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Abstract
Objectives—Partial seizures are often believed to be associated with EEG signals of low
complexity because seizures are associated with increased neural network synchrony. The
investigations reported here provide an assessment of the signal complexity of epileptic seizure onsets
using newly developed quantitative measures.

Methods—Using the Gabor atom density (GAD) measure of signal complexity, 339 partial seizures
in 45 patients with intracranial electrode arrays were analyzed. Segmentation procedures were
applied to determine the timing and amplitude of GAD changes relative to the electrographic onset
of the seizure.

Results—330 out of 339 seizures have significant complexity level changes, with 319 (97%) having
an increase in complexity. GAD increases occur within seconds of the onset of the partial seizure
but are not observed in channels remote from the focus. The complexity increase is similar for seizures
from mesial temporal origin, neocortical temporal and extra-temporal origin.

Conclusions—Partial onset seizures are associated with early increases in signal complexity as
measured by GAD. This increase is independent of the location of the seizure focus.

Significance—Despite the often predominant rhythmic activity that characterizes onset and early
evolution of epileptic seizures, partial seizure onset is associated with an early increase in complexity.
These changes are common to partial seizures originating from different brain regions, indicating a
similar seizure dynamic.
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Introduction
Partial seizures, the most common type of epileptic seizures (Hauser et al., 1996), are transient,
dynamic events involving neural networks. These seizures are typically brief, lasting less than
two minutes (Afra et al., 2008). Partial seizure onset reflects increased network synchrony with
repetitive synchronous firing of neurons and propagation from the seizure onset zone. Ictal
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onset patterns include periodic spiking, low voltage fast activity, or organized rhythmic
activity. These early patterns of seizure onset can facilitate seizure identification and
localization in patients undergoing long-term monitoring for presurgical evaluations. This
rhythmic activity, associated with increased neural network synchrony, may evolve over time,
changing in frequency or pattern. Visual inspection of these patterns often suggests a signal
that is less complex than the preictal period because one predominant frequency comprises a
disproportionate amount of the signal energy.

Complexity is an abstract notion that can be confusing as it is often derived from
mathematically advanced techniques that do not offer tangible interpretations of the results.
Complexity of the EEG does not have a universal definition. Several taxonomies have been
proposed to classify those measures (Wackerbauer et al., 1994; Rapp and Schmah, 1996) based
on the characteristics they assess. Wackerbauer et al. and Grassberger have reviewed some of
the existing measures (Wackerbauer et al., 1994; Grassberger, 1989). Although many
variations were developed, most of the measures used for signal processing can be traced back
to works from Shannon (Shannon, 1948), Kolmogorov (Kolmogorov, 1965), Hjorth (Hjorth,
1970), Lempel (Lempel and Ziv, 1976), Pincus (Pincus, 1991), Lopez-Ruiz (López-Ruiz et al.,
1995), Richman (Richman and Moorman, 2000) or Lambertini (Lamberti et al., 2004).

One notable field is chaos theory which became very popular soon after the initial work by
Grassberger and Procaccia (Grassberger and Procaccia, 1983). Reports of low dimensional
chaos in neurons (Rapp et al. 1985) and in EEG (Babloyantz et al., 1985; Babloyantz and
Destexhe, 1986) triggered a dramatic increase in research to understand brain dynamics and
assess the dimensional complexity, or correlation dimension D2 of brain activity. Although
early results were later shown to be biased (Theiler, 1995; Theiler, 1996), more recent studies
have refocused on assessing nonlinear dynamics rather than strict deterministic chaos (Stam,
2005; Hornero et al., 2009) and have focused more on seizure prediction (Lehnertz and Litt,
2005) than intrinsic seizure activity. However using a neuronal complexity measure L based
on D2, Lehnertz reported a focal decrease in complexity during epileptic events (Lehnertz and
Elger, 1995).

The characterization of seizure onset was at first driven by the intent to classify such onset
patterns for the purpose of improving diagnosis. Originally based on visual characteristics
(Blume et al., 1984; Ebersole and Pacia, 1996), frequency parameters were then used to assess
the onset patterns in a more objective manner (Spencer et al., 1992; Wetjen et al., 2009). Later
on, Alacorn et al. (Alarcon et al., 1995) uses the Hjorth complexity measure among other
parameters to assess the pattern of seizure onsets. Identification of seizure onset with detection
algorithms often uses a combination of spectral parameters and template matching of the
seizure characteristics (Qu and Gotman, 1997; Chan et al., 2008; Osorio et al., 1998). Recently
increases in complexity during seizures were reported using entropy measures based on wavelet
decomposition (Rosso et al., 2003).

The matching pursuit (MP) method provides a continuous time-frequency decomposition of
the signal into functions called atoms. To provide a more readily applicable method to quantify
and display this complexity, the Gabor atom density (GAD) was developed (Jouny et al.,
2003). GAD is a composite measure based on the MP decomposition. In preliminary studies
of intracranial ictal recordings, GAD changes have been demonstrated to be very reproducible
patterns, similar for recurrent seizures from a given patient (with a single seizure focus). In the
same study, GAD was also used to show the increased signal complexity of the EEG during
seizures compared to interictal EEG, including during the period of organized rhythmic activity
(ORA) for mesial lobe onset seizures.
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Signal analysis of epileptic seizures is confounded by the rapidly changing and transient nature
of the ictal events. Earlier investigations (Franaszczuk et al., 1998) have shown that the
matching pursuit (MP) method (Mallat and Zhang, 1993) can provide continuous
decompositions of these dynamic ictal events. The MP method can be applied equally well to
linear and non-linear signals and is much better suited to analysis of rapidly changing signals
than are most other methods (e.g. fast Fourier, autoregressive modeling). These early studies
suggest that partial seizures are associated with changing signal complexity during the various
phases of the seizure and that even the most rhythmic period of the seizures have greater
complexity than signals generated from Duffing equation in limit cycle behavior (Bergey and
Franaszczuk, 2001).

Our goal here is to study the complexity of the EEG signal at seizure onset and to provide a
quantitative assessment of the changes associated with it. Prior studies have investigated the
applicability of the matching pursuit method to intracranial EEG (Franaszczuk et al., 1998;
Bergey and Franaszczuk, 2001; Jouny et al., 2003) and the use for specific purpose such as
seizure detection (Jouny et al., 2005) or seizure propagation (Jouny et al., 2007).

The present study is a systematic application of the GAD measure to intracranial ictal
recordings from patients undergoing presurgical evaluations. These analyses demonstrate that
partial seizure signal complexity at the ictal onset zone reliably increases early after seizure
onset. This comprehensive analysis of a large number of seizures illustrates the utility of the
GAD measure for such analyses and supplements the previous reports noted above which were
limited in scope.

Methods
Clinical data

Records from 50 consecutive patients with intractable epilepsy undergoing presurgical
evaluations between 2004 and 2006 were selected for this study. Five patients who did not
have any seizures recorded during their stay. The remaining 45 patients were included for the
analysis of complexity changes at seizure onset. Intracranial recording arrays included
combinations of subdural multicontact grids and strips placed over the area of interest and
targeted multicontact depth electrode arrays. Seizures were recorded using a Stellate™ system
with a 1000Hz sampling rate and an anti-aliasing filter set at 300Hz, converted to EDF format
for storage and further processing. Analyses were carried out using bipolar montages using
neighboring electrodes. Events included simple and complex partial seizures with or without
secondary generalization as well as sub-clinical seizures if identified as such by the
neurologists.

The research protocol was reviewed by the Johns Hopkins Institutional Review Board and data
was stored in a database compliant with HIPAA (Health Insurance Portability and
Accountability Act) regulations. After selection, 339 seizures from the 45 patients were
available for analysis. This cohort of patients includes 22 men and 23 women. Seventeen
patients were diagnosed with mesial temporal lobe epilepsy (MTLE), 5 with neocortical
temporal lobe onset epilepsy (NeoTE), 15 with extra-temporal lobe epilepsy (NeoXTE) and 8
patients which could not be classified as either (e.g. multi-foci onset seizures, rapid bilateral
spread). The mean age for the 45 patients is 27±13.

Onset definition and electrode choice
All seizures were reviewed and classified by neurologists with subspeciality EEG and epilepsy
training and marked electrographical onsets (EO). EO is the earliest sign of epileptiform
activity which subsequently evolves into seizure activity and is clearly distinct from the
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interictal activity. The time of the EO is labeled tEO. The electrode where this early activity
was observed was marked as the focus of the seizure. When the onset of activity was regional
and could not be localized to a single electrode, one of the electrodes of the onset region was
chosen for final analysis. In these patients with regional seizure onset, preliminary GAD
analyses were performed for all electrodes within the seizure onset zone and similar dynamics
were seen for all electrodes. Therefore selection of the electrode within the seizure onset zone
for these patients with regional seizure onset did not affect the results.

Assessment of complexity changes was done by comparing changes at the focus to an
intracranial contact remote from but ipsilateral to the seizure focus. For subdural electrodes,
the remote electrode chosen was the furthest away from the focus (e.g. an occipital electrode
for a frontal onset seizure) based on 3D MRI reconstruction of the brain and overlapping
electrodes placement. For depth electrodes recordings, the remote electrode was chosen from
the same depth array but furthest from the focus.

Matching pursuit and GAD complexity
Analysis of the intracranial EEG (ICEEG) signals was done using the matching pursuit
decomposition algorithm (Mallat and Zhang, 1993). The method is an iterative procedure
which decomposes a signal on basic functions called atoms. Each atom is defined by a
modulated Gaussian function representing the most basic element which can be used to
decompose the ICEEG signal. The choice of Gaussian modulated functions for the atoms gives
an optimal time-frequency resolution resulting in equality in the Heisenberg uncertainty

principle . Δt and Δf represent the uncertainty of localization in time and frequency
respectively.

The MP algorithm is an iterative procedure that is stopped when a chosen criterion is met. A
new criterion to stop the decomposition was introduced that was more efficient in the analysis
and detection of epileptic seizures (Jouny et al., 2003). This new criterion stops the
decomposition when the latest of the atom extracted has a modulus (root square of the energy)
which is below a fixed threshold. As such, this threshold specifies the precision of the time-
frequency representation obtained. The decomposition threshold was set at 10μV (energy
threshold of 100μV2) to obtain a sufficiently detailed time-frequency representation for all the
analyses performed for this study and a comparable measure of complexity. All events were
analyzed with a moving window of 4.096 seconds, overlapping 75% for a time resolution of
1.024 seconds.

The Gabor atom density (GAD) is computed as the number of atoms m required to decompose
the signal divided by the size of the time-frequency space in each window analyzed:

where T is the length of the window in seconds, Fn is the Nyquist frequency and N is the number
of points in the window.

Estimation of levels and times of GAD changes
In this study we hypothesize that the complexity of ICEEG, GAD, can be modeled as a series
of constant levels Aj between time tj and tj+1. We assume that within each interval the signal
complexity GAD is constant with added white Gaussian noise nσ(t) of variance σ2.
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where M is the number of intervals with different levels, t0=0, tM=N, and N is number of points
in the analyzed epoch. The levels of GAD, the times of change of level, and the variance of
noise are all unknown at the start of the analysis and are computed from GAD. The maximum
likelihood estimator of each level Aj is given by the sample mean of the data over each segment.
The joint maximum likelihood estimator of levels Aj and times tj is found by minimization of:

This formula is amendable to a recursive evaluation so the minimization can be performed by
applying a dynamic programming approach (Kay, 1998). Results of this procedure are
illustrated in Figure 1C.

Given a window of analysis of one minute centered on the time tEO of the onset of the seizure,
we assume that the GAD changes can be modeled with M=3. A0 will represent the preictal
GAD level, t1 the time of the first change of GAD level related to the onset of the seizure and
A1 the GAD level after the initial GAD level change. A2 will model the variation of GAD
further into the seizure. Using the same time t0 and t1 on the remote channel allows us to
compute the GAD levels Ar0 and Ar1 for the remote channel. The three parameters that will
be analyzed are LVF=A1-A0, TDF=t1-tEO and LVR=Ar1-Ar0.

The segmentation method was selected as a mean to quantify the time and level of GAD
changes associated with the onset of ictal events. Segmentation times more than 10 seconds
prior to the electrographic onset of the ictal event and past the end of the ictal event were not
analyzed.

The MP method and the GAD derivative are single channel methods. Color-coded composite
maps of multichannel GAD complexity measures can be assembled from multiple single
channel analyses.

Results
Segmentation Analysis

Four seizures (1.2%) did not show ictal GAD level changes and five (1.5%) only had post-ictal
changes detected. In some of these seizures there was an ictal GAD increase, but the low slope
of the complexity increase, which violated the hypothesis of the segmentation procedure of a
rapid level change, prevented the segmentation from identifying the change. Segmentation
analysis identified valid ictal GAD level changes for 330 events out of 339 seizures (97.3%).
Figure 1 illustrates the segmentation procedure and an example of a mesial temporal onset
seizure with GAD increase corresponding to the EO. Figures 1 and 2 illustrate that these early
GAD increases occur at or near the seizure focus (later in the ictal propagation zone) and not
at regions remote from the seizure focus. Figure 2 is a multichannel map showing composite
GAD changes for each intracranial contact, illustrating the pattern of seizure propagation. The
ictal buildup is present in the basal region (LAT - left anterior temporal) and later in LMT and
LPT (left mesial and posterior temporal respectively). It is interesting to note the decrease in
complexity (darker blue) occuring at the same time in the others recorded regions (LFG - left
frontal grid). This decreased complexity is wide spread and correlates with a flattening of the
ICEEG in those areas. No high frequency activity is associated with these changes in the frontal
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region. This example also illustrates synchronous seizure termination in all channels and a
post-ictal period characterized by very low signal complexity.

GAD level changes
Figure 3 shows two GAD plots for a continuous 3 hour period for the focus and remote
electrodes for one patient with mesial temporal onset seizures. Arrows indicate the two seizures
occurring during that period. GAD levels for electrodes close to the focus exhibit large
increases in comparison to preictal levels. By comparison the GAD levels for electrodes remote
from the focus do not show significant changes until the decrease during postictal period (sz#1)
or until the increase late in the seizure during the propagation of the ictal activity to that region
(sz#2). The difference in baseline GAD levels between both locations is typical for mesial
versus neocortical electrodes (e.g. higher for neocortical). Only relative measures of GAD
changes were used to account for that difference in complexity. In this 3 hour sample, no GAD
increases (comparable to the ictal changes) were seen that were not associated with seizures.

Of the 330 seizures with valid segmentations, 319 seizures (96.7%) have increases in GAD
levels and eleven seizures (3.3%) have decreases in GAD levels at onset. Among those eleven
events, eight seizures have been visually identified as having an electrodecremental onset (ED).
The other five had decrease complexity but no EEG flattening.

The average GAD increase at the focus LVF is 0.06±0.03 for all seizures. The GAD level
change LVR for the remote channel averages 0.01±0.02. Paired t-test comparison between
LVF and LVR shows a significant difference between both locations (t=25.8, p<0.001) with
the GAD increase at the focus being larger than the GAD change at the remote location (Figure
4).

Time differences (TDF) between the GAD level change and the time of marked EO range from
-10s to +24s with a window of analysis of 4.096s. GAD changes occur early in the seizure,
typically within the first ten seconds and often within the first five seconds. The largest number
of GAD level changes is seen in the 3-5 seconds interval (Figure 5). The histogram of TDF
shows that the maximum of this distribution coincided with the length of the window of
analysis. The 4.096s window of analysis is a window length which permits sufficient frequency
resolution. However the window size potentially affects the ability to detect faster complexity
changes. Negative values of TDF indicate cases where EEG complexity changes are detected
just before the marked onset of the seizure.

To determine whether the measured complexity increases are dependent on the clinical onset
zone of the seizures, we performed the analysis of variance for the GAD complexity increase
at the focus (LVF) for the 37 patients with localized unifocal onset (Figure 6). The various
seizure onset locations were compared (MTLE, NeoTE and NeoXTE). However we have
unequal group size for each location and unequal number repetitions; number of seizures per
patient ranged from 1 to 86. To avoid biased results from patients with a large number of
seizures and the possible effect of clustering which would affect neocortical onset patients
mostly, only the first seizure of each patient was considered in this analysis. As mentioned
previously, patterns of GAD increase (e.g. rate of increase and degree of increase) early in the
seizure are remarkably consistent from seizure to seizure in a given patient. This reflects the
similarities of the time-frequency energy reconstructions for multiple seizures from a single
focus in a given patient. Levene statistic W for homogeneity of variance do not show significant
difference in variance (W=0.921; p=0.408). The one-way ANOVA shows that there is no
significant difference in the GAD increase between groups (F=0.063; p=0.94). A similar
analysis for TDF shows that there is no difference in the time of GAD increase (F=0.086;
p=0.92).
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Discussion
Our approach to complexity assesses the features of the EEG signal using a single measure
(GAD) capable of distinguishing relative degrees of complexity. The Gabor atom density
measure based on the matching pursuit time-frequency decomposition is based on the number
of basic oscillations (modulated Gaussian functions) needed to represent the EEG signal during
a limited period of time. By definition GAD is a density measure of the time-frequency
representation of the EEG signal.

This study of 339 seizures in 45 patients was designed to include a realistic broad spectrum of
partial seizure variability that can be encountered in presurgical patients monitored with
intracranial arrays. No preselection of patients was made and all epileptic seizures were
considered for all the patients regardless of the final diagnosis.

The complexity of the EEG as measured by GAD, the Gabor atom density, shows a consistent
increase at the onset of the seizure for the vast majority of seizures (97%) and patients (91%).
Rarely GAD decreased or did not change. The most common cause for GAD complexity
decrease at seizure onset is the occurrence of a regional electrodecremental change. EEG
flattening and the occurrence of high-frequency components can produce opposite effects on
GAD levels. Electrodecremental patterns without significant high frequency activity usually
decrease GAD values; high-frequency activity increases GAD values. Of the eleven events
with GAD decreases at onset, five were observed in a single patient with frontal lobe onset
epilepsy. Although low-voltage fast components were visible, other activities were greatly
reduced at seizure onset producing an overall GAD decrease.

Choice of the window length is a compromise between time resolution and information
gathered. A shorter 1.024s window (results not included here) showed that GAD increases can
be seen even earlier. However unless this is used for an online detection algorithm, there is
little advantage to do so. GAD complexity increases at seizure onset are present in partial
seizures originating from mesial temporal structures, temporal lobe neocortex, or extra-
temporal neocortical regions and there is no difference in the time of the GAD increase. This
uniformity of increase suggests dynamical changes that are common to all partial seizures
regardless of the site of origin of the seizure.

Although reports of seizure onset characterization using complexity measures are few, wavelet
based entropies measures used by Rosso show an increase in complexity during a limited
number of ictal events (Rosso et al., 2003). While most non-linear analyses have focused on
pre-ictal periods, an incidental report of ictal data shows an increase in synchronization
(Mormann et al., 2003) and another report suggests a decrease in correlation dimension
(Lehnertz and Elger, 1995).

The complexity of the EEG signal during epileptic seizures can be assessed by different
measures, but previous methods have not been systematically applied to large numbers of
seizures. The GAD method presented here and applied to a large number of ictal events shows
a significant and frequent increase (over 95% of seizures analyzed) in complexity at the onset
of partial seizures. This early GAD increase occurs within a few seconds of the electrographical
onset and is not observed in channels remote from onset. Furthermore this complexity change
is observed regardless of the region of onset of the seizure (mesial temporal, neocortical, and
extra-temporal). Despite the apparent contradiction of increased complexity and the rhythmic
synchronous activity of an epileptic seizure, simultaneous occurrence of apparent order and
increased complexity is not uncommon and is a known marker of self-organization (Plastino
and Rosso, 2005). Mechanisms of this increased complexity are not yet fully understood but
might be linked to the increased neural network recruitment during the initiation phase of the
seizure.
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Figure 1.
ICEEG of a seizure onset and GAD segmentation procedure to quantify complexity changes.
(A) 30 seconds of the ICEEG for seven representative channels recorded at the onset of a
complex partial seizure, three channels from the left frontal grid LFG (green) and four bottom
channels from left anterior temporal strips LAT (red). (B & D) Color-coded matching pursuit
time-frequency reconstruction of one minute of the ICEEG for focus channel LAT06-07 and
remote channel LFG43-44 respectively. (C) Gabor atom density plot for the focus channel
LAT06-07 and illustration of segmentation procedure. tEO is the time of electrographical onset
of the epileptic seizure (marked as zero). t1, t2, A0, A1 and A2 are determined by the
segmentation method. LVF is the GAD level difference between A1 and A0. TDF is the time

Jouny et al. Page 10

Clin Neurophysiol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



difference between t1 and tEO. (D) Gabor atom density plot for the remote channel LFG43-44.
Time t1 and t2 are same as in (C) and are used to calculate the Ar0, Ar1, Ar2 levels. LVR - the
GAD level change on the remote channel - is the difference between Ar1 and Ar0.
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Figure 2.
Color-coded GAD propagation map for the same seizure as illustrated in Figure 1. Propagation
maps are composite reconstructions of the color-coded GAD for individual channels. Black
lines on left side indicate the grids/strips. LFG: left frontal grid. LFP: left fronto-polar. LPT:
left posterior temporal. LMT: left mesial temporal. LAT: left anterior temporal. Zero on the
horizontal axis indicates the electrographical onset of the epileptic seizure tEO. Although this
is not a spatial representation of the spread over the brain, propagation maps allow us to identify
the regions involved during the spread of ictal activity. Channels are listed consecutively, but
on occasion consecutive channels are on opposite sides of the grid. The GAD propagation map
demonstrates the focal onset (black arrow) at LAT06-07 contacts over mesial temporal regions.
In addition the propagation map reveals the subsequent regional temporal lobe spread and
minimal spread to frontal lobe contacts. White arrow indicates the chosen remote contact. The
postictal period beginning at 145 seconds is characterized by general low complexity signals.
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Figure 3.
Plots of the GAD levels over a 3 hour period for the focus and remote electrodes with two
complex partial seizures. Arrows indicate the time of the two seizures occurring within that
window. The RPT strip was over the right posterior temporal region and the RPG grid over
the right parietal region.
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Figure 4.
Boxplots of the GAD level changes for all 330 seizures measured at the focus (LVF) and at
the remote electrode (LVR). Boxes extend from the 25% quartile to the 75% quartile (this
defines the inter quartile range IQR). The black bar inside box represents the median, the arrow
on the side indicates the mean. Bars above and below represents 1.5 times the IQR. Dots and
stars represent mild and extreme outliers (defined as outside the IQR). LVF has one extreme
outlier not represented in the graph at 0.63.
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Figure 5.
Histogram of the time of GAD increase for all 330 seizures.
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Figure 6.
Comparison of the GAD increase at focus (LVF) by region of onset. MTLE: mesial temporal
lobe epilepsy. NeoTE: neocortical temporal epilepsy. NeoXTE: neocortical extra-temporal
epilepsy. There is no significant difference between the regions of onset. Similar GAD increase
was observed for all regions.
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