laboratory Animals published by the US National
Institute of Health (NIH Publication no. 85-23, revised
1996).
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2.2. HUVECs Culture and Treatment. Human umbilical
vascular endothelial cells (HUVECs) were prepared as in
the previous report [4]. Cells were grown in RPMI-1640
medium (Genom Biomed, China) with 20% fetal bovine
serum (Sijiqing Biological, China) at 37◦C in a humidified
atmosphere of 5% CO2. Cells were replaced with serum-
free medium when they achieved 90% confluence and
were treated with serum-free RPMI-1640 medium (control),
different concentration of hypercholesterolaemic serum or
combined with PI3K inhibitor wortmannin (Sigma, USA)
for 24 hours.

2.3. Western Blot Analysis. Aliquots of cell lysates were sepa-
rated by 11% SDS-polyacrylamide gel, and then transferred
to nitrocellulose membrane filters. The filters were blocked
with TBS-T buffer, containing 20% skim milk, incubated
with a mouse monoclonal antibody to human ZO-1 (1 : 400)
(Zymed, USA) for 2 hours at room temperature, and
followed by the addition of goat antimouse IgG(H + L)/HRP
secondary antibody (1 : 10000) (Pierce, USA), and ECL
(Pierce, USA) visualization of the bands. All tests assayed
by western blot were repeated three times. Expression was
quantitated by software Quantity-one (Bio-Rad, USA). β-
actin (Santa Crutz, USA) was used as input control.

2.4. RT-PCR. RNA was purified using Minikit (Qiagen,
German) according to the manufacturer’s procedure and
dissolved in 20 μL DEPC-treated water. Total RNA of
HUVECs was converted into cDNA with oligo dT15 by M-
MuLV reverse transcriptase (Fermentas, Lithuania). RT-PCR
was performed with primers as follows: forward primer:
5′-AAAAGTGAACCACGAGATGCT-3′, reverse primer: 5′-
AAAGGTAAGGGACTGGAGATGA-3′. The reaction condi-
tions for ZO-1 were 1× (94◦C, 4 min), 30× (94◦C, 30 s;
51.5◦C, 30 s; 72◦C, 45 s), and 1× (72◦C, 10 min). PCR
products were run in 1% agarose gel. And the images were
analyzed by Kodak Digital Science ID software. β-Actin was
used as the input control.

2.5. Immunofluorescent Staining. Endothelial monolayer was
fixed with methanol for 15 minutes at−20◦C. The monolayer
was blocked with 1% bovine serum albumin (BSA) (Sigma,
USA) in TBS-T (20 mM Tris, pH 7.2, and 150 mM NaCl),
incubated with primary antibody, a mouse monoclonal
antibody to human ZO-1, in PBS with 1% BSA overnight
at 4◦C, and followed by incubation with FITC-conjugated
secondary antibodies (Pierce, USA) at 37◦C for 1 hour.
Endothelial monolayer was rinsed three times with PBS
before being sealed with 50% glycerol-PBS. Sections were
examined by the OLYMPUS BX60 fluorescence microscope
at 450 nm.

2.6. Permeability Assay. Endothelial cells were seeded
(100,000 cells/insert) on gelatin-coated (1%) polystyrene
filters (Costar Transwell, 0.4-μm pore size) (Corning, USA),
grown to confluence on transwell inserts, and replaced
with serum-free RPMI-1640 medium (control), different
concentration of hypercholesterolaemic serum or combined

with PI3K inhibitor wortmannin for 3 hours. 10 mg/mL BSA
in serum-free medium was added to the upper compartment.
Fluid in the lower compartment was the same serum-free
medium without BSA. The transfer rate of BSA across the
monolayer was assessed by measuring the rise of BSA in the
lower well after 30 minutes. BSA was quantified with an Elisa
kit.

2.7. Elisa Assay. Elisa assay (Alpha Diagnostic, USA) was
performed as instruction. Briefly, 100 μL diluted samples
were added to each well. Plates were incubated at room
temperature for 60 minutes. Plates were washed five times
with washing buffer and incubated with 100 μL of HRP-
labeled antibovine albumin conjugate at room temperature
for 30 minutes. Plates were then washed five times with
washing buffer and incubated with 100 μL of TMB substrate
solution at room temperature for 15 minutes. The ELISA
was stopped with 100 μL/well stop solution and read at OD
450 nm.

2.8. PI3K Activity Assay. The PI3K activity assay was per-
formed as described previously [5]. After treatment of
high-cholesterol serum, cells were harvested and the PI3K
complexes were pulled down by PI3K antibody. To measure
PI3K activity, a TLC-based assay was employed by using
phosphatidylinositol 4-5-biphosphate (PIP2) as a substrate.
The PI (3, 4, 5) P3 was quantified by using Molecular
Dynamics PhosphorImager. And the phosphorylated prod-
ucts were quantified by excising the spot and scintillation
counting (count per minute).

2.9. Statistical Analysis. All statistical calculations were per-
formed with the SPSS 11.5 statistical software package (SPSS
Inc). The results were representative of three experiments
with different cell preparation in each condition. The data
were expressed as mean ± standard deviation. Results were
analyzed by One-Way ANOVA. P ≤ .05 were considered to
be statistically significant.

3. Results

3.1. Serum Cholesterol Level after a High-Cholesterol Diet.
After 4 weeks of 1% high cholesterol diet, there was a
significant increase in serum cholesterol in tested animals
compared with controls (33.9± 9.4 versus 1.3± 0.6 mMol/L,
P < .01).

3.2. Expression of ZO-1 mRNA and Protein in Hypercho-
lesterolemic-Treated HUVECs. The expression of ZO-1 in
endothelial cells after hypercholesterolemic serum (choles-
terol concentrations: 0.04, 0.08, 0.16, and 0.32 mMol/L)
exposure was shown in Figure 1(a). The results of RT-PCR
revealed that hypercholesterolemic serum could not change
the expression of ZO-1 mRNA significantly. Figure 1(b)
indicated the effects of hypercholesterolemic serum on
ZO-1 protein expression as measured by western blotting.
Hypercholesterolemic serum at study concentration treated
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Figure 1: Hypercholesterolemic serum could not change ZO-
1 expression in mRNA (a) or protein (b) level. a: serum free
medium; b: normal rabbit serum; c–f: hypercholesterolemic serum
at different cholesterol concentrations. Z/a ratio was calculated as
below: the ratio of ZO-1 to actin in control group was regarded as 1
in every test. And Z/a ratio in other groups was adjusted to control
group.

for 24 hours could not alter ZO-1 protein expression as
compared with the control group (Figure 1).

3.3. Subcellular Localization of ZO-1 Was Changed by Hyper-
cholesterolemic Serum. The permeability of human endothe-
lial cells is governed in part by the expression and localization
of tight junctional proteins as ZO-1. Figure 2 showed the
immunofluorescent staining of ZO-1 in HUVECs. ZO-1
in control group was distributed continuously around the
periphery of the cells. Compared with the control, the cells
exposed to hypercholesterolemic serum showed a loss of
junctional ZO-1 localization with subsequent staining. And

(a) (b)

(c) (d)

(e) (f)

Figure 2: Hypercholesterolemic serum could alter the distribution
of ZO-1 in endothelial cells, which seemed to be dose dependent.
PI3K specific inhibitor wortmannin could significantly reverse
the effect induced by hypercholesterolemic serum. (a) serum free
medium; (b) normal rabbit serum; (c) low concentration of hyper-
cholesterolemic serum (0.04 mMol/L); (d) high concentration of
hypercholesterolemic serum (0.32 mMol/L); (e) c plus 100 nMol/L
wortmannin; (f) d plus 100 nMol/L wortmannin.

the dose of hypercholesterolemic serum at study concentra-
tions was positively related with the redistribution of ZO-1
(Figure 2).

3.4. Monolayer Endothelial Permeability Was Increased when
Exposed to Hypercholesterolemic Serum. In previous studies,
we found that hypercholesterolemic serum could change the
distribution of ZO-1 in endothelial cells. To confirm whether
hypercholesterolemic serum could change the permeability
of endothelial cells, transwell was used to observe the
permeability of endothelial cells to BSA. We found that
hypercholesterolemic serum could significantly increase the
permeability of endothelial cells. The permeability highly
depended on the concentration level of hypercholesterolemic
serum as shown in Figure 3.

3.5. PI3K Signaling Pathway Was Involved in the ZO-1
Regulation. To investigate the role of PI3K in the regulation
of ZO-1, we used both PI3K activity assay and PI3K specific
inhibitor wortmannin in the present study. In PI3K activity
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Figure 3: Hypercholesterolemic serum could significantly increase
the permeability of endothelial cells, which was detected by albumin
permeability test with transwell. And the permeability of endothe-
lial cells increased with the concentration of hypercholesterolemic
serum. a: serum free medium; b: normal rabbit serum; c: low
concentration of hypercholesterolemic serum (0.04 mMol/L); d:
high concentration of hypercholesterolemic serum (0.32 mMol/L);
e: c plus 100 nMol/L wortmannin; f: d plus 100 nMol/L. ∗
represents P < .05 compared with serum-free medium control; #
represents P < .05 compared with previous group.
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Figure 4: In PI3K activity assay, it was found that hypercholes-
terolemic serum could significantly enhance PI3K activity with a
dose-dependent manner, which could be reversed by wortmannin.
a: serum free medium; b: normal rabbit serum; c: low concentration
of hypercholesterolemic serum (0.04 mMol/L); d: high concen-
tration of hypercholesterolemic serum (0.32 mMol/L); e: c plus
100 nMol/L wortmannin; f: d plus 100 nMol/L.∗ represents P < .05
compared with serum-free medium control; # represents P < .05
compared with the previous group.

assay, hypercholesterolemic serum is found to increase PI3K
activity, which could be reversed with PI3K specific inhibitor
wortmannin (Figure 4). And as shown in Figures 2 and
3, hypercholesterolemic serum induced ZO-1 redistribution
and permeability enhancement could be significantly inhib-
ited by 100 nMol/L wortmannin. So PI3K signaling pathway
was undoubtedly involved in the ZO-1 regulation induced by
hypercholesterolemic serum.

4. Discussion

Hypercholesterolemia is closely related to the function of
vascular endothelial cells [6] and can increase vascular

permeability and lead to atherosclerosis [7]. Tight junctions
contribute to cell-to-cell contacts in the paracellular cleft
and are critical for restricting paracellular diffusion among
endothelial cells. So it is suspected that hypercholesterolemia
could increase permeability with tight junction-related
pathways. However, the relationship between hypercholes-
terolemia and tight junctions is still unclear. In the present
study, we found that hypercholesterolemic serum could alter
the distribution of ZO-1 in endothelial cells, but could
not change the expression of ZO-1 in both mRNA and
protein levels. Due to the limitation of our study, the exact
mechanism how hypercholesterolemic serum led to the
increasing permeability was not elucidated yet. Some other
studies suggested that VEGF might be an interpretation for
its capability to rearrange endothelial junctional proteins
[8, 9]. Obviously, further studies are necessary to clarify
it.

ZO-1 acts as the scaffold to organize occludin at cell
junction sites [10] and links occludin to actin cytoskeleton
[11]. The expression and distribution of ZO-1 can signif-
icantly influence cell permeability and functions [3, 12].
In the present study, we found that hypercholesterolemic
serum could alter the distribution of ZO-1, while leave
the expression of ZO-1 unchanged. In the further per-
meability assay, we found that the barrier function of
endothelium was significantly impaired after being exposed
to hypercholesterolemic serum. These results suggested that
hypercholesterolemic serum could increase the permeability
of endothelial cells through alternation of the distribution of
ZO-1. Fischer et al. believed that hyperpermeability induced
by H2O2 was caused by activation of mitogen-activated
protein kinase through redistribution of tight junction
proteins [13]. PKC signaling pathway was also found to
be involved in the regulation of ZO-1. Meanwhile, Sheth
et al. found that PI3K signaling pathway was involved in
oxidative stress-induced disruption of tight junctions [14].
And in the present study, we found that hypercholesterolemic
serum-induced alternation could be significantly attenuated
by PI3K specific inhibitor wortmannin, which was further
confirmed by the PI3K activity assay. These results revealed
that PI3K signal pathway was at least partly involved
in the ZO-1 regulation induced by hypercholesterolemic
serum.

5. Conclusions

In conclusions, our study suggested that hypercholes-
terolemic serum could alter the distribution of ZO-1 and
increase the permeability in endothelial cells, at least partly
through PI3K signaling pathway.

Abbreviations

HUVECs: Human umbilical vascular endothelial cells
PI3K: Phosphatidylinositol 3-kinase
VEGF: Vascular endothelial growth factor
ZO-1: Zonula occludens-1.
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