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Abstract
As biomedical images and volumes are being collected at an increasing speed, there is a growing
demand for efficient means to organize spatial information for comparative analysis. In many
scenarios, such as determining gene expression patterns by in situ hybridization, the images are
collected from multiple subjects over a common anatomical region, such as the brain. A fundamental
challenge in comparing spatial data from different images is how to account for the shape variations
among subjects, which make direct image-to-image comparisons meaningless. In this paper, we
describe subdivision meshes as a geometric means to efficiently organize 2D images and 3D volumes
collected from different subjects for comparison. The key advantages of a subdivision mesh for this
purpose are its light-weight geometric structure and its explicit modeling of anatomical boundaries,
which enable efficient and accurate registration. The multi-resolution structure of a subdivision mesh
also allows development of fast comparison algorithms among registered images and volumes.
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1 Introduction
The advance of imaging techniques has created an ever increasing body of spatial data (in the
form of 2D images or 3D volumes) that requires efficient organization and analysis.
Oftentimes, such data is collected over a common anatomical structure (such as the brain or
the heart) from a large number of subjects. The anatomical variations among these subjects
underline the main computational challenges involved in comparing data collected from
different subjects.

As an example, substantial effort has been made around the world to determine spatial
expression patterns of genes in the mammalian genome (particularly the mouse genome
[1-3]) using experimental techniques such as in situ hybridization (ISH) [4]. The result of ISH
on one subject is a stack of tissue sections of an anatomical structure, such as the brain, where
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cells expressed by a particular gene are highlighted (Fig. 1(a)). Performing ISH on multiple
subjects yields expression images of various genes over the common anatomical structure.
Comparing these images reveals the spatial relations between genes, which are often key to
understanding their functional relations [5]. However, as observed in Fig. 1(a), brains of
individual mice may exhibit significant variation in their anatomical shape, making direct
image-to-image comparisons unsuitable.

In this paper, we describe the use of subdivision meshes, a geometric modeling tool, in
organizing spatial data for efficient and accurate queries. Subdivision is a fractal-like process
for generating smooth geometry from coarse meshes [6]. While often used for modeling
animated characters [7], subdivision meshes can be an ideal form of a deformable anatomical
atlas. Subdivision meshes can explicitly model the anatomical divisions interior to the structure
while providing a smooth coordinate space within each division. After deforming the
subdivision atlas to fit the anatomical shape of each individual image, these images can be
compared within a common coordinate space established by the atlas. The key advantage of a
subdivision mesh over previous atlas representations is that it can be more efficiently and
accurately deformed onto individual images, due to its geometric nature and the explicit
modeling of anatomical boundaries.

Using subdivision meshes, spatial data can be organized into a geometric database allowing
fully customizable spatial queries. The multi-resolution structure of a subdivision mesh further
gives rise to fast algorithms for processing queries. As an example, Fig. 1(b) depicts a query
interface in a 2D subdivision-powered prototype database of ISH images developed by the
authors at Geneatlas.org [8,5]. A cross-section of the mouse brain is overlayed with a
subdivision atlas partitioned into anatomical regions. Using the query interface, a user has
selected a portion of the midbrain containing the substantia nigra (the highlighted area) and
asked for those genes whose expression patterns in the selected region are similar to that of a
target gene Slc6a3. The top gene candidates (out of over 200 genes currently in our system)
and their ISH images are shown in Fig. 1(c). Note that the comparison of expression patterns
is performed despite the anatomical variations among the subjects from which the images were
collected.

2 Method
We shall first describe the geometric method of subdivision and the representation of
anatomical atlases as subdivision meshes. We will then elaborate on the techniques we
developed to utilize subdivision atlases in mapping 2D or 3D image data. As concrete examples
to illustrate these methods, we will consider the problem of mapping 2D gene expression
patterns in ISH images and 3D bone density patterns in CT images. Note however that the
techniques presented here can be applied to any 2D or 3D anatomical data. The following
description is mainly compiled from previous work [5,8-11].

2.1 Subdivision meshes as deformable atlases
A standard approach in comparing images collected from subjects with varying shapes is
mapping all images into a standard coordinate space, often known as an atlas. The typical atlas
representation consists of a 3D volume where each voxel has been annotated with its anatomical
region [12], or a stack of 2D images where each pixel has been annotated [2,1]. The voxelated
or pixelated atlas is coupled with a deformation mechanism, typically an affine transformation
[13] or a spline-based free-form deformation (FFD) [14,15], in order to register onto images
from individual subjects (for a more detailed account of brain atlases, see the survey by Toga
[16]). However, a global affine transformation cannot account for local shape changes
(although sufficient as an initial alignment in applications such as anatomical labelling [13]).
On the other hand, the rectilinear grid used in FFD inherently lacks the flexibility to account
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for subtle, local variation in anatomical shapes, as the grid itself is not aligned with the
anatomical boundaries [9]. While such limitation can be alleviated by using a finer grid over
which the FFD is defined, solving the deformation at the larger number of grid nodes will
significantly increase the computation time.

We describe a different, geometric atlas representation that gives rise to more accurate and
efficient registration procedures. The atlas is represented as a mesh, which consists of a
collection of connected geometric elements. In particular, a 2D atlas (for a single cross-section
of an anatomical structure) is represented as a planar mesh consisting of polygonal elements
such as quadrilaterals. A 3D atlas (for the whole structure) is represented as a volumetric mesh
consisting of polyhedral elements such as tetrahedra.

In either case, the atlas is partitioned into sub-meshes representing the anatomical partitions
within the structure. The partitioning polylines (2D) or polygons (3D) are called creases.

Given an atlas represented as a coarse mesh M0, we generate a smooth atlas using
subdivision. Subdivision is a fractal-like process that produces a sequence of increasingly fine
meshes (with smaller but more elements) that converge to a limit mesh M∞ following the shape
of M0 [6]. The limit mesh contains a network of smooth curves (2D) and surfaces (3D) that
accurately models the anatomical boundaries. We discuss our choice of subdivision algorithms
in 2D and 3D, respectively.

2.1.1 2D subdivision—In 2D, we focus on Catmull-Clark subdivision [17], a subdivision
scheme for quadrilateral meshes that produces provably smooth meshes in the limit. The
scheme was further modified in [18] to allow smooth subdivision of crease polylines embedded
in the coarse mesh.

We use the simple example in Fig. 2(a) to illustrate the subdivision algorithm. Here, the coarse
mesh M0 consists of three quadrilaterals where a subset of the quad edges and quad vertices
are marked (darkened) as creases. The crease edges form a network that partitions M0 into
disjoint pieces. Subdivision is an iterative process, where two steps are performed in each
iteration. First, we split each quad into four sub-quads with new vertices placed at the midpoints
of old edges and at the centroids of old faces (Fig. 2(b)). Next, for each vertex p in the mesh,
compute the centroids of those quads that contain p, and reposition p at the centroid of those
quad centroids (Fig. 2(c)). To yield smooth subdivision of creases, each vertex on a crease edge
is repositioned at the centroid of the midpoints of only those crease edges that contain the
vertex. The positions of crease vertices are left unchanged. As more subdivision iterations are
performed (Fig. 2(d-f)), the limit is a smooth mesh M∞ partitioned by a network of cubic B-
spline curves that interpolate crease vertices of M0 and approximate the network of crease
edges in M0.

To construct an atlas for a 2D cross-section of an anatomical structure, we model the cross-
section as a Catmull-Clark mesh partitioned by a network of crease curves. Fig. 3(a) shows
such a coarse mesh M0 for one sagittal cross-section of the mouse brain. We mark vertices
shared by more than two crease edges as crease vertices (round dots). Fig. 3(b,c) show the quad
meshes M1,M2 generated by successive iterations of subdivision. The crease curves
(highlighted in Fig. 3(d)) partition the mesh into 15 disjoint sub-meshes, corresponding to 15
anatomical regions. Note that the interior of each partitioned region is filled with a smooth
parameterization of quadrilaterals suitable for storing spatial data after the atlas is deformed
onto individual images. In addition, observe that the subdivision process itself bestows a natural
hierarchical structure to the mesh, giving rise to efficient algorithms to compare data stored on
the atlas (to be discussed in Section 2.2.2).
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An important advantage of a subdivision atlas over pixelated or voxelated atlases is that it
enables fast and accurate deformation onto tissue sections. Such advantage is obtained in two
ways. First, the shape of the smooth limit mesh M∞ is entirely determined by the location of
the vertices in the coarse mesh M0, since the rules used in constructing the mesh Mk+1 from
Mk involve simple fixed combinations of vertex positions in Mk. As a result, the deformation
of the entire mesh reduces to the movement of the small number of vertices in the coarse mesh
M0. In contrast, a typical FFD deformation for pixelated atlases needs to solve for all points
on a rectilinear grid. Second, unlike the regular grid used in FFD, the vertices of a subdivision
mesh are aligned to the anatomical boundaries, lending direct control over fitting of these
boundary curves onto those in the image, as compared in Fig. 3(e,f).

2.1.2 3D subdivision—In 3D we utilize the recently developed tetrahedral subdivision
scheme [9], which promises a smooth volumetric mesh at the limit. One of the reasons for
considering tetrahedral elements, rather than hexahedra, is that the former are simplices in 3D
and are more flexible in modeling structures with irregular shapes and fine details.

The subdivision algorithm follows a similar two-step procedure as in 2D Catmull-Clark
subdivision. To produce a subdivided mesh Mk+1 from Mk, the algorithm first splits each
tetrahedron in Mk into smaller elements by inserting mid-points on edges. Since there is no
symmetric way of splitting a tetrahedron into only tetrahedra, the algorithm splits one
tetrahedron into 4 tetrahedra and one octahedron in the center, as shown in Fig. 4. Likewise,
an octahedron in Mk is split into 6 octahedra and 8 tetrahedra. In the second step, the algorithm
re-positions each newly inserted vertex to the centroid of the weighted centroids of the adjacent
elements (see [9] for the detailed weight mask). Similar to 2D, a volumetric subdivision mesh
M0 can be partitioned into sub-meshes by a network of “crease” triangles. By applying surface-
based averaging rules, such as Loop subdivision [19], to vertices on the crease triangles in the
second step of each subdivision iteration, the subdivided crease triangles will form a smooth
surface in the limit mesh M∞. The crease triangles can further contain crease edges and vertices,
whose subdivision rules follow that in the 2D discussion above.

To construct an anatomical atlas, we model the anatomical structure by a volumetric
subdivision mesh partitioned by a network of crease triangles that represent the boundaries of
anatomical regions. If there is only a single anatomical region present, the crease triangles form
the outer boundary of the anatomical structure. This is illustrated in Fig. 5, showing the
subdivision atlas of a human foot bone (second metatarsal) after successive iterations of
subdivision [11]. Note that repeated subdivision yields a volumetric mesh consisting of smooth
boundaries as well as a smooth interior parameterization of tetrahedral and octahedral elements,
which can be used for storing spatial image data. If there are multiple anatomical regions in
the structure, subdivision yields a smooth network of crease surfaces modeling the boundaries
between these regions. Similar to 2D subdivision atlases, we mark edges shared by more than
two crease triangles as crease edges, and vertices shared by more than two crease edges as
crease vertices. Just as in 2D, the explicit modeling of anatomical boundaries in 3D and the
small number of vertices in the initial coarse mesh is the base for efficient and accurate
registration.

2.2 2D subdivision atlases for mapping images
A 2D subdivision atlas can be used to map cross-section tissue image data collected from
various subjects. The key steps involved in this process include constructing the atlas,
deforming the atlas to fit each image, and data mining on the registered images. We explain
the techniques we developed for each step, which have been successful in mapping 2D gene
expression patterns in ISH images.
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2.2.1 Building the atlas—Due to the low geometric complexity of a 2D subdivision atlas
(such as the one shown in Fig. 3 (a) top-left), we construct these atlases manually using a
graphics interface. The interface allows one to create a coarse quadrilateral mesh with crease
elements, given a reference tissue image. If the tissue sections are taken at multiple cross-
sections of the anatomical structure, an atlas is constructed for each cross-section where
mapping is desired.

2.2.2 Deforming the atlas—We adopt the standard two-step process in which the atlas is
first aligned to the image using a global rigid-body transformation and then locally fit. This
global alignment accounts for rotations and translations introduced during the sectioning and
imaging process. The local fitting accounts for variations in the anatomical shape of the mouse
brain and tissue distortion resulting from the sectioning process.

To compute the global alignment, we perform Principle Component Analysis (PCA) to the
image and the subdivision atlas. Specifically, given a tissue section (e.g., the one in Fig. 6(a)),
the tissue is first identified in the image using intensity thresholding (gray area in Fig. 6(b)).

A covariance matrix is then constructed as , where ai is a pixel in the
tissue region and c is the centroid of all such pixels. A similar matrix is built for all pixels
within the outer boundary of the un-deformed subdivision atlas at some subdivision level k
(we used k = 3). The centroid c and the two eigenvectors of the matrix M give an orthogonal
coordinate system of the image and of the atlas, which can be used to rotate and translate the
atlas onto the image (Fig. 6(c)).

Due to variations in the anatomical shape among individual subjects, a global rigid-body
deformation is not sufficient to produce an accurate fit of the atlas onto the image, as observed
in Fig. 6(c). The key step in registration involves locally repositioning the vertices of the coarse
mesh M0 to form a new subdivision mesh M ̂0 whose associated limit mesh M ̂∞ fits the image
accurately.

To compute this mesh M ̂0, we let X = {x1, x2,…} denote the vertex positions in M0 after global
deformation. We use Mk(X) to denote the mesh resulting from subdividing M0 with vertex
positions X k times. Our goal is to compute new positions X̂ such that M∞(X̂) fits the tissue
anatomy accurately while deforming M∞(X) as little as possible. To this end, we formulate a
minimization problem that seeks to minimize an energy function of the form:

(1)

where  measures the fit of Mk(X̂) to the tissue and  measures the energy used in
deforming Mk(X) to Mk(X̂).

While the fitting term  may assume various forms, for simplicity, we demonstrate a simple
error that measures the distance between the outer boundary of the mesh Mk(X̂) and the tissue
boundary in the image. For each sampled point bj on the tissue boundary (Fig. 6(b)), we
compute the vertex pj of the mesh Mk(X̂) that is closest to bj and then minimize the quadratic
function:

(2)
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where pj(X̂) is the vertex of Mk(X̂) corresponding to pj, and nj is an estimated outward unit
normal of the tissue boundary at bj (arrows in Fig. 6(b)). The weight term wj is the cosine of
twice the angular difference between nj and the normal for the chosen pj on the atlas boundary,
giving preference to fit points with aligned normals. The energy function penalizes the
deviation of the mesh vertices pj(X̂) from the tangent lines defined by the pairs (bj, nj).

Due to the irregularity of tissue shapes, minimizing the fitting term alone may result in a
significantly distorted mesh. To maintain the overall shape of the mesh, we design the
deformation term  to penalize non-affine deformations of the mesh Mk(X) incurred during
the fitting process. To understand the structure of this term, we consider deforming a pair of
adjacent triangles consisting of points {pi, ps, pt} and {pj, ps, pt} sharing a common edge {ps,
pt} (see Fig. 7(a)). There exists a unique affine transformation T satisfying T ({pi, ps, pt}) =
{p̂i, p̂s, p̂t}. However, this transformation does not necessarily map pj into p̂j. We therefore
formulate a quadratic term that penalizes the sum of the residual T (pj) − p̂j for each pair of
triangles:

(3)

where aist denotes the unsigned area of the triangle formed by {pi, ps, pt}. The summation is
taken over all pairs of triangles in a triangulation of the original mesh Mk(X). The normalization
at the denominator is used to make the term converge to a continuous energy matrix as k → ∞
for underlying continuous deformation.

To minimize the energy function Ek(X̂) defined in Equation 1 at a selected subdivision level
k (we use k = 3), we observe that all of its component terms (Equations 2 and 3) are quadratic,
and hence the minimizer can be found using a linear solver such as conjugate gradients. We

then recompute the fit term  from the deformed mesh Mk(X̂) and recompute the minimizer
X̂. Iterating the process several times yields a subdivision mesh Mk(X̂) that fits the tissue
boundary accurately with a minimum amount of deformation. Since the number of unknowns
in this optimization process is proportional to the number of vertices in M0 as opposed to the
number of vertices in Mk, the total fitting process takes only a few seconds to run on a consumer-
grade PC.

Figure 6(d) depicts the result after applying the local fitting. Note that, although the fit term so
far uses only data points from the external boundary of the tissue, the deformation term causes
the internal anatomical boundaries of the deformed atlas to approximate the corresponding
internal anatomical boundaries of the tissue. Based on specific characteristics of the image

modality, it is possible to augment  with more complex terms that measure the fitting of the
mesh to interior image features. For ISH images, we have shown that more accurate fitting can
be achieved by learning landmarks, boundary features and anatomical shapes, expressing them
as quadratic terms, and incorporating them into the same minimization framework [20].

2.2.3 Storing and mining—Having deformed the atlas onto an image, we can store the
image data onto the quadrilateral elements in the deformed atlas at a chosen subdivision level
(e.g., k = 4). Such data could be the number of cells, the pixel colors, or any detected features
in the image within the quadrilateral region. Note that the use of the deformed mesh corrects
for anatomical variations in individual subjects.
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Once the image data is stored onto the atlas, we can now allow users to answer queries of the
following form: “For a given anatomical region, which image exhibits a particular spatial
pattern?” Using the atlas, users may specify the target region by name or by interactively
painting the desired region onto the atlas. Spatial patterns can either be uniform patterns (such
as a particular gene expression level) or data from a given image in the database (such as the
gene expression pattern in Fig. 1(b)). The query is processed by comparing the vector of data
in the target pattern within each quad of the selected atlas region at subdivision level k, denoted
as Hk, to the vector of data in those quads of every image i in the database, denoted as . The

error between two vectors  can be measured using a number of norms, such as L1,
L2 and χ2 [21]. For example, the L1 norm has the form:

(4)

When the number of images mapped onto the atlas is large, naive comparison for every image
i at the finest level of subdivision of the atlas can be very time-consuming. By exploiting the
multi-resolution structure of subdivision mesh Mk, we can substantially accelerate the search
by generalizing the multi-resolution search technique proposed by Chen et al. [22] from
rectangular images to subdivision meshes. Specifically, we can compute a multi-resolution

summary  where j ∈ [0, k − 1] for each quad q in Mj that consists of the sum of data over

all quads in Mk that are subdivided from q. The accelerated search first computes 
for all images i in the database and orders the images in terms of their relative error at level 0
using a priority queue. Next, the method repeatedly extracts the image with the smallest error
from the priority queue, compares it with the target pattern at a finer resolution, and inserts the
image back into the queue using the newly computed error. The search terminates when the
error for the image at the head of the priority queue has been previously computed on the fully
subdivided atlas. The search is guaranteed to return the image with minimal error if the norm

e satisfies . Both the L1 norm and the χ2 norm satisfy
this criteria. In our experiments, we have noticed that the two norms yield qualitatively similar
search results for gene expression patterns in ISH images.

A prototype database has been constructed that demonstrates the capability of 2D subdivision
atlases in comparing gene expression data from ISH images of mouse brains. The online
database, Geneatlas.org, currently contains mapped expression data of over 200 genes on 11
key cross-sections of the mouse brain, and features a graphical interface for performing
customized queries (Fig. 1(b)) [8,5]. The pipeline of collecting, processing, and organizing
ISH images using subdivision meshes is detailed in a concurrent article.

2.3 3D subdivision atlases for mapping volumes
While the use of a 2D atlas is limited to mapping image data on a single cross-section, a
volumetric atlas would enable mapping of fully 3D spatial data within an entire anatomical
structure among different subjects. The pipeline of spatial mapping using a 3D tetrahedral
subdivision atlas closely follows that of a 2D quadrilateral subdivision atlas. First, the atlas is
constructed to accurately model the anatomical boundaries in the organ or tissue of interest.
Next, given a new data volume, the atlas is deformed to fit its anatomical shape. After atlas
deformation, the spatial data of interest in the volume is stored back onto corresponding
elements in the deformed atlas and ready for subsequent mining.

Working with an image volume and a 3D mesh, in contrast to a single image and a 2D mesh,
brings additional challenges to atlas construction and deformation. In particular, the complexity
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of a tetrahedral mesh and the difficulty in manipulating 3D geometry using 2D input and display
devices makes manual construction of a 3D atlas infeasible. Also, the deformation penalty term
in Equation 3 is designed only for 2D triangle meshes. We next discuss the extensions to the
techniques presented in the previous section that are necessary to utilize 3D subdivision atlases
for mapping volumetric data. These techniques have enabled comparative analysis of 3D bone
density in CT volumes [11].

2.3.1 Building the atlas—While a 2D quadrilateral mesh is easy to create by hand given a
reference tissue section, manually building a 3D tetrahedral mesh representing the anatomical
divisions of a whole organ is considerably harder. To increase the automation of the
construction process while maintaining the accuracy of the atlas, we proceed in two stages:

(1) Surface creation: We first create the network of crease triangles in the subdivision
atlas, which represent the boundary surfaces of anatomical regions. These triangles are
created by first constructing a fine-resolution triangular surface from a segmented
reference volume, simplifying the surface using a quadratic-error based algorithm [23],
and finally deforming the simplified crease triangles either interactively or automatically
(see next section) so that the subdivided crease surface fits the original fine-resolution
surface.

(2) Volume creation: Next, the spatial volumes partitioned by the network of crease
triangles are filled with tetrahedral elements using a Delaunay meshing algorithm [24].
Note that human interactions may be necessary in this stage to ensure both the validity of
the input for tetrahedral meshing (e.g., the crease triangles need to be free of self-
intersections) and the quality of the tetrahedral elements (e.g., free of degenerate or flat
tetrahedra).

In the example of Fig. 5, the metatarsal bone atlas is created following these two stages from
a segmented CT volume [25]. The initial fine-resolution bone surface is extracted using the
Marching Cubes algorithm [26]. Only a small amount of manual interaction was involved in
fine-tuning the fitting of the subdivided crease surface to the initial bone surface and in
adjusting the tetrahedral connectivity.

2.3.2 Deforming the atlas—Once the atlas is constructed, it can be deformed onto the
reconstructed image volume following the same two-step procedure as fitting a 2D atlas to a
single image. First, the atlas is translated and rotated onto the volume by Principle Component
Analysis. Next, individual vertices of the coarse tetrahedral mesh M0 are re-positioned to
minimize the energy function defined in Equation 1.

Note that the deformation penalty term  in Equation 1, defined in Equation 3, is designed
for 2D triangles. To build a similar term for tetrahedra elements, we follow the same intuition
of penalizing residues in affine transformations for each pair of adjacent tetrahedra.
Specifically, consider all pairs of two tetrahedra {pi, ps, pt, pr} and {pj, ps, pt, pr} that share a
common triangle {ps, pt, pr} (see Fig. 7(b)). The penalty term is a summation of the following
quadratic forms [11]:

where aistr denotes the unsigned volume of the tetrahedron formed by {pi, ps, pt, pr}. The
summation is taken over all pairs of tetrahedra in a tetrahedralization of the deformed mesh
Mk(X̂).
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2.3.3 Storage and mining—After the atlas is deformed onto the volume, we can store the
volume data (e.g., intensity values, features, etc.) onto the tetrahedral or octahedral elements
in the deformed atlas at a chosen subdivision level. In this way, volumes exhibiting different
anatomical shapes can be compared using a common, atlas-based coordinate system. Like the
2D subdivision atlas, the 3D subdivision atlas too has a intrinsic hierarchical structure induced
by the subdivision process. As a result, the coarse-to-fine pattern search algorithm discussed
in Section 2.2.3 can be equally applied to volumes registered by a 3D subdivision atlas.

As an example of data mining using 3D subdivision atlases, we recently applied the metatarsal
bone atlas (in Fig. 5) in studying bone mineral density (BMD) in the foot bones of diabetes
patients [11]. The BMD is obtained by the intensity values at each voxel in volumetric
quantitative computed tomography (VQCT). Registering the atlas to multiple CT volumes
allows the BMD distribution in the metatarsal bones of different subjects or of the same subject
at different time points to be visualized and compared in a common coordinate space. In Fig.
8(a), the BMD of one subject is visualized on the atlas, where each colored dot represents the
BMD (higher BMD has redder color) in a tetrahedral or octahedral element of the atlas at
subdivision level 2. Atlas registration further allows measuring BMD in a user-specified
region-of-interest (ROI). In the example of Fig. 8(b,c), the user defines two ROIs on the un-
deformed atlas based on the distance to the proximal (left) end of the bone. After the atlas is
deformed onto a CT volume, the BMD in each region can be automatically computed on the
deformed atlas.

3 Conclusion and discussion
Cross-subject comparison of spatial data in 2D images and 3D volumes plays an important
role in biological and medical research. We describe and demonstrate the use of subdivision
meshes as a geometric tool to organize spatial data collected from different subjects for
comparative analysis. Modeling an anatomical structure by a subdivision mesh has a number
of desirable features, including a light-weight structure that allows efficient deformation,
explicit modeling of anatomical boundaries that enables accurate registration, smooth interior
parameterization for data storage, and a hierarchical structure for multi-resolution visualization
and query processing.
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Fig. 1.
(a) Example ISH images. (b,c) An example search using our 2D prototype system at
Geneatlas.org that explores genes with similar expression patterns.
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Fig. 2.
Initial mesh with eight crease edges and a crease vertex (a), results after bi-linear sub-division
(b), and centroid averaging (c), and after 2 (d), 3 (e) and 4 (f) subdivision iterations,
respectively.
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Fig. 3.
2D atlases of the mouse brain modeled as a coarse subdivision mesh (a), after sub-division
(b,c), and overlaying its defining image showing the curve networks (d). Comparing free-form
deformation (e) and subdivision mesh deformation (f).
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Fig. 4.
Splitting rules for tetrahedral and octahedral elements. Image courtesy of Scott Schaefer [9].
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Fig. 5.
The subdivision atlas of a second metatarsal after zero (a, d), one (b, e) and two (c, f) iterations
of subdivision, where (a, b, c) show the exterior surfaces as a result of subdividing the crease
triangles and (d, e, f) show the wire frame internal tetrahedral and octahedral elements. An
illustration of the metatarsal bone is shown in (g) (image source: Gray's Anatomy).
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Fig. 6.
(a) Overlay of the un-deformed atlas on an ISH image (showing only the crease curves). (b)
The identified tissue region (gray) and sampled points on the tissue boundary with normal
directions. (c) The atlas after global rigid-body alignment. (d) The atlas after local fitting.
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Fig. 7.
Notations used in deriving the deformation penalty term in 2D (a) and 3D (b).
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Fig. 8.
Visualizing bone mineral density (BMD) of the second metatarsal in the human foot. (a) The
BMD is visualized as colored dots, one for each tetrahedral or octahedral element in the
subdivided atlas, such that redder dots represent higher BMD. (b, c) BMD within two user-
defined regions of interests, which are defined at a distance of 80% or 20% from the proximal
(left) end of the bone.
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