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Abstract

Forebrain dopamine (DA) systems are thought to be a critical component of the brain circuitry
regulating behavioral activation, work output during instrumental behavior, and effort-related
decision making. Tasks that offer animals choices between alternatives that require different degrees
of effort can be used to assess effort-related choice behavior. Rats treated with DA antagonists, or
with accumbens DA depletions, tend to show reduced selection of instrumental behaviors with high
response requirements, and instead they choose to engage in food-seeking behaviors that involve
less effort. The accompanying article by Bardgett et al. (2009) describes a novel effort-discounting
task that involves the modification of a previously developed T-maze choice procedure (Salamone
et al., 1994). Each arm of the maze contained different magnitudes of food reinforcement, and in
order to obtain the higher magnitude reward, the rats had to climb a barrier in that arm of the maze.
With training, rats were able to climb successively higher barriers to obtain the larger amount of
food, and the choice between the high barrier arm and the no-barrier arm with the smaller reward
served as a template for assessing the effects of dopaminergic drugs. D1 and D2 family antagonists,
as well as the DA releasing agent amphetamine, were able to produce a bidirectional modulation of
choice behavior, while drugs that act on D3 receptors were ineffective. These studies illustrate
features of the neurochemical regulation of effort-related decision making, and may have
implications for the understanding of both natural and pathological features of motivation.
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At times, a consideration of basic cellular processes can shed light on scientific problems that
involve behavior in whole organisms. One such consideration begins with the statement by the
biochemist, Albert Lehninger, from several decades ago. According to Lehninger (1975), who
was a pioneer in the field of bioenergetics, “the cell is a nonequilibrium open system, a machine
for extracting free energy from the environment” (p. 8). This statement is important both for
what it says, and for what it does not say. Not only does it efficiently characterize some general
features of the biochemistry of cell energy, but it also instigates thinking about the relation
between energy extraction and energy expenditure at the level of whole organisms. Animals
extract energy from the environment by ingesting nutrients. However, the process of seeking
and obtaining nutrients typically involves considerable work. Moreover, organisms must work
to obtain access to other significant stimuli such as water, nesting material, mates, or offspring.
An animal foraging in the wild, or performing an instrumental behavior in a laboratory, must
expend energy in the form of motor activity to gain access to stimuli that are important for its
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survival and well being. Furthermore, in view of the complex nature of the internal and external
environments, the vast array of significant stimuli, and the multitude of potential paths that can
be used to obtain access to them, organisms must frequently make effort-related decisions
based upon cost-benefit analyses. Of course, decisions based upon effort represent but one
dimension of the entire spectrum of the decision making process. In addition to effort,
organisms also make complex calculations based upon time, probability of occurrence of
various events, and several factors related to reinforcement value, and must allocate their
behavioral resources accordingly. Nevertheless, within the last few years there has been an
intensive growth in research on effort-related processes, including effort-related decision
making. The accompanying article by Bardgett, Depenbrock, Downs, Points, & Green
(2009), which introduces a novel behavioral approach to this area and presents pharmacological
data on the bidirectional modulation of effort-related choice, provides a useful piece of this
emerging literature. The present commentary will attempt to place these recent findings from
Bardgett et al. (2009) into the overall context of this expanding area of research.

If effort-related processes are seen in the context of motivational theory and research, then it
is worthwhile to begin by stressing the relation between the exertion of effort and activational
aspects of motivation. For many years, it has been recognized that there is a useful distinction
to be made between directional and activational aspects of motivation (Cofer & Appley,
1964; Duffy, 1963; Salamone, 1988; Salamone, 1992; Salamone et al., 1991). Motivated
behavior is directed toward or away from particular stimuli and the behavioral interactions
with those stimuli. In addition, motivated behavior is characterized by high levels of activity,
vigor, persistence, and work output. The idea that behavioral activation is a fundamental aspect
of motivation, which is particularly relevant for understanding how organisms overcome work-
related obstacles that separate them from significant stimuli, has been present in the psychology
and ethology literatures for some time. Approaches as diverse as optimal foraging theory
(Krebs, 1977) and economic models of operant conditioning (Bickel, Marsch, & Carroll,
2000; Lea, 1978) have emphasized that work-related constraints influence behavioral output.
DA, particularly in the nucleus accumbens, is important for aspects of behavioral activation,
exertion of effort, and effort-related choice behavior (Correa & Salamone, 2002; Robbins &
Everitt, 2007; Salamone, Correa, Farrar, & Mingote, 2007; Salamone, Correa, Mingote, &
Weber, 2003; Salamone, Cousins, & Snyder, 1997).

There have been several methodological developments in terms of how effort-based choice
behavior is assessed. One relatively simple procedure that has been used is a concurrent lever
pressing/chow feeding task (Salamone et al., 1991). With this task, rats are given a choice
between lever pressing on a ratio schedule (usually FR5) for a preferred reward, or simply
approaching and consuming a less preferred chow that is concurrently available in the chamber.
This test is essentially a modified operant behavior procedure that allows for the assessment
of how responses are allocated in relation to the two alternative sources of food, and it has
undergone extensive behavioral and pharmacological validation (Salamone et al., 1991,
1997; Koch, Schmid, & Schnitzler, 2000; Sink et al., 2008). Another task that was developed
was the T maze choice task (Cousins et al., 1996; Salamone et al., 1994). Rats are trained on
a discrete-trial T maze procedure in which one of the choice arms has a high density of food
reward (e.g., 4 x 45 mg operant pellets), whereas the other arm has a lower density (e.g., 2
pellets). Effort-related challenges can be imposed in this task by placing a vertical barrier in
the arm that contains the high density of food reward; this presents an obstacle to the rat, as
they can only obtain the high density of food reward by climbing the barrier, but they also have
an alternative, which is the option of simply selecting the low cost/low reward arm. Variants
of the T maze task also have undergone considerable behavioral validation and evaluation
(Cousins et al., 1996; Salamone et al., 1994; van den Bos, van der Harst, Jonkman, Schilders,
& Spruijt, 2006), and have been used by several laboratories to characterize the effects of brain
lesions or drug manipulations (Denk et al., 2005; Salamone et al., 1994; Schweimer & Hauber,
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2006; Walton, Bannerman, & Rushworth, 2002). More recently, an operant task that involves
effort discounting was developed by Floresco, Tse, and Ghods-Sharifi (2008). Despite the
differences between these tasks, they all have yielded similar pharmacological results in
relation to the role of DA systems. Low doses of DA antagonists that block D1 or D2 family
receptors, including haloperidol, cis-flupenthixol, SCH 23390, SCH39166, raclopride, and
eticlopride, alter effort-related choice behavior, reducing selection of more effortful choices
and biasing animals toward lower-cost alternatives (Cousins et al., 1994; Denk et al., 2005;
Floresco et al., 2008; Koch et al., 2000; Salamone et al., 1991; Salamone et al., 2002; Sink et
al., 2008). Floresco et al. (2008) reported that these effects of DA antagonism on effort-related
choice behavior occurred independently of any effect of DA antagonism on delay discounting
(for a further discussion of delay and effort as features of decision making, see Denk et al.,
2005; Wakabayashi, Fields, & Nicola, 2004; Walton et al., 2006). Together with papers
involving operant schedules that have different ratio requirements (Aberman & Salamone,
1999; Salamone, Wisniecki, Carlson, & Correa, 2001; Correa et al., 2002; Mingote, Weber,
Ishiwari, Correa, & Salamone, 2005), these studies on choice behavior have served to focus
attention on the role of DA systems in behavioral activation and effort-related processes
(Salamone et al., 2007).

The accompanying article by Bardgett et al. (2009) provides an important extension of this
previous work. They developed a discounting version of the T maze task described above, in
which the amount of food in the high-density arm of the maze was diminished every time the
rats selected that arm. Thus, they employed an “adjusting-amount” discounting variant of the
T maze procedures, which allows researchers to determine an indifference point for each rat
(Richards, Mitchell, De Wit, & Seiden, 1997). Using this procedure, Bardgett et al. (2009)
showed that administration of both the D1 family antagonist SCH23390 and the D2 family
antagonist haloperidol altered effort discounting, making it more likely that rats would choose
the arm with the smaller reward. In contrast, neither stimulation nor blockade of D3 receptors
had an effect on choice behavior. Furthermore, elevation of extracellular DA with
administration of amphetamine blocked the effects of SCH23390 and haloperidol, and also
biased rats toward choosing the high reward/high cost arm, which is consistent with previous
studies using DA transporter knockout mice (Cagniard, Balsam, Brunner, & Zhuang, 2006).
Together with other results, the findings reported by Bardgett et al. (2009) support the
suggestion that, across a variety of conditions, DA systems act to regulate effort-related
decision making in a bidirectional manner.

These findings form part of an emerging literature indicating that DA, particularly in nucleus
accumbens, participates in the regulation of behavioral activation, work output, and effort-
related choice behavior. Of course, accumbens DA is only one part of the broader circuitry
involved in these functions (see Figure 1). Several brain areas, distributed across a number of
interconnected forebrain regions, also participate in the exertion of effort in instrumental
behavior, as well as effort-related decision making. These areas include prefrontal/anterior
cingulate cortex, nucleus accumbens, ventral pallidum, and basolateral amygdala (Farrar et al.,
2008;Floresco & Ghods-Sharifi, 2007;Hauber & Sommer, in press;Salamone et al., 1991,
1994, 2001 2007 Schweimer & Hauber, 2006;Schweimer, Saft, & Hauber, 2005;Walton et al.,
2002,2003,2006). Moreover, neurotransmitters other than DA also are involved. Considerable
evidence implicates adenosine A receptors in nucleus accumbens, as well as the GABAergic
ventral striatopallidal pathway and GABAA receptors in ventral pallidum, in effort-related
functions (Farrar et al., 2007,2008;Font et al., 2008;Mingote et al., 2008;Mott et al., in
press;Worden et al., in press). Future research employing a variety of tasks, including the T
maze discounting procedure developed by Bardgett et al. (2009), could be used to assess the
specific contribution made by each of these brain areas.
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Even as researchers are making progress characterizing the brain circuitry and neurochemical
interactions involved in regulating effort-related functions, new questions are emerging, and
old questions are being reconsidered in a new light. One important consideration is the potential
difference between the exertion of effort (i.e., the generation of instrumental behavior with
relatively high work requirements) and effort-related decision making (i.e., making choices
among various options with different work requirements and reward values). Furthermore, a
related point is that different brain systems may participate in these functions in distinct ways.
There is considerable evidence that accumbens DA depletions or antagonism act to reduce the
exertion of effort, and this result would clearly alter the outcome of any effort-related
evaluations and decision making. In addition, on some tasks, accumbens DA depletions and
anterior cingulate cortex lesions produce similar effects on effort-related choice behavior.
Nevertheless, it is not clear that nucleus accumbens DA and anterior cingulate cortex participate
in the decision making process in exactly the same way. Nucleus accumbens DA depletions
that affect effort-relate choice also reduce locomotor activity (Cousins et al., 1993) and lower
response output on ratio schedules (Aberman & Salamone, 1998; Salamone et al., 2001),
whereas other brain manipulations that affect effort-related choice (e.g., anterior cingulate
cortex or nucleus accumbens cell body lesions) do not necessarily produce similar effects on
these measures. Another important conceptual issue is the relation between motor control and
motivation. Although it would be tempting to assume that motor control and motivation are
completely distinct functions, a detailed examination of research and theory in psychology
suggests that this is not the case. Time that there is considerable overlap between aspects of
motor control and motivation (Salamone, 1992; Salamone & Correa, 2002; Salamone et al.,
2007). Behavioral measures such as lever pressing speed, latency in a runway or maze, or
locomotor activity, are certainly outcomes of a motor execution process, but they also are
measures that frequently are used for their motivational significance. If a food deprived rat is
running faster in a runway, it seems pointless to ask “Is that motor control or motivation?”,
when it clearly is both. Activational aspects of motivation represent the cusp between
overlapping components of motor and motivational processes, and mesolimbic DA appears to
operate within this area of overlap. Research in this area only serves to emphasize the obvious
nature of the relation between motor and motivational processes, rather than weaken it.

In view of the fact that drug seeking behavior can involve considerable work, it is useful to
consider this research in the context of studies related to drug seeking and drug addiction.
Indeed, over the last few years there has been a growing recognition of the importance of
behavioral activation and effort-related processes in drug self-administration (Colby et al.,
2003; Czachowski et al., 2002; Marinelli et al., 1998; Nadal et al., 2001; Vezina, 2002).
Moreover, research related to behavioral activation and effort may offer clues as to the
neurobiological basis of energy-related disorders in humans (Salamone et al., 2006). Symptoms
such as psychomotor slowing, fatigue, and anergia are psychopathologies that include a
disorders of behavioral activation in humans, and they represent fundamental aspects of
depression and other psychiatric and neurological disorders (Capuron et al., 2007;
Demyttenaere et al., 2005; Majer et al., 2008; Salamone et al., 2006, 2007; Stahl, 2002;
Yurgelun-Todd et al., 2007). There is a striking similarity between the brain systems involved
in effort-related processes in animals and those that are linked to energy-related symptoms in
humans (Salamone et al., 2006, 2007). Thus, research in this area may promote our
understanding of the neural mechanisms involved in clinical psychopathologies related to
behavioral activation and effort.
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Figure 1.

This is a schematic circuitry diagram showing some of the anatomical connections linking
cortical/limbic/striatal structures that are involved in effort-related processes. Various
behavioral findings related to this figure are referred to in the text. The projection patterns of
distinct accumbens subregions (i.e., core and shell) subregions are not depicted. VP = ventral
pallidum; DA = dopamine.

Behav Neurosci. Author manuscript; available in PMC 2010 February 9.



