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Abstract
The field of neural repair in stroke has identified cellular systems of reorganization and possible
molecular mechanisms. Conceptual barriers now limit the generation of clinically useful agents. First,
it is not clear what the causal mechanisms of neural repair are in stroke. Second, adequate delivery
systems for neural repair drugs need to be determined for candidate molecules. Third, ad hoc
applications of existing pharmacological agents that enhance attention, mood or arousal to stroke
have failed. New approaches that specifically harness the molecular systems of learning and memory
provide a new avenue for stroke repair drugs. Fourth, combinatorial treatments for neural repair need
to be considered for clinical therapies. Finally, neural repair therapies have as a goal altering brain
connections, cognitive maps and active neural networks. These actions may trigger a unique set of
“neural repair side effects” that need to be considered in planning clinical trials.
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“If a rule prevents you from improving or maintaining Wikipedia, ignore it.”
http://en.wikipedia.org/wiki/Wikipedia:Ignore_all_rules

Neural repair started as a field that ignored the rules. The rules consisted of certified CNS
dogma about the static nature of brain structure and connectivity. Examples include the rule
that the adult brain formed new connections only in certain specialized and highly plastic
structures, such as the hippocampus; or, that regions of the adult brain did not develop new
populations of neurons. Early studies in neural repair after stroke suggested that growth-
associated proteins commonly linked to axonal growth cones were induced in humans and
animals in peri-infarct tissue (Ng et al., 1988; Stroemer et al., 1995). Later studies extended
these findings with quantitative analysis of axonal connections to show that the adult brain
forms new connections in peri-infarct cortex, and in projections from cortex opposite to the
stroke (Carmichael et al., 2001; Chen et al., 2002; Dancuase et al., 2005). Later studies in neural
repair suggested a fantastic biology—that not only was the “no new neuron” dogma wrong,
but stroke signaled for a long distance migration of newly born neurons through several
different CNS tissue compartments to regions of damage after injury (Arvidsson et al., 2002;
Parent et al., 2002; Zhang et al., 2004; Ohab et al., 2006). On closer examination of the
literature, these “rules” on static CNS structure were actually more commonly accepted beliefs.
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Evidence has been present for some time that synaptogenesis or cortical growth occurs in the
adult as a result of activity and injury (Eccles, 1976; Kolb et al., 1983; Greenough et al.,
1985). Neurogenesis in the olfactory and hippocampal systems in normal and injured states
was well described for some time before its expansion was recognized in stroke (Altman and
Das, 1965; Reznikov, 1975; Kaplan and Hinds, 1977). The key evolution in this field is the
recognition that these structural changes may underlie at least a component of functional
recovery, and may interact with biochemical and electrophysiological changes in the brain after
stroke to form CNS systems that can be manipulated to promote brain repair. A next key step
in the field of neural repair after stroke will now be to bring the new concepts of tissue
reorganization and recovery back under the rules of translational medicine so as to move these
new therapeutic ideas into the clinic. This process of translating the frontiers of brain repair
requires a focused examination of these frontiers and how they might be used for treatments.

What is neural repair?
All stroke patients exhibit some degree of functional recovery. This process occurs in a matter
of days on the acute stroke service, and continues most dramatically for the first month in upper
and lower extremity motor function (Kreisel et al., 2007) and for up to a year in language and
other cognitive modalities (Hier et al., 1983; Kauhanen et al., 2000). This recovery is not
complete, leading to the tremendous long term personal and financial burdens of this disease
(Carmichael, 2006; Benowitz and Carmichael, 2010). What mediates neural repair in stroke
and what are the pharmacological targets to promote improved recovery? There is clear, if
somewhat anecdotal, evidence for a regression of acute stroke damage as a mechanism of early
recovery. This process includes a reduction in cerebral edema and a waning in the initial phases
of inflammation (Dobkin, ‘03). Other mechanisms of neural repair in stroke are associated with
anatomical and physiological plasticity induced by the infarct: axonal sprouting, neurogenesis,
angiogenesis, electrophysiological measures of neuroplasticity and reshaping of distributed
cortical networks. These processes have been recently reviewed (Floel and Cohen, 2010;
Wittenberg, 2010; Benowitz and Carmichael, 2010).

Many of these processes of structural and physiological change after stroke have been
correlated with recovery but the causal mechanisms of neural repair in stroke have not been
defined. Axonal sprouting from the cortex contralateral to an infarct into the cervical spinal
cord and brainstem ipsilateral to the infarct correlates with recovery of forelimb use (Chen et
al., 2002; Papadopoulos et al., 2002). Neurogenesis after stroke is associated with functional
recovery, in that blocking mitotic activity after stroke reduces cognitive recovery (Raber et al.,
2004). The degree of angiogenesis after stroke in humans is correlated with the level of recovery
(Krupinski et al., 1993). Stem cell, growth factor and cytokine therapies that promote functional
recovery correlate with increases in angiogenesis and neurogenesis near the infarct (Zhang and
Chopp, 2009; Bliss et al., 2010).

However, a key issue in the translation of an experimental neural repair treatment to a clinical
therapy will be to identify which of these biological events causally supports recovery. In other
words, a rule in clinical translation is to know what cellular process a drug/molecule is affecting
that mediates its clinical efficacy. If this is not known, side effects cannot be predicted or
understood, biomarkers of repair cannot be developed with any real link to the actual repair
process (i.e. they will not really “mark”), and clinical subsets of patients with varying treatment
responses will not be interpretable. As an example, if a cytokine, growth factor or inhibitory
protein blocker promotes axonal sprouting from contralateral cortex to spinal cord, is this the
pathway that mediates recovery? Or are other pathways also sprouting, and these, though
possibly not examined in a published study, mediate recovery? What happens if a patient
exhibits a dystonic movement posture because of sprouting in corticostriatal pathways after a
neural repair drug in stroke? Should this be tolerated because this is the pathway that mediated
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their improved motor function, or did the improved motor function come about from
corticospinal sprouting and this dystonia is an untoward effect? Recent studies in the field of
stem cell transplantation field have begun to identify causative mechanisms in the neural repair
and recovery after transplantation (Bliss et al., 2010). Future studies will need to identify the
causal mechanisms of normal neural repair and of drug-induced neural repair so as to follow
the clinical translational rules.

Delivery Issues: translating identified molecular systems into human
therapies

Several molecular systems appear to induce or block neural repair after stroke and other CNS
injuries. The serine/threonine kinase Mst3b is induced by inosine and mediates axonal
sprouting and behavioral recovery (Chen et al., 2002; Zai et al., 2009). NogoA blocks axonal
sprouting, and interfering with Nogo function produces behavioral recovery after stroke
(Papadopoulos et al., 2002; Lee et al., 2004; Zai et al., 2009). EPO and G-CSF interact with
mechanisms of early cell death and neural repair and mediate behavioral recovery after stroke
(Maurer et al., 2008). The protein phosphatase PTEN, which inactivates inositol triphosphate
signaling, dramatically controls axonal sprouting after injury in the adult CNS (Park et al.,
2008). These studies represent a clear advance in the field, in that they point the way to
molecular systems that can be manipulated in novel neural repair therapies. The next step in
the process of clinical translation is to identify approaches that will manipulate these systems
locally in the brain after stroke.

A major issue in the manipulation of an identified neural repair molecular pathway is drug
delivery. Systemic drug delivery has problems of selective brain access and off-target effects.
Cytokines or growth factors that stimulate neural repair and recovery, such as EPO and G-CSF,
selectively permeate the blood brain barrier but carry the risk that they will have effects on
bone marrow, kidney and other systemic organs. EPO has recently been the target of clinical
warnings for its use in cancer because of increased cardiovascular events and death (Fishbane
and Nissenson, 2007) and a clinical trial with EPO in stroke was recently suspended. Systemic
administration of beta fibroblast growth factor produced significant benefits in acute stroke
and neural repair after stroke in pre-clinical models (Ay et al., 1999), but caused side effects
when administered systemically to humans (Clark et al., 2000). There are promising
developments in this area. Modified EPO derivatives that target the common beta cytokine
receptor (Siren et al., 2009) may provide a selective targeting of neural EPO activity. G-CSF
stimulates the immune system after stroke, but this effect did not produce side effects in a small
clinical series (Sprigg et al. 2006). As G-CSF was developed to specifically boost white blood
cell production, a full consideration of immunologically related side effects will await the
ongoing clinical trial results.

Other growth factor candidates for neural repair in stroke do not pass the blood brain barrier.
A prominent example is BDNF, which binds trkB to stimulate axonal and dendritic sprouting
and promote neurogenesis (Binder and Scharfman, 2004). BDNF is an attractive candidate for
a neural repair molecular therapy when delivered through invasive cannulation, but does not
significantly pass the blood brain barrier if delivered systemically (Zhang and Pardridge,
2001). Prolonged intracerebroventricular cannulation for neural repair drug delivery in stroke
is less than optimal because of the risk of infection and because of the need to place many
stroke patients on anti-coagulation or enhanced anti-platelet therapies with bleeding side
effects. Many of the initial targeting approaches to block axonal growth inhibitors utilize
monoclonal antibodies or large peptides (Walmsley and Mir, 2007). These also do not cross
the blood brain barrier. In stroke the blood brain barrier is opened for variable periods in the
subacute phase. In experimental animals this can be precisely determined with specific
molecular weight indicators (Friedman et al., 2009). Systemic administration of tagged small
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molecules or antibodies shows that these will penetrate the peri-infarct cortex and modify
neurogenesis and recovery up to a week after stroke in mice (Ohab et al., 2006). However,
blood brain barrier function varies considerably across strains of the same experimental animal
and between rodents and humans (Hermann, 2008). Data on the duration of BBB opening in
stroke in humans varies by technique, to suggest either an opening near the infarct (Bang et
al., 2007), an extended region of BBB opening in the ipsilateral hemisphere to stroke, or no
opening despite similar stroke types (Merten et al., 1999; Lorberboym et al., 2003). An
important point from this data is that neural repair drugs will need to follow an important rule
of clinical translation: verify that that the drug is actually getting into the target region. Simply
systemically administering a monoclonal antibody blocker to an axonal growth inhibitor after
stroke, without first validating that this penetrates into the brain in humans or primates, is likely
to add yet another failed trial to the pile of such failures in stroke.

An attractive drug delivery strategy in stroke is to use the stroke cavity itself as a depot site.
The stroke cavity may be an ideal target. It is a cavity, because the necrotic tissue is absorbed,
and can accept a large volume injection for the CNS. It is located directly adjacent to a major
target site of neural repair and recovery in stroke, the peri-infarct tissue. New bioengineering
approaches provide hydrogels or other delivery systems that are compatible with the brain and
support drug delivery or stem cell engraftment from the stroke cavity. Indeed, local release of
an anti-Nogo peptide through such an approach improves behavioral recovery without the need
for prolonged intraventricular catheterization (Ma et al., 2007). Hydrogel support of
transplanted stem cells allows their survival within the infarcted cavity, without an approach
of multiple injections into peri-infarct tissue that may damage normal brain (Bible et al.,
2009). Direct operative stereotaxic access to the stroke cavity is or will soon be commonplace
in neurosurgical operating suites (Miller et al., 2008; Carmichael et al., 2008).

Learning and Memory, Peri-Infarct Cortex and Pharmacological Repair
Therapies

Neurorehabilitation employs learning rules to guide therapy, such as learned non-use, mass
action, contextual interference and distributed practice (Dobkin, 2003; Krakauer, 2006). These
therapies for brain injury induce a reorganization in brain mapping that closely parallels that
seen with memory and learning paradigms: an initially diffuse network of brain areas is
gradually funneled down with training into a core set of areas directly involved in the tasks
(Kelly et al., 2006; Butefisch et al., 2006). In addition to brain imaging correlates, the processes
of learning and memory and neuroplasticity after stroke share similar molecular mechanisms.
Genes that are important in learning and memory also are upregulated during neural repair
after stroke, including the stathmin family genes SCLIP and SCG-10 (Peng et al., 2003), the
membrane-associated phosphoproteins GAP43 and MARCKS (Holahan and Routtenberg,
2008; Solomonia et al., 2008), the transcription factor c-jun (Tischmeyer et al., 1994) and the
cell adhesion molecule L1 (Arami et al., 1996) (Carmichael et al., 2005). On a cellular level,
similar types of neuronal responses are seen in stroke and in learning and memory in terms of
dendritic remodeling (Brown et al., 2007) and LTP (Hagemann et al., 1998). With theses
similarities in cognitive training principles, brain imaging, effector proteins and cellular
responses, it has long been supposed that the molecular correlates of learning and memory are
the underpinnings of recovery or compensation from brain injury.

This idea that some aspect of learning is the neuronal basis for recovery has led to ad hoc
attempts to treat brain injured patients with any available drug that might also stimulate
learning, memory or attention: including serotonin reuptake inhibitors, dopamine agonists,
methylphenidate, modafinil and amphetamine. Because these drugs were developed to treat
conditions other than neurorehabilitation from brain injury, and because they act with less
specificity on many neurotransmitter systems in the brain, their role in promoting neural
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recovery after brain injury has not withstood rigorous clinical trials (Platz et al., 2005; Sprigg
et al., 2007; Cramer et al., 2009). However, studies of molecular memory systems suggest
several targets for a pharmacological learning therapy in stroke. Several classes of drugs,
known loosely as “cognitive enhancers”, may directly stimulate learning and memory and may
be useful in stroke: AMPAKines (positive allosteric modulators of the AMPA receptor),
extrasynaptic GABAα receptor antagonists, nictonic receptor subunit alpha 7 acetylcholine
receptor agonists and phosphodieseterase 4 inhibitors (Barad et al., 1998; Lynch, 2006; Bitner
et al., 2007; Atack, 2008). PDE4 inhibitors do modulate motor map plasticity and recovery in
stroke (MacDonald et al., 2007). The other drug classes have not yet been tested in stroke.

Memory formation passes through specific molecular steps. Postsynaptic memory induction
involves αCamKII. αCAMKII is a major component of the dendritic spine, involved in spine
turnover, mediates LTP and plays a critical role in the induction of memory (Okamata et al.,
2006; Yamauchi, 2005). NMDA-dependent autophosphorylation of αCAMKII at
threonine-286 is a key initial step for the induction of synaptic plasticity (e.g. LTP) and
learning. Pre-synaptic memory induction is dependent on the activation of the small GTPase
Ras. Ras activation triggers a phosphorylation cascade through sequential steps: Ras/Raf/Mek/
MAPK (Pearson et al., 2001). In the bouton, one mechanism for the modulation of LTP
induction in this system is phosphorylation of synapsin, which facilitates synaptic glutamate
release (Kuchner et al., 2005). Memory consolidation involves a cascade that converges on the
transcription factor CREB. Genetic knockdown of CREB function in pyramidal neurons results
in deficits in CREB gene induction and maintenance of memories (Kida et al., 2001), whereas
viral gene delivery of CREB produces enhanced expression of immediate early genes following
memory testing, a greater chance of these neurons being incorporated into memory traces, and
facilitated memory (Han et al., 2007). Can drugs that stimulate these learning and memory
systems promote neural repair and recovery in stroke? The answer to this question does not so
much utilize a clinical translational rule as take from a valued pharmacological industry
practice: it is far easier to test a library of drugs developed for a molecular mechanism for one
biological process (memory) and apply it to another (stroke) than it is to develop a disease-
specific class of drugs de novo.

Targeting learning and memory systems to promote neural repair after stroke may also have
its dark side. One intriguing possibility is that activating an enhanced plasticity state in the
adult after stroke may interfere with that most plastic of brain activities, learning and memory.
An example of this is in the recently published effects of one major neural repair strategy,
digestion of glial inhibitory molecules. Chondroitin sulfate proteoglycans (CSPGs) are
extracellular glial axonal growth inhibitors that are an emerging target for neural repair in
stroke. Delivery of the degradative enzyme chondroitinase ABC produces widespread removal
of an active moiety in CSPGs even with single injections, and produces axonal sprouting and
recovery in CNS lesions. CSPGs form the perineuronal net around neurons in the adult (Galtrey
and Fawcett, 2007). Forming the peri-neuronal net is a process that leads to the mature adult
brain state (Pizzorusso et al., 2002), and perineuronal nets are important for stable
representation of long-term memories (Gogolla et al., 2009). It is possible that a neural repair
therapy such as chondroitinase may not only allow, say, axonal sprouting in motor circuits and
improved arm control after stroke, but have an “on-target effect” like disruption of stable
encoding or retrieval of memories.

Combinatorial Treatments
The active promotion of neural repair after stroke may necessitate combination therapies. Data
from initial spinal cord injury studies and axonal sprouting studies in optic nerve and stroke
injury models indicates that it is not enough to simply block an axonal growth inhibitory system,
such as the NogoA system (Benowitz and Carmichael, 2010). Adult neurons fail to regenerate
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appreciably, even with a more permissive environment, because they are not in a “growth
state”. The Benowitz lab has been a pioneer in this concept of delivering combinatorial
treatments that both block axonal sprouting and induce a neuronal growth state. Inosine
activates the kinase Mst3b and, in combination with a Nogo antagonist, markedly enhances
axonal sprouting in the denervated cervical spinal cord (Zai et al., 2009). This activation of a
neuronal growth state may resemble in some aspects placing an adult neuron into a more
embryonic growth condition (Benowitz and Carmichael, 2010). It is possible that behavioral
activity paradigms may substitute for the “growth induction” drug. Increased behavioral
activity either generally, as in environmental enrichment, or specifically, as in forced use of
the affected limb, have a dose response, timing and brain region-specific effect on neuronal
plasticity and behavioral recovery in stroke and CNS lesions (Farell et al., 2005; Conner et al.,
2005; Kleim and Jones, 2008). These behaviors specifically activate motor circuits (Ferezou
et al., 2007) that are affected in stroke. It is likely that the effect of the behaviors is mediated
in part by local release of growth factors such as BDNF (Neeper et al., 1996) in the active and
reorganizing areas with skilled reach and the running and other stimuli of environmental
enrichment.

This interaction of activity and recovery in stroke pre-clinical studies has three possibilities for
the application of rules of translational medicine. First, most candidate stroke patients will be
undergoing activity based behavioral patterns on a neurorehabilitation unit. To fully determine
the effect of a neural repair therapy, pre-clinical studies will need to incorporate some
representational model of human neurorehabilitation. Second, both rodents and patients
experience true recovery and also compensation over time in stroke (Levin et al., ’09). It is
likely that these two processes have their own kinetics, neuronal circuits and responses to
activity and to neural repair therapies. The ultimate outcome measure is functional
accomplishment of a previously impaired activity. But it is important in both pre-clinical and
clinical studies to determine whether recovery or compensation is mediating this ultimate
outcome. Decisions on types of drugs, dosing and activity paradigms may change on this basis.
Third, laboratory rodents are socially isolated, environmentally deprived and physically
inactive for generations. Exposure to environmental enrichment or skilled limb training likely
activates a burst of molecular and cellular neuroplasticity in a deprived brain that is primed for
it. However, human stroke occurs in free-range, exploratory, stimulated people. Unlike lab
rats, people with stroke may have a high degree of activation of endogenous brain plasticity
systems, and not experience the dramatic boost in neural repair that is seen in rats with activity-
based therapies.

Conclusion: What is a tolerable side effect profile in repairing the brain?
Assuming that specific CNS drug or stem cell delivery issues have been worked out, neural
repair therapies in stroke will, by definition, activate brain plasticity in the context of injury
and reorganization. For a neurologist, ischemic stroke is characterized almost entirely by
negative clinical symptoms: loss of function in the damaged brain circuits. Compared with
other forms of brain injury, there are few “positive” symptoms in stroke. For example, less
than 10% of ischemic stroke patients will develop epilepsy in 5 years (De Reuck, 2007). Very
few patients develop positive motor symptoms such as dystonia or tremor and few patients
develop what might be termed positive cognitive symptoms, such as hyperactivity, mania or
emotional lability (except for large or recurrent strokes producing pseudobulbar palsy). An
effective neural repair therapy, whether it is a drug or stem cell treatment, is designed to activate
axonal sprouting, local growth factor production or enhance neuroplasticity in injured or
adjacent cortical circuits. It may be entirely possible that enhancing plasticity in these circuits
improves, say, motor control of an affected limb or of language expression. But it is also
possible that enhanced plasticity in the injured state, within either the target brain systems or
other CNS areas, increases the chance of post-stroke epilepsy, or a movement disorder such
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as tremor or dystonia. Such a possibility has occurred in pre-clinical studies in spinal cord
injury, where activation of axonal sprouting has induced a neuropathic pain syndrome
(Deumens et al., 2008). Difficult to treat dystonias occurred after fetal cell transplantation in
Parkinson’s Disease (Freed et al., 2001).

The key rule of translational medicine is to do no harm. Neural repair therapies may produce
both good and harm in ways that require very active consideration. What happens if a patient
has medically controllable seizures, but can talk effectively because of a neural repair drug?
What if a patient has minor but daily and uncontrolled changes in shoulder posture (dystonias),
but can use that arm in her activities of daily living because of a stem cell therapy after stroke?
These are considerations that need to be made when the goal is to unlock the normal adult CNS
plasticity blockade in the formation of new connections, the widespread alteration of cognitive
maps, and in the modification of usually conservative brain changes in response to practice
and learning. In this case it may be considered that a clinical translational rule could be ignored.
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