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Abstract
Muscle electrical activity, or “electromyogenic” (EMG) artifact, poses a serious threat to the validity
of electroencephalography (EEG) investigations in the frequency domain. EMG is sensitive to a
variety of psychological processes and can mask genuine effects or masquerade as legitimate
neurogenic effects across the scalp in frequencies at least as low as the alpha band (8–13Hz). Although
several techniques for correcting myogenic activity have been described, most are subjected to only
limited validation attempts. Attempts to gauge the impact of EMG correction on intracerebral source
models (source “localization” analyses) are rarer still. Accordingly, we assessed the sensitivity and
specificity of one prominent correction tool, independent component analysis (ICA), on the scalp
and in the source-space using high-resolution EEG. Data were collected from 17 participants while
neurogenic and myogenic activity was independently varied. Several protocols for classifying and
discarding components classified as myogenic and non-myogenic artifact (e.g., ocular) were
systematically assessed, leading to the exclusion of one-third to as much as three-quarters of the
variance in the EEG. Some, but not all, of these protocols showed adequate performance on the scalp.
Indeed, performance was superior to previously validated regression-based techniques. Nevertheless,
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ICA-based EMG correction exhibited low validity in the intracerebral source-space, likely owing to
incomplete separation of neurogenic from myogenic sources. Taken with prior work, this indicates
that EMG artifact can substantially distort estimates of intracerebral spectral activity. Neither
regression- nor ICA-based EMG correction techniques provide complete safeguards against such
distortions. In light of these results, several practical suggestions and recommendations are made for
intelligently using ICA to minimize EMG and other common artifacts.

Peri-cranial muscle or myogenic activity is distinguished by its relatively high amplitude, broad
spectral and often anatomical distributions, and exquisite sensitivity to a variety of
psychologically interesting processes. Consequently, it poses a serious inferential hazard for
any electroencephalography (EEG) investigation in the frequency-domain. This artifact can
compromise sensitivity by masking effects of interest or diminish specificity by masquerading
as a neurogenic effect. Although several techniques have been developed to correct myogenic
activity (Shackman, McMenamin, Slagter, Maxwell, Greischar & Davidson, 2009), many have
been subjected to only limited attempts at validation, rendering their utility questionable. In
particular, the sensitivity and specificity of one prominent electromyography (EMG) correction
tool, independent component analysis (ICA), remains unclear.

Several properties of cranial EMG are collectively responsible for its pernicious effects. First,
EMG is sufficiently sizable to perturb all classic EEG bands. Goncharova, McFarland,
Vaughan, and Wolpaw (2003) report myogenic artifact reliably as low as 2Hz, making even
the widely used alpha band (8–13Hz) vulnerable to muscle artifacts (Lee & Buchsbaum,
1987; Willis, Nelson, Rice & Black, 1993; Van Boxtel, 2001). Second, EMG can often be
detected across the entire scalp (Goncharova, McFarland, Vaughan & Wolpaw, 2003) due to
volume conduction of myogenic activity independently generated by muscles across the head,
face and neck. Anterior electrodes are sensitive to facial muscles, such as the corrugator
supercilii and frontalis; lateral electrodes are sensitive to the muscles of mastication,
masseter and temporalis; and posterior electrodes are sensitive to muscles at the intersection
of the cranium, spine, and torso, such as occipitalis (Supplementary Figure 1). Third, EMG is
temporally confounded with a variety of experimental manipulations. Facial EMG, in
particular, is sensitive to numerous cognitive and affective processes, including cognitive load
(Cohen, Davidson, Seulis, Saron & Weisman, 1992; Waterink & Van Boxtel, 1994), facial
mimicry (Dimberg, Thunberg & Elmehed, 2000), vocalization (Brooker & Donald, 1980), and
induced emotional states (Borden, Peterson & Jackson, 1991; Coan & Allen, 2003; Bradley,
Codispoti, Cuthbert & Lang 2001).

EMG also exhibits less stereotypy than other biological artifacts. Ocular and cardiac artifacts,
for example, arise from fixed sources and do not qualitatively differ across individuals. EMG,
however, arises from the activity of spatially distributed, functionally independent muscle
groups, with distinct topographic and spectral signatures (Goncharova et al. 2003). For
instance, frontalis activity peaks around 25Hz, whereas temporalis generates a low peak around
20 Hz and broad plateau centered around 40–80 Hz (Goncharova et al., 2003). The spectral
composition of myogenic activity also varies as a function of contraction intensity (Goncharova
et al., 2003) and fatigue (Chung, Kim & McCall, 2002). This is compounded by the fact that
the relative contributions of each muscle group to the cranial EMG vary substantially across
elicitors and individuals (Tassinary, Cacioppo & Vanman, 2007) and may differ somewhat
between spontaneous and voluntary contractions (Davidson, Shackman & Maxwell, 2004;
Morecraft & Tanji, 2009).

Given the inferential hazards posed by EMG, there is substantial interest in developing tools
to remedy myogenic artifact. Generally, EEG artifacts can be addressed in one of two ways,
rejecting contaminated epochs of data or filtering artifact from neurogenic activity. Rejection-
based techniques are most appropriate for transient artifacts, such as blinks, that influence a
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small portion of the data record. The protracted time-course of EMG makes such a solution
impractical—the high data rejection rate would markedly erode the signal to noise ratio (Jung,
Makeig, Westerfield, Townsend, Courchesne & Sejnowski, 2000; Talsma, 2008). Moreover,
because EMG covaries with cognitive and affective processes of interest, rejecting data laden
with EMG artifact would likely entail discarding some of the most interesting, discriminative
periods of neural activity (Davidson, Ekman, Saron, Senulis & Friesen, 1990). For these
reasons, EMG mandates the use of filtering techniques capable of separating myogenic from
neurogenic activity. Given marked individual differences in the spectral and anatomical profile
of myogenic activity, spatial or spectral filters or templates that are fixed across subjects cannot
be fruitfully applied to the correction of EMG artifact (cf. Frank & Frishkoff, 2006; Ille, Berg
& Scherg, 2002; Koskinen & Vartiainen, 2009). Instead, a more flexible approach is required.

One class of techniques for correcting EMG artifact employs variants of the general linear
model (GLM), such as multiple regression and ANCOVA, to identify and discard variance in
a neurogenic band of interest (e.g., alpha) that is predicted by activity in an a priori EMG band
(e.g., 70–80Hz). The advantage of this technique is that it does not require dedicated EMG
channels or manual intervention, and, by performing separate corrections at each site, can
accommodate individual differences in artifact topography. These GLM-based techniques have
proven quite popular (Allen, Coan & Nazarian, 2004; Davidson, Jackson & Larson, 2000), and
McMenamin, Shackman, Maxwell, Greischar and Davidson (2009) have shown that at least
one variant of this technique displays adequate sensitivity and specificity on the scalp.

Despite these strengths, GLM-based EMG correction techniques suffer from two key
limitations. First, they do not permit reconstruction of the EEG time-series. Thus, while useful
for investigations of tonic (“resting”) and induced changes in the EEG spectra (e.g., Lutz,
Greischar, Rawlings, Ricard & Davidson 2004), GLM-based tools cannot be applied to studies
relying on event-related spectral perturbation (ERSP) measures (Onton, Westerfield,
Townsend & Makeig, 2006). Second, McMenamin et al (2009) reported that applying GLM-
based techniques to source-estimated EEG in a voxelwise manner is not appropriate if the data
has been corrupted by EMG prior to localization. Source-estimation (“localization”) is a
technique that estimates neurogenic signals from scalp EEG recordings. This is achieved by
developing a forward-model that uses the biophysics of the EEG (e.g. the spatial filtering
imposed on neurogenic signals by the cerebrospinal fluid, skull and scalp) to predict signals
on the scalp given a particular neural generator. Source-estimation occurs when this model is
inverted and used to estimate a probable neural generator given scalp-recorded signals
(Pizzagalli, 2007). McMenamin et al (2009) speculated that the EMG-contaminated data
cannot be properly localized because a solution space that only allows intra-cranial dipoles
cannot account for a scalp-recording that contain both intra-cranial (neurogenic) and extra-
cranial (myogenic) sources. The resulting attempt at localization will be corrupted and the true
neurogenic solution rendered unrecoverable. Removing extra-cranial source activity from the
data prior to source-estimation may circumvent this problem. Unfortunately, this is not possible
using GLM-based techniques because they cannot reconstruct the artifact-free EEG time-
series.1

A second class of EMG correction methods employs ICA to decompose the EEG time-series
into a set of temporally independent components (Delorme, Sejnowski & Makeig, 2007; James
& Hesse, 2005; Onton et al., 2006; Onton & Makeig, 2006; Makeig, Debener, Onton, &
Delorme, 2004). Components are inspected visually for the presence of artifact and those
classified as predominantly artifactual (e.g. EMG or blinks) are discarded. Like GLM-based

1Source modeling in the frequency-domain requires phase information in the form of the cross-spectra. Extant GLM-correction techniques
operate on estimates of spectral power (squared amplitude) and discard information about the phase of EEG oscillations required to
compute the cross-spectra.
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correction techniques, ICA does not require dedicated EMG channels and can accommodate
variation across the scalp. More importantly, unlike GLM-based techniques, ICA allows
reconstruction of the artifact-filtered time-series, which can then be used for analyses
employing averaging, spectral decomposition, or source modeling.

Although ICA shows great promise as a tool for correcting EMG and other kinds of biological
artifact (e.g., Jung, Makeig, Humphries, Lee, McKeown, Iragui & Sejnowski, 2000), attempts
to assess its validity have been limited. Many validation studies have relied on small samples
of ad hoc data (Delorme, Westerfield & Makeig, 2007; Jung et al., 2000; Wallstrom, Kass,
Miller, Cohn & Fox et al., 2004; Flexer, Bauer, Pripfl, & Dorffner, 2005; Ting, Fung, Chang,
& Chan, 2006; Frank & Frishkoff, 2006). While others have used simulations (e.g., Crespo-
Garcia, Atienza & Cantero, 2008; De Clercq, Vergult, Vanrumste, Van Hees, Palmini, Van
Paesschen & Van Huffel, 2005; Delorme et al., 2007; Fitzgibbon, Powers, Pope & Clark,
2007; Frank & Frishkoff, 2006; Romero, Mananas & Barbanoj, 2008). In simulations, real or
artificial EMG activity is mathematically “injected” into otherwise artifact-free EEG. The
potential problem with this strategy is that the assumptions underlying injection (e.g., the
degree of temporal and spatial correlation with neurogenic signals) may not characterize real
EMG contamination, potentially limiting external validity and biasing the results in favor of
correction techniques founded on similar assumptions (Grouiller, Vercueil, Krainik, Segebarth,
Kahane & David, 2007; Hoffmann & Falkenstein, 2009).

Accordingly, the major aim of the present study was to quantitatively assess the quality of
EMG artifact correction afforded by ICA. Ideally, validation would quantitatively establish
that a technique possesses a high degree of sensitivity (i.e., attenuates myogenic artifact) and
specificity (i.e., preserves neurogenic signals) in a reasonably large and varied dataset. This
requires data in which the presence or absence of EMG (“ground truth”) is definitive or can
be reasonably assumed. To this end, the dataset previously employed by McMenamin et al.
(2009) for testing the validity of GLM-based correction techniques was reanalyzed using ICA.
This had the advantage of facilitating direct comparisons across correction techniques. In this
dataset, 128-channel EEG was acquired while neurogenic and myogenic activity were
independently varied. Alpha band neurogenic activity was selectively increased or decreased
by instructing participants to close or open their eyes, a procedure sometimes termed the
“Berger maneuver” (cf. Berger, 1929/1969). Myogenic activity was manipulated by instructing
participants to alternately tense and relax their cranial muscles. The sensitivity and specificity
of ICA-based EMG correction were then quantitatively assessed in the alpha band using
methods similar to those described in our prior report (McMenamin et al., 2009). Several
considerations led us to focus on the alpha band. First, it is relatively easy to manipulate
neurogenic activity in this frequency. To our knowledge, comparably robust manipulations do
not exist for the other classical EEG bands (Niedermeyer, 2005). Second, alpha activity has
been among the most widely used spectral indices of neural activity, from the earliest EEG
research (Berger, 1929/1969), to contemporary investigations of memory (Freuenberger,
Fellinger, Sauseng, Gruber & Klimesch, 2009; Gevins & Smith, 2000; Hamidi, Slagter, Tononi
& Postle, 2009), perception and attention (Romei Brodbeck, Michel, Amedi, Pascual-Leone
& Thut, 2008; Thut & Miniussi, 2009), emotion (Coan & Allen, 2003; Davidson et al.,
1990), temperament and individual differences (Carver & Harmon-Jones, 2009; Shackman,
McMenamin Maxwell, Greischar & Davidson in press), and psychopathology (Thibodeau,
Jorgensen & Kim, 2006; DeRubeis, Siegle & Hollon, 2008).

The other major aim of this study was to test whether ICA-based techniques constitute a valid
EMG correction technique for distributed intracerebral source modeling. Source modeling is
an increasingly popular technique for maximizing the anatomical information yielded by scalp-
recorded EEG (Pizzagalli, 2007) and the dissemination of commercial and freely available
software for performing distributed source localization, such as Cartool
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(http://brainmapping.unige.ch/Cartool.htm), EMSE (http://www.sourcesignal.com),
LORETA-KEY (http://www.unizh.ch/keyinst/) and SPM5
(http://www.fil.ion.ucl.ac.uk/spm/), is likely to accelerate this trend. Furthermore, prior work
indicates that EMG correction techniques deemed valid on the scalp do not necessarily confer
validity in the intracerebral source-space (McMenamin et al., 2009). Accordingly, ICA-based
procedures that proved valid on the scalp were also tested with source solutions estimated using
the low-resolution electromagnetic tomography (LORETA) algorithm.

A minor aim of this study was to evaluate the degree to which variation in the protocol for
filtering non-myogenic artifacts, such as eye movements, impacts the quality of EMG
correction. To date, existing methodological and empirical reports employing ICA provide
little direct guidance on the question of which components ought to be discarded (Shackman
et al., 2009). Furthermore, despite the fact that ICA requires trained raters to inspect hundreds
or even thousands of components for a single high-resolution EEG study (number of
components ≈ channels × participants; see Supplementary Method), the reliability of
component classification has only rarely been reported (Viola, Thorne, Edmonds, Schneider,
Eichele & Debener, 2009). Without such evidence, poor validity might simply reflect
inadequate training or an ambiguous classification protocol. Accordingly, the inter-rater
reliability was computed.

Method
Participants

The dataset consisted of seventeen individuals recruited from the University of Wisconsin–
Madison campus (16 female; M = 24.1 years, SD = 7.1) and described in an earlier report
assessing the validity of GLM-based EMG correction techniques (McMenamin et al., 2009).
Each received US$20 for their participation. Participants provided informed consent in accord
with guidelines prescribed by the local Institutional Review Board.

Design
In order to independently manipulate neurogenic and myogenic activity in the alpha band (8–
13Hz), the experiment took the form of a 2 (Eyes Open/Closed) × 2 (Muscles Tense/Relaxed)
repeated-measures design. We anticipated that participants would generate greater broad-
spectrum power, including increases in alpha power, indicative of reduced neural activity
(Allen et al., 2004; Oakes et al., 2004), during the eyes-closed condition. We further expected
participants to generate greater alpha power, indicative of increased muscle activity, during
the muscles-tense condition. Hereafter, these four conditions are referred to using the following
acronyms: Open-Relaxed (OR), Open-Tense (OT), Closed-Relaxed (CR), and Closed-Tense
(CT).

Procedure
Procedures were identical to those detailed by McMenamin et al (2009; see also Bonnet &
Arand, 2001; Freeman, Holmes, Burke & Vanhatalo, 2003). In brief, participants were
instructed how to properly tense facial muscles at the outset of the session. Frontalis and
corrugator muscles were contracted by lifting and squeezing the eyebrows together;
masseter and temporalis were contracted by lightly clenching the jaw. EEG was acquired
during sixteen 32-second blocks (order counterbalanced; 4 blocks/condition). Participants were
continuously monitored via a closed-circuit audio-video circuit and real-time EEG.
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EEG Acquisition and Preliminary Reduction
EEG were collected using a 128-channel Geodesic Sensor Net (GSN128; Electrical Geodesics
Inc., Eugene, OR) referenced to vertex (Cz) and sampled at 500-Hz (analog anti-aliasing: 0.1
– 250 Hz).2 Data reduction used a combination of EEGLAB (Delorme & Makeig, 2004;
http://www.sccn.ucsd.edu/eeglab) and in-house code written for MATLAB
(http://www.mathworks.com). A zero-phase 60-Hz notch filter removed line noise from
calibrated (µV) data, and bad channels (±100µV for >20s) or gross artifacts (±100µV for >4
channels) were manually identified and rejected. A 0.5Hz high-pass filter was used to attenuate
channel drift and better satisfy ICA’s stationarity assumption (Onton et al., 2006).3 Such
artifacts were rejected to better approximate the subtle contamination of signal that can occur
when EMG covaries with an experimental treatment. Removal of non-stereotyped artifact also
maximizes the quality of the ICA (Onton et al., 2006).

ICA
Overview—Consistent with other high-resolution EEG studies (Delorme, Westerfield &
Makeig, 2007), a spatial Principal Components Analysis (PCA) was used to reduce the
dimensionality of the EEG from 128 channels to 64 principal components (PCs) prior to
performing ICA.4 This was done in a single step as part of the ICA using the EEGLAB
runica command, implementing the extended Infomax algorithm (Bell & Sejnowski, 1995;
Lee, Lewicki, Girolami & Sejnowski, 1999).

The primary aim of this study was to assess the validity of ICA for EMG artifact correction.
Accordingly, three protocols for the correction of EMG artifact, described below, were
investigated. A secondary aim of this study was to investigate the degree to which the quality
of EMG correction was dependent on the protocol for removing non-myogenic sources of
variance (e.g., ocular artifact, noise components). Consequently, three ICA-based protocols
for the correction of non-neurogenic/non-myogenic (NNNM) components, described below,
were also examined. The quality of EMG artifact correction was evaluated for all nine factorial
combinations of the EMG and NNNM protocols. Following removal of the relevant
components, the filtered 128-channel time-series were reconstructed. Subsequent analyses
used only the 107 cephalic electrodes. Exploratory analyses (not reported) using the complete
128-channel array indicated worsened performance when the peri-cephalic electrodes on the
face and along the posterior edge of the array were retained (Supplementary Figure 1).

Component classification—Using in-house code, the variance accounted for by each of
the ICs was assessed. By default, components that individually accounted for <0.2% of the

2In hindsight, the acquisition parameters were not optimal for measuring high-frequency EMG effects. We would recommend that future
studies of myogenic artifact use a higher sampling rate (e.g., 1000Hz) and more conservative anti-aliasing filter (e.g., 250Hz) to
compensate for non-zero filter roll-off.
3Some investigators (e.g., Huang, Jung, Delorme & Makeig, 2008; Milne, Scope, Pascalis, Buckley & Makeig, 2009) employ a more
stringent 1–2Hz highpass filter for this purpose. As noted by several reviewers, for researchers interested in low-frequency ERP
components or frequency bands (e.g., delta, 1–4Hz), it is possible to train ICA on highpass filtered data and then apply the weights to
the unfiltered dataset.
4There were two reasons for doing so, aside from computational and classification efficiency. First, preliminary inspection of the 128
components extracted from the native electrode array indicated over-fitting, evidenced by fragmentation of artifacts across components
(Li, Adali & Calhoun, 2007; Lawrence & Hancock, 1999). By contrast, exploratory analyses (not reported) showed that reduction to 48
or fewer PCs prior to ICA led to under-fitting, evidenced by cross-contamination of EEG, physiological artifacts, and noise (Fava &
Velicer, 1996). Second, it has been suggested (Onton et al., 2006; Romero, Mananas & Barbanoj, 2008) that Infomax ICA requires a
minimum of 20 × c2 samples, where c is the number of channels or, equivalently, PCs. For the native electrode array, this would require
20 × 1282 = 327680 samples, whereas we had at most 16 blocks × 32-s × 500Hz = 256000 samples. Reducing the model order by half
allowed us to satisfy this criterion (20 × 642 = 81920 samples). Quantitative estimates of “model order,” the number of components
required to adequately but parsimoniously describe the data, suggested that this was sufficient (see Supplementary Method and Results).
A viable alternative to PCA-based dimension reduction is to simply prune the number channels submitted to ICA (Milne, Scope, Pascalis,
Buckley & Makeig, 2009), at the potential expense of spatial resolution (Srinivasan, Tucker & Murias, 1998; Michel, Murray, Lantz,
Gonzalez, Spinelli & Grave de Peralta, 2004).
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variance were categorized as Low-Variance5. In cases where the determination was
unambiguous, exceptions were made. As described in the Supplementary Method and Results
(Supplementary Figures 2–13), the remaining components were classified as neurogenic
(Neuro), myogenic (Myo), a combination of the two sources (Neuro-Dominant or Myo-
Dominant), or artifact (residual Gross or Ocular). Components classified as Gross included
reference, ground, electrocardiographic, and alternating current artifacts. Components that met
the minimum variance criterion, but proved impossible to unambiguously categorize were
classified as Noise. Classifications were made by two raters based on inspection of the
component’s time-series, power spectrum, and topography. When disagreements occurred,
final classification was by consensus. Inter-rater reliability, assessed prior to consensus using
Krippendorff’s alpha (Hayes & Krippendorff, 2007), was excellent, α=.98 (for details, see
Supplementary Method). We urge investigators with a practical interest in using ICA for
artifact reduction to examine our detailed classification protocol (see Supplementary Method
and Results).

Correction of EMG artifact—Three different ICA-based protocols for removing myogenic
artifact were assessed. The Minimal-EMG protocol discarded only those components that
contained clear EMG activity in the absence of any identifiable neurogenic activity (i.e.,
rejected Myo components). The Intermediate-EMG protocol expanded this definition to
include mixed components in which myogenic activity was more prominent than neurogenic
activity (i.e. rejected both Myo and Myo-Dominant components). The Maximal-EMG protocol
rejected any component containing myogenic signal, even if myogenic activity was less
prominent than neurogenic activity (i.e., rejected Myo, Myo-Dominant, and Neuro-Dominant
components). Thus, the Maximal-EMG protocol performs the strictest filtering of the data, at
the potential expense of discarding neurogenic signals of interest.

Filtering of non-neurogenic/non-myogenic (NNNM) signals—To provide a specific
test of ICA’s utility for removing EMG artifact, it is necessary to first filter signals that are not
clearly neurogenic or myogenic (cf. McMenamin et al., 2009). However, the choice of which
components to remove is subjective and has a marked impact on the number of components
and percentage of variance retained (see Results). Accordingly, three different ICA-based
protocols for filtering non-neurogenic/non-myogenic signals were used. The Minimal-
NNNM protocol made the fewest assumptions, filtering only those components that were
explicitly classified as Gross or Ocular artifact, similar to the method used in McMenamin et
al. (2009). The Intermediate-NNNM protocol made the additional assumption that components
categorized as Noise do not contain meaningful neurogenic signal and filtered them as well.
The Maximal-NNNM protocol further assumed that Low-Variance components do not contain
significant neurogenic signal and filters them as well.

Scalp Spectral Power Density Estimation
Following reconstruction of the filtered time-series, epochs with residual artifact (i.e.,
deviations exceeding ±200 µV for more than half an epoch or variance exceeding 1000 µV2)
or flat channels (epoch variance less than 0.25 µV2) were automatically rejected (Delorme et
al., 2007). After residual artifact-rejection, the rejected channels were interpolated with a
spherical spline when at least one neighboring electrode was usable (Greischar et al., 2004).
Data were re-referenced to an average montage (Davidson et al., 2000; Dien, 1998) and spectral
power density (µV2/Hz) estimated for the alpha (8–13Hz) band using Welch’s (1967) method

5Preliminary inspection of the ICA results indicated that such low-variance (<0.2%) components were dominated by noise, making them
difficult to reliably classify and leading raters to devote an undue amount of time to their consideration. The threshold of 0.2% was
arbitrarily chosen to minimize the cumulative amount of variance that was automatically classified as “noise” (i.e., remained unclassified).
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on sliding Hanning-windowed epochs (50% overlap). Estimates were log10 transformed to
normalize the distribution (Allen et al., 2004; Gasser, Bacher & Mocks, 1982).

LORETA Distributed Source Current Density Modeling
The modeling of distributed sources from scalp-recorded electrical activity was performed
using previously published procedures (McMenamin et al., 2009; Shackman et al., in press)
via in-house MATLAB code implementing the LORETA algorithm (Pascual-Marqui, Michel
& Lehmann, 1994) to estimate intracerebral current density. LORETA has undergone extensive
cross-modal validation (reviewed in Shackman et al., in press; Pizzagalli, 2007).

An inverse operator distributed with the LORETA-Key software suite (Pascual-Marqui,
1999; http://www.unizh.ch/keyinst/; λ=10−5) was used to generate three-dimensional
intracerebral current density estimates (A/m2) from cross-spectra calculated using the artifact-
free Hanning-windowed epochs from the scalp analyses. The forward-model is a 3-shell
spherical head model using 107 cephalic EEG electrodes (Shackman et al., in press). The
source-space is normalized to the Montreal Neurological Institute’s probabilistic MRI
anatomical template (i.e., MNI305; Evans et al, 1993; Collins, Neelin, Peters & Evans,
1994), restricted to the cerebral gray matter, hippocampi, and amygdalae on a 7-mm3 isotropic
lattice. LORETA source-estimates were log10-transformed prior to analysis (Thatcher, North
& Biver, 2005). Results are displayed on the rendered canonical brain distributed with
LORETA-Key.

Analytic Strategy
Overview—A valid correction technique should render EMG-contaminated data statistically
equivalent to data collected under the same conditions in the absence of myogenic artifact
(Frank & Frishkoff, 2006; Debener, Strobel, Sorger, Peters, Kranczioch, Engel & Goebel,
2007; Freyer, Becker, Anami, Curio, Villringer & Ritter, 2009). Accordingly, each
combination of the EMG correction and NNNM filtering protocols was evaluated in terms of
its (i) sensitivity, the attenuation of myogenic artifact (i.e., Tense vs. Relaxed) in the alpha
band, (ii) specificity, the preservation of neurogenic effects (i.e., alpha-blocking: Eyes-Closed
vs. Eyes-Open) in the alpha band, and (iii) the degree to which each protocol introduced
correction artifacts, artificial effects generated by the correction. Sensitivity and specificity
were assessed using regions of interest (ROIs) defined by the areas of peak myogenic and
neurogenic activation, respectively. An ROI approach was used to constrain the number of
comparisons in both scalp and LORETA source-space analyses. Only those filtering protocols
that proved sufficiently valid on the scalp were assessed with LORETA. To permit a direct
comparison of ICA- and GLM-based EMG correction techniques, key analyses reported in
McMenamin et al. (2009) were recomputed using the identical validation techniques used here.
These analyses are detailed in the Supplementary Method and Results.

Sensitivity—On the scalp, a myogenic ROI was created for each of the three NNNM filters
using electrodes exhibiting a significant (p < 0.05) myogenic effect (OR-OT). Channels that
were situated at the edge of the 107-channel electrode-array, were spatially discontiguous (i.e.,
lacked at least one nearest neighbor meeting the significance criterion), or also met the inclusion
criteria for the neurogenic (i.e., specificity) ROI were excluded (range: 8–15 electrodes; many
located at the posterior base of the array). The effect of the spatial contiguity criterion was
minor, resulting in a single electrode being dropped. In the LORETA source-space, myogenic
ROIs were created by identifying voxels in the OR-OT contrast with p < .001, using a cluster-
extent threshold to correct for multiple comparisons (Nichols & Holmes, 2002; Shackman et
al, in press).
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Using the resulting ROIs, the degree to which each EMG correction protocol attenuated the
myogenic contrast (i.e., EMG-corrected OR-OT vs. 0) was tested. Additional contrasts tested
the degree to which each EMG-correction protocol removed myogenic effects using double
differences that compared three EMG-corrected contrasts of interest and their uncorrected,
artifact-free analogs. ICA’s ability to correct EMG artifact that negatively covaried with
neurogenic signals was tested using the (EMG-corrected OT-CR) - (uncorrected OR-CR)
contrast, and the ability to correct artifact that was positively covaried with neurogenic signals
was tested using the (EMG-corrected OR-CT) - (uncorrected OR-CR) contrast. The amount
of EMG artifact surviving each correction was indexed using median and peak ROI t-values,
viewed as indices of typical and “worst-case” correction, respectively. Significant t-tests for
these contrasts indicate that the EMG-corrected EEG signals deviate from their artifact-free
analogs, evidence of poor sensitivity.

Conversely, failure to reject the null hypothesis does not indicate the absence of residual
myogenic activity. In order to rigorously test whether the EMG-corrected contrasts were
significantly equivalent to artifact-free data, the Westlake-Schuirmann test (Seaman & Serlin,
1998) was employed as a follow-up test to non-significant contrasts. Sometimes termed the
two one-sided tests (TOST) method, a number of fields (e.g., the US Food and Drug Agency;
Department of Health and Human Services, 2001) consider TOST the gold standard for testing
statistical equivalence. The null hypothesis for TOST is that the mean difference lies outside
of the range [−ε, ε], where ε is an a priori error tolerance. To reject the null (i.e., demonstrate
significant equivalence) for α = .05, one must demonstrate that the 90th-percentile confidence
interval of the mean difference between the artifact-free and EMG-corrected data lies
completely within the interval [−ε, ε]. Following our prior report (McMenamin et al., 2009),
ε was set to 0.5 standard deviations of the artifact-free contrast (i.e., OR for the OR-OT contrast,
OR-CR for positively/negatively covarying contrasts).

Specificity—Neurogenic ROIs were generated by thresholding the neurogenic contrast (OR-
CR). Owing to the large size of this effect (p < .001 at all electrodes), it proved useful to
threshold the contrast using a percentile approach. This had the advantage of creating ROIs
that were similar in size to the myogenic ROIs used to interrogate sensitivity. On the scalp,
this entailed selecting the upper tercile of channels. As before, channels that were situated on
the edge of the array, were not spatially contiguous, or met the inclusion criteria for the
myogenic (i.e., sensitivity) ROI were excluded. The latter two criteria led us to drop one
electrode. In the source-space, voxels with absolute t-values in the upper tercile for the OR-
CR contrast were selected.

As with the sensitivity analysis, t-tests and follow-up TOSTs were used to test whether
neurogenic effects were preserved following EMG correction. First, to test the impact of
correction per se on neurogenic activation, (EMG-corrected OR-CR) was compared against
(uncorrected OR-CR). Second, to test correction’s impact on negatively covarying neurogenic
and myogenic signals, (EMG-corrected OT-CR) was compared to (uncorrected OR-CR).
Third, to test correction’s impact on positively covarying signals, (EMG-corrected OR-CT)
was compared to (uncorrected OR-CR). The ε error tolerance for TOST follow-ups was defined
using the uncorrected OR-CR contrast.

Correction artifacts—To investigate the degree to which protocols generated artificial
results, two kinds of tests were conducted. The first test determined whether correction of the
EMG-contaminated myogenic contrast produced artificial effects in the neurogenic ROI (i.e.,
EMG-corrected OR-OT). The second test assessed whether correction of the EMG-free
neurogenic contrast yielded artificial effects in the myogenic ROI (i.e., [EMG-corrected OR-
CR] – [uncorrected OR-CR]). The presence of artifactual effects was assessed using the same
logic as the sensitivity and specificity tests.
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Performance ratings—For each contrast and correction protocol, sensitivity was rated as:
poor (pMedian t-test < .05 or median pTOST > .05), questionable (.10 > pMedian t-test > .05 or
median pTOST < .05), adequate (pMedian t-test > .10 and median pTOST < .05) or excellent
(pPeak t-test > .05 and all pTOST < .05). Thus, the significance of the peak t-test was only
considered in cases where a particular EMG-correction protocol showed evidence of adequate
or excellent sensitivity using the median-based tests.

Results
Scalp

Effects Prior to EMG Correction—Visual inspection indicated that the topography of the
four alpha-band contrasts was similar across the three NNNM protocols (Figure 1).

Myogenic ROI: Consistent with expectation, scripted muscle tensing increased alpha power
near facial muscles at midline-, left- and right-frontal electrodes. The myogenic contrast (OR-
OT) was significant at 34–39 anterior electrodes (Figure 2) with qualitatively similar peak
locations across the three NNNM filters. The median t-scores (ts = −2.30 to −2.44, ps < .04;
ηp

2s = 0.24 to 0.27) and extreme t-scores (ts = −2.82 to −3.21, ps < .01; ηp
2s = 0.33 to 0.39)

were similar across the three protocols, indicating that the degree of EMG contamination was
also similar. This contrast was used to form the Myogenic ROIs (Figure 3), resulting in clusters
of 23–25 contiguous anterior electrodes, extending to mid-frontal and fronto-central leads (e.g.,
AF7, F2, F3, F5, F7, FC2, FC3, FT7, T7).

Neurogenic ROI: Consistent with expectation, the Berger maneuver (OR-CR) altered power
at all electrodes (ts < −4.37, ps < 0.001). The peak difference occurred at midline parietal sites
(Figure 1), and defined the neurogenic ROIs (Figure 3). The three neurogenic ROIs contained
21–26 contiguous electrodes (e.g., Pz, P1, P2, P3, P5, P7, P9, POz, PO3, PO4, PO8, Oz, CPz)
with comparable median (ts = −7.35 to −7.49, p < .001; ηp

2s = 0.77 to 0.78) and extreme t-
scores (ts = −8.85 to −9.12, p < .001; ηp

2s = 0.83 to 0.84), indicating that the strength of
neurogenic effect was minimally affected by the choice of NNNM protocol.

Covarying effects: In the absence of EMG correction, myogenic activity distorted the
magnitude of neurogenic effects in the alpha band. For instance, when changes in EMG and
EEG negatively covaried (OT-CR), the effect remained significant at all electrodes; but, the
magnitude of the neurogenic effect was significantly attenuated at 34–39 electrodes relative
to the uncontaminated effect (OR-CR). This resulted in a slightly shifted topography that
deemphasizes activation at anterior sites. Notably, significant attenuation was present at
posterior electrodes far removed from the area of peak myogenic artifact (Figure 4). A parallel,
albeit non-significant, pattern of amplification occurred at anterior sites (not shown) when
changes in EMG and EEG positively covaried (OR-CT). In this case, significant attenuation
was only observed at a small number of parietal sites (Figure 5).

Descriptive Statistics for ICA
Classification: Figure 6 depicts the relative frequency and percentage of scalp variance
predicted by each class of components. A similar pattern was found using means. Visual
inspection indicates that the most frequent classification, comprising about one-fifth of the
total, was Noise (Figure 6a). The frequency of the other classifications was somewhat smaller,
but similar to one another (11–15%). Neuro-Dominant and Gross Artifact components were
infrequent (2–3%). The frequency of the Myogenic and Myogenic-Dominant components
showed marked variability and was positively skewed. That is, a few individuals displayed
many more of these two EMG-related components than the remainder of the group.
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Collectively, the Neurogenic (25%) and Ocular components (21%) accounted for nearly half
of the variance in scalp electrical activity (Figure 6b). Myogenic, Myogenic-Dominant, and
Noise components each accounted for another 8–10%, while the Neurogenic-Dominant, Low
Variance, and Gross Artifact components each accounted for less than 2% of the variance.
There was substantial variability and positive skew in the percentage of variance accounted
for by several artifact components, particularly Ocular and Myogenic-Dominant. It is worth
emphasizing that a sizable proportion of the variance—equal to that accounted for by the purely
myogenic component—was predicted by the more heterogeneous Myogenic-Dominant
component.

Figure 7 depicts the median percentage of variance that was discarded or retained following
each combination of NNNM filter and EMG correction protocol. The choice of NNNM filter
and EMG correction protocol markedly affected the percentage of variance discarded.
Application of the NNNM filters removed from one-quarter to slightly more than one-third of
the variance in scalp electrical activity (Figure 7). There was little difference between
Intermediate- and Maximal-NNNM filters (center and right columns), presumably owing to
the small net contribution of the Low Variance components. Application of the Minimal-EMG
protocol removed another 10% of the variance (second row). When paired with the different
NNNM filters, application of either the Intermediate- or Maximal-EMG protocols removed
two-thirds to three-quarters of the variance (bottom two rows). Put another way, artifact
accounted for about twice as much variance as neurogenic activity in this sample. The small
difference between the Intermediate- and Maximal-EMG protocols (bottom two rows),
presumably stems from the infrequency of Neuro-Dominant components.

Validity of ICA-Based EMG Correction—As summarized in Table 1, only four protocols
showed questionable or better performance across all tests of sensitivity (Figure 2, Figure 4,
and Figure 5), specificity (Figure 4, Figure 5, and Figure 8), and correction-induced artifact
(Figure 2 and Figure 8): the Minimal-EMG protocol paired with Minimal- or Intermediate-
NNNM filtering and the Maximal-EMG protocol paired with Minimal- or Maximal-NNNM
filtering.6 For detailed results, see Supplementary Tables 1–3. Moreover, inspection of Table
1 indicates that among these four, the Minimal-EMG/Intermediate-NNNM protocol invariably
equaled or exceeded the performance of the Minimal-EMG/Minimal-NNNM protocol;
likewise, the Maximal-EMG/Maximal–NNNM protocol always outperformed the Maximal-
EMG/Minimal-NNNM protocol. Accordingly, these two combinations of EMG correction and
NNNM filtering were subjected to additional testing in the intracerebral source-space using
LORETA.

Intracerebral Source Modeling
Effects Prior to EMG Correction

Myogenic ROI—Muscle tensing increased current density in a large number of frontopolar
and ventral prefrontal voxels near the facial muscles (Figure 9). Across correction protocols,
the myogenic contrast (OR-OT) was significant at 717–789 voxels (~30% of the source-space).
Myogenic ROIs (715–749 voxels) were created from this contrast after applying a cluster-
extent threshold (Supplementary Figure 14). The median t-scores (ts = −3.75 to −3.83, ps < .
01, ηp

2 = 0.47 to 0.48) and extreme t-scores (ts = −6.19 to −6.33, ps < .001, ηp
2 = 0.71) were

similar across the two filters.

6Exploratory analyses indicated dramatically worse performance in the “EMG” band (70–80Hz). Prior to EMG correction, the myogenic
contrast (OR-OT) in this frequency range was significant at 89–90 electrodes across NNNM filters (p < .01 threshold). Following
correction, it remained significant at 68–86 electrodes.
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Neurogenic ROI—The Berger maneuver was associated with widespread attenuation of
current density across the posterior cortex (Figure 9). Using the neurogenic (OR-CR) contrast,
ROIs were generated for the Intermediate- and Maximal-NNNM filters (765–766 voxels)
across posterior voxels (Supplementary Figure 15). Median (ts = −3.92 to −3.96, ps < .01,
ηp

2 = .49) and extreme t-scores (ts = −7.26 to −7.68, ps < .001, ηp
2 = .77 to .79) were similar

across the two filters.

Covarying effects—The presence of uncorrected EMG artifact altered the magnitude of the
neurogenic effects produced by the Berger maneuver (Figure 9). In particular, when changes
in neurogenic and myogenic activity negatively covaried (OT-CR) there was a substantial
attenuation of effects in the myogenic ROI for both median (ts > 3.75, ps < .01, ηp

2s > 0.47)
and extreme t-scores (ts > 6.19, ps < .001, ηp

2s > 0.71). The attenuation was reduced, but still
observable, in the posterior neurogenic ROI (median ps < 0.08, ηp

2s > 0.18; extreme ts > 4.53,
ps < 0.01, ηp

2s > 0.56). Conversely, when changes in neurogenic and myogenic activity
positively covaried (OR-CT), effects in the myogenic ROI were amplified as indexed by both
the median (ts < −2.30, ps < .04, ηp

2s > 0.25) and extreme t-scores (ts < −4.32, ps < .001,
ηp

2s > 0.54). These deleterious effects were weaker in the neurogenic ROI, reaching
significance for the extreme (ts < −3.81, ps < .01, ηp

2s > 0.48) but not the median t-scores
(ps > .72, ηp

2s < 0.01).

Sensitivity
Myogenic contrast (OR-OT)—Although both protocols quantitatively reduced EMG
contamination in the myogenic ROI (Figure 10a, red points), their sensitivity was poor
(Supplementary Table 4, Supplementary Figures 16–17).

Negatively covarying contrast (OT-CR)—The Maximal-EMG/Maximal-NNNM pairing
showed adequate sensitivity (Supplementary Table 4), whereas the Minimal-EMG/
Intermediate-NNNM pairing evidenced poor sensitivity. Across protocols, voxels in the
myogenic ROI showing weaker EMG contamination were more resistant to correction (Figure
10c).

Positively covarying contrast (OR-CT)—Again, the Maximal-EMG/Maximal-NNNM
pairing demonstrated adequate sensitivity, whereas the Minimal-EMG/Intermediate-NNNM
pairing showed poor sensitivity (Supplementary Table 4). Inspection of the myogenic ROI
voxels that yielded peak errors indicated that the Minimal-EMG/Intermediate-NNNM pairing
tended to undercorrect the data (negative t-scores), whereas the Maximal-EMG/Maximal-
NNNM pairing tended to overcorrect the data (positive t-scores), albeit to a lesser degree. This
is depicted in Figure 8c and Figure 10d.

Specificity
Neurogenic contrast (OR-CR contrast)—The Maximal-EMG/Maximal-NNNM pairing
showed questionable specificity, whereas the Minimal-EMG/Minimal-NNNM pairing showed
adequate specificity (Figure 10b, blue points, Supplementary Table 5, Supplementary Figures
18–19).7 Inspection of the neurogenic ROI voxels that yielded peak errors indicated that in the
absence of EMG artifact both protocols attenuated changes in activation associated with the

7We interpreted differences in the size of the neurogenic contrast as evidence of non-specificity. Nonetheless, such differences might
instead reflect amplification of the neurogenic statistical effect (“signal-to-noise”) following EMG correction. This would occur if EMG
correction led to reductions in error (“noise”) that were substantially larger than reductions in the mean difference across conditions
(“signal”). If this were so, the magnitude of the t-test following EMG correction should increase. Contrary to this alternative account,
the t-test for the neurogenic contrast was decreased following Maximal-EMG correction (Maximal-NNNM: t=−3.92; Maximal-EMG/
Maximal-NNNM: t=−3.70).
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Berger maneuver. This was particularly evident for the Maximum-EMG protocol paired with
Minimal-NNNM filtering.

Negatively covarying contrast (OT-CR)—Both protocols tended to attenuate neurogenic
activity, yielding questionable or worse specificity (Supplementary Table 5 and Figure 10c).

Positively covarying contrast (OR-CT)—Both pairings exhibited acceptable or better
specificity (Supplementary Table 5). Inspection of the neurogenic ROI voxels that yielded peak
errors indicated that the Minimal-EMG/Intermediate-NNNM pairing led to undercorrection
(negative t-scores), whereas the Maximal-EMG/Maximal-NNNM pairing led to
overcorrection (positive t-scores). This is depicted in Figure 10d.

Correction Artifact
Myogenic contrast (OR-OT) in the neurogenic ROI—The Maximal-EMG/Maximal-
NNNM pairing yielded an acceptable amount of correction-induced artifact when EMG was
present (Supplementary Table 6 and Figure 10a, blue points), whereas the Minimal-EMG/
Intermediate-NNNM pairing showed poor performance.

Neurogenic contrast (OR-CR) in the myogenic ROI—Both pairings showed an
acceptable level of correction artifact when EMG was absent (Supplementary Table 6 and
Figure 10b, red points).

Discussion
Given the substantial inferential threat posed by EMG contamination, there is a pressing need
for valid correction tools. In recent years, ICA has rapidly become a popular tool for correcting
EMG artifact, despite limited work assessing its validity for this purpose. Accordingly, we
quantitatively tested the sensitivity and specificity of ICA-based EMG correction using a
naturalistic dataset in which neurogenic (opening and closing the eyes, i.e. the “Berger
maneuver”) and myogenic activity (scripted muscle tensing and quiescence) were
independently manipulated. This design allowed investigation of ICA-based EMG correction
under conditions in which changes in neurogenic and myogenic activity covaried, as they do
in many experimental settings.

Low-intensity clenching of the face increased EEG spectral power across much of the scalp,
extending as far as the fronto-central electrodes. Smaller pockets of myogenic activity were
also present at the posterior edge of the electrode array (Figure 1). In contrast, the Berger
maneuver altered power across the entire array, peaking at midline parietal sites. And while
the effect-size of the anterior myogenic effect was only one-third that associated with the
posterior neurogenic effect, it was sufficient to alter the magnitude of neurogenic effects. For
instance, when changes in EMG and EEG negatively covaried, as they would be expected to
do in many experiments, neurogenic effects associated with the Berger maneuver were
attenuated at electrodes across the array, including posterior sites far removed from the area
of peak myogenic activity (Figure 1 and Figure 4).

Consistent with these findings, uncorrected EMG artifact increased alpha-band current density
across large regions (~30%) of the intracerebral source-space located near the facial muscles
(i.e., frontopolar and ventral prefrontal cortex, insula, temporal poles; Figure 9). This effect
reflects the fact that LORETA-Key and many other distributed modeling packages restrict the
source space to the cerebral cortex. Consequently, activity generated in the cranial muscles
tends to be explained by dipoles fitted to the proximal region of cortex. The Berger maneuver
was associated with attenuated current density across the posterior cortex (Figure 9).
Furthermore, covariation in neurogenic and myogenic activity significantly altered the
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magnitude of neurogenic effects in anterior regions of the brain (Figure 9). Similar, albeit less
dramatic, distortions were found in posterior regions, particularly for negatively covarying
activity.

From these data, independent components were extracted and classified for each participant.
Neurogenic components typically accounted for the most variance in scalp electrical activity
(median: 25%), whereas those classified as entirely or predominantly myogenic each accounted
for another 8–10%. Participants showed pronounced variability in the amount of variance
accounted for by components exhibiting characteristics of both myogenic and neurogenic
activity (interquartile range for “myogenic-dominant” components: 3–33%; see Figure 6).
Descriptively, the choice of which components to exclude had a marked impact on the amount
of variance retained for analysis (Figure 7). Nine different protocols for determining which
components to discard were examined, reflecting the factorial pairing of three for removing
non-neurogenic/non-myogenic (NNNM) components with three for removing EMG. NNNM
filtering removed between one-quarter and one-third of the total variance and EMG correction
removed between a tenth and one-third of the total. Together, these two filters led to the
exclusion of as little as one-third to as much as three-quarters of the variance in scalp electrical
activity.

Not surprisingly, the validity of these protocols was also quite variable. In the present study,
sensitivity (i.e., attenuation of myogenic effects), specificity (i.e., preservation of neurogenic
effects), and correction artifacts (i.e., generation of effects in the absence of artifact) were each
quantitatively assessed using ROIs corresponding to areas of peak myogenic and neurogenic
activation. Results indicated that most of the nine protocols did a reasonable job removing
EMG artifact, evidenced by adequate or excellent sensitivity (Table 1). Unfortunately, many
of these pairings also altered neurogenic activity, evidenced by inadequate specificity or
excessive correction-induced artifact (Table 1). In fact, only two pairings—Maximal-EMG
correction combined with Minimal- or Maximal-NNNM filtering—showed adequate or
excellent performance across all three measures. Furthermore, the Maximal-EMG/Maximal-
NNNM pairing tended to outperform the Maximal-EMG/Minimal-NNNM pairing. None of
the nine procedures consistently displayed excellent performance.

On the scalp, the most sensitive and specific procedure for removing EMG artifact from the
alpha band was among the strictest, indexed by the amount of variance discarded (median:
71%). That is, the Maximal-EMG/Maximal-NNNM pairing entailed rejecting any component
containing myogenic signal—including those where myogenic activity was less prominent
than neurogenic activity—in addition to those indexing gross or ocular artifacts, noise, or
unclassifiable low-variance signals. The only other procedure that consistently showed
adequate performance—the Maximal-EMG/Minimal-NNNM pairing—was similarly strict
(median variance discarded: 63%), differing only in the retention of noise and unclassifiable
components.

In contrast to the scalp analyses, Maximal-EMG correction paired with Maximal-NNNM
filtering was associated with inadequate performance in the intracerebral source-space (Figures
10 and Supplementary Tables 4–6). In particular, it failed to adequately remove EMG when
neural activity was fixed and overcorrected neurogenic activity when EMG was absent. Poor
sensitivity was also evident for the other procedures examined in the source-space (i.e.,
Minimal-EMG/Intermediate-NNNM).

Prospects for ICA-Based EMG Correction
As noted in the Introduction, many studies have documented, with varying degrees of rigor,
the utility of infomax ICA for attenuating various physical and biological artifacts.
Nevertheless, several studies have found ICA to exhibit worse performance than alternative
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source separation algorithms for ocular (Wallstrom et al., 2004; Romero et al., 2008) and EMG
artifacts (Crespo-Garcia et al., 2008; Fitzgibbon et al., 2007). More recently, Debener et al.
(2007) showed that ICA displays low specificity for ballistocardiogram artifacts, evidenced by
attenuation of event-related neurogenic activity, under some circumstances (Debener,
Mullinger, Niazy & Bowtell, 2008). Paralleling Debener and colleagues’ research, the present
findings suggest that ICA is a valid means of correcting EMG in some, but not all, cases. On
the scalp, some of the ICA-based protocols we tested displayed adequate sensitivity and
specificity, whereas other did not. Furthermore, in the intracerebral source-space, even those
protocols that showed the most promising performance on the scalp failed.

The inadequate performance of ICA in the source-space likely reflects two factors. First, source
modeling, implemented here using the LORETA algorithm and a three-shell head model,
makes use of data from all electrodes in the array, not just those in the scalp ROIs. Less-than-
perfect EMG correction at even a modest number of electrodes in- or outside of the scalp ROIs
could, therefore, exert a substantial influence on the EEG source model. As such, source
modeling can be viewed as providing a “global” check on the quality of EMG correction
performed on the scalp, complimenting the more “local” ROI analyses.

Second, several lines of evidence suggest that ICA failed to adequately separate myogenic
from neurogenic sources on the scalp, causing under-correction (low sensitivity) and over-
correction (low specificity) in the source-space. In particular,

1. The amount of variance accounted for by “mixed” components, those displaying
characteristics of both neurogenic and myogenic activity, was equivalent (e.g.,
myogenic-dominant vs. pure myogenic components, Figure 6). If ICA had cleanly
separated the two sources, one would instead expect the mixed components to be
infrequent and to account for little variance.

2. Quantitatively, none of the nine protocols consistently showed excellent performance
on the scalp. That is, a reasonably small number of “worst-case” electrodes located
inside of the scalp ROIs (Figure 3) evinced under- or overcorrection (Supplementary
Tables 1–3).

3. Qualitatively, visual inspection of the topographic maps created following EMG
correction indicated significant distortions outside of the scalp ROIs. For instance,
significant residual artifact was present at the edge of the array for the corrected
myogenic contrast depicted in Figure 2. Likewise, evidence of overcorrection (blue
regions) and, to a lesser degree, undercorrection (red regions) was present outside of
the defined ROIs when neurogenic and myogenic activity covaried (Figure 4–Figure
5).

It is worth emphasizing that these observations cannot be attributed to limitations in the
procedure for classifying or rejecting components. The manual classification protocol was
detailed (see Supplementary Method), and raters were extensively trained and highly reliable
in its application (α=.98). In contrast to prior studies, the impact of systematically varying
criteria for rejecting both non-myogenic and myogenic components was examined. Of the nine
protocols examined, only four consistently showed questionable or better performance on the
scalp, and none did so in the source-space. Systematic biases in the classification or rejection
of components cannot explain the combination of low sensitivity and specificity in the source-
space, whereas a failure to cleanly separate myogenic and neurogenic sources does.

Two factors could plausibly account for the inability of infomax ICA to fully separate myogenic
from neurogenic sources. Systematically testing these hypotheses represents a key challenge
for future research. First, inadequate separation might reflect non-optimal specification of the
number of components to extract (“model order”). Like most other high-resolution studies, a
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combination of PCA and ICA was used to extract fewer components, 64, than the limit imposed
by the number of electrodes in the array, 128. As detailed in Footnote 3, the number of
components was subjectively optimized using a trial-and-error approach. Model order was also
constrained to be identical across participants. Notably, specifying too many components or
too few (i.e., over- or under-fitting) might explain poor source separation (Naeem, Brunner &
Pfurtscheller, 2009;Ryali, Glover, Chang & Menon, 2009). This possibility could be tested
using an information theoretic approach to objectively identify the optimal model order for
each participant, as is typical in the functional magnetic resonance imaging literature
(Beckmann & Smith, 2004;Calhoun, Adali, Pearlson, & Pekar, 2001;Li, Adali & Calhoun,
2007) and has occasionally been done in the EEG literature (Mouraux & Iannetti, 2009; see
also Supplementary Method and Results). Alternatively, the deflationary approach
implemented in the fastica package (http://www.cis.hut.fi/projects/ica/fastica) could be used
(Mantini, Franciotti, Romani, & Pizzella, 2008). Stepwise ICA fitting, in which model order
and sources are estimated simultaneously, is another possible approach (Hesse & James,
2004). Procedures for optimizing model order on an individual basis would also facilitate the
development of criteria for discarding problematic participants (e.g., those with an unusually
large number of components). And, from a more practical perspective, application of such
procedures would reduce the need to classify large numbers of closely related or uninformative
components.

Second, inadequate separation could reflect EMG violating key assumptions of the infomax
ICA algorithm (Bell & Sejnowski, 1995; James & Hesse, 2005). For instance, infomax assumes
that the activation of each component is sparse and non-Gaussian. The lengthy blocks of
neurogenic and myogenic activation in the present study—and in many studies of emotion
(e.g., Coan & Allen, 2003; Davidson et al., 1990; Shackman, Sarinopoulos, Maxwell,
Pizzagalli, Lavric & Davidson, 2006)—may not adequately satisfy this assumption. Infomax
also assumes that sources are mutually temporally independent. To the degree that neurogenic
and myogenic activity are too closely coupled in the time-domain they would violate this
assumption (but cf. Ohla, Hudry & le Coutre, 2009). Future studies could test the degree to
which second-order blind source separation algorithms, that do not require strong assumptions,
such as Second Order Blind Identification (SOBI) or Algorithm for Multiple Unknown Signals
Extraction (AMUSE), produce better separation (Joyce, Gorodnitsky & Kutas, 2004; Romero
et al., 2008; Tang, Liu & Sutherland, 2005). It might also be fruitful to investigate the utility
of signal-space projection methods (Nolte & Curio, 1999; Tesche, Uusitalo, Ilmoniemi,
Huotilainen, Kajola & Salonen, 1995; Uusitalo & Ilmoniemi, 1997) or ICA performed in the
frequency-domain, which may improve the separation of sources with overlapping spectral
profiles (Annemuller, Sejnowski & Makeig, 2003, 2004; Lee, Lee, Jolesz & Yoo, 2008).
Finally, it will be important to examine the degree to which these conclusions generalize to
paradigms characterized by punctuate bursts of time-locked activation, as is typical of ERSP
studies.

GLM-Based EMG Correction
The present results would seem to partially contradict prior reports (McMenamin et al.,
2009; Shackman et al., 2009) in which the use of one form of GLM-based EMG correction,
“epoch-wise regression,” was recommended for scalp analyses. Epoch-wise regression
removes epoch-to-epoch variance in alpha-band activity predicted by contemporaneous EMG-
band activity (e.g., 70–80Hz) separately for each electrode and participant. To facilitate a more
direct comparison of GLM- and ICA-based correction techniques, the validity of epoch-wise
regression was re-examined in the present using the identical methods used for testing ICA
(see Supplementary Method and Results). Consistent with McMenamin et al (2009), epoch-
wise regression exhibited adequate performance across nearly all validation tests on the scalp
(Supplementary Tables 7–9), with the lone exception of poor specificity in the presence of
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positively covarying neurogenic activity. The performance discrepancy between these reports
is likely to be a consequence of using much larger neurogenic ROIs for the present analyses
(i.e., 23 vs. 7 electrodes). Larger ROIs were employed with the aim of indexing the impact of
EMG artifact and EMG correction in regions characterized by less extreme signals (myogenic
and neurogenic) with the idea that such signals would be more representative of real-world
changes in spectral activity. By contrast, the small, highly focused neurogenic ROI used by
McMenamin et al (2009) was blind to distortions outside of areas of peak neurogenic activity.

Future Challenges
Four limitations of the present study represent additional avenues for future research. First, the
impact of EMG artifact and EMG correction on individual differences in state or trait brain
electrical activity remains unknown. In particular, the degree to which either ICA- or GLM-
based correction techniques preserve hemispheric asymmetries in tonic (“resting”) frontal
activity, a neural marker of individual differences in emotional reactivity (Shackman et al., in
press; Coan, Allen & McKnight, 2006) and affective disorders (Thibodeau et al., 2006) remains
untested.

Second, our conclusions derive from analyses of the alpha band (8–13Hz) during extended
blocks of myogenic activity. While this represents a reasonable analog to studies using blocked
manipulations of emotion (e.g., threat of shock, emotional films), the degree to which these
conclusions generalize to event-related designs or other frequency bands is unclear. Still, it
seems likely that the quality of performance for the neighboring theta band (4–8Hz) would be
similar to that observed for alpha. In contrast, we anticipate that the quality of correction would
be lower for bands, such as gamma (>30Hz), that lie closer to peak EMG activity. Indeed,
exploratory analyses indicated poor performance for ICA in the 70–80Hz range (Footnote 5).
Finally, the degree to which the present conclusions generalize to stronger or weaker EMG
contamination is unknown (Fitzgibbon et al., 2007).

Third, source modeling was not incorporated into the component classification protocol.
Classifications were instead based on visual inspection of time-series, power spectrum, and
topography (see Supplementary Method and Results). While this is a conventional approach,
it is possible that inspection of component dipoles would have facilitated more accurate
classifications, particularly in the case of “mixed” components (e.g., Myogenic dominant).
More specifically, dipoles could be modeled using the dipfit2 or besafit plug-ins for EEGLAB.
Components characterized by dipoles at the edge of or outside of the brain could then be
classified as artifactual (myogenic or otherwise; Onton & Makeig, 2006; Milne et al., 2009).

Fourth, like nearly all prior validation studies, the tests of specificity are founded on the
assumption that myogenic activity was absent when participants were instructed to relax
(Shackman et al., 2009). If, in fact, modest amounts of EMG were present during this condition,
estimates of specificity would be artifactually reduced. We consider this a minor concern; the
location of the neurogenic ROI (~Pz) for testing specificity on the scalp (Figure 3) should
minimize contributions from the anterior, lateral, and posterior muscle groups (Supplementary
Figure 1) when myogenic activity is weak. Nevertheless, it would be informative to validate
ICA and other EMG correction techniques using data obtained during neuromuscular blockade
(Whitham et al., 2007).

Recommendations and Conclusions
Consideration of these observations and the extant literature yields several recommendations.
First, if widespread EMG artifacts are suspected, Maximal-EMG correction protocol with
Maximal-NNNM filtering should be employed. This method exhibited the best combination
of sensitivity and specificity across all tests (Table 1). It also outperformed GLM-based EMG
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correction, which never demonstrated excellent performance in any of our validation tests
(Supplementary Tables 7–9). Second, given its merely adequate sensitivity and inconsistent
specificity, we no longer recommend the use of GLM-based EMG correction techniques (cf.
McMenamin et al., 2009) for studies characterized by widespread EMG artifact. Third, for
investigations where specificity is a smaller concern than sensitivity, any of the Intermediate-
or Maximal-EMG correction ICA-based protocols represent reasonable choices. Fourth, the
use of distributed modeling techniques, such as LORETA, to estimate the intracerebral sources
of spectral EEG in studies with prominent myogenic activity is not recommended. It remains
to be seen whether it is reasonable to do so using other approaches, such as dipoles or
beamformers (Michel, Murray, Lantz, Gonzalez, Spinelli & Grave de Peralta, 2004;Nazarpour,
Wongsawat, Sanei, Chambers & Oraintara, 2008). Fifth, the results of the present study and
several others (e.g., Whitham et al., 2007; Yuval-Greenberg, Tomer, Keren, Nelken & Deouell,
2008; Yuval-Greenberg, Keren, Tomer, Nelken & Deouell, 2009;Shackman et al., 2009)
indicate that findings in the upper frequency bands (i.e., beta: 14–13Hz; gamma: >30Hz),
should be interpreted with extreme caution, particularly when they occur in the vicinity of scalp
muscles. At minimum, plots depicting the scalp topography and spectral character of the results
should be presented in sufficient detail to allow readers to independently assess whether the
phenomenon in question is neurogenic (Shackman, in press). And while ICA cannot be viewed
as a panacea for EMG contamination, careful application of ICA or related techniques for
attenuating EMG artifact represents a useful means of rejecting the most dubious results.

Recent years have witnessed a resurgence of interest in using scalp-recorded and source-
modeled EEG to answer fundamental questions about the neural implementation of cognitive
and affective processes (Makeig et al., 2004; Pizzagalli, 2007). The continued development
and careful validation of more sophisticated techniques, such as frequency-domain ICA, for
separating myogenic from neurogenic signals will have substantial benefits for this important
endeavor.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Alpha-band contrasts prior to correction
Topographic maps depict spline-interpolated t-maps for each condition-contrast (columns) and
non-neurogenic/non-myogenic (NNNM) artifact filter (rows). There were four conditions,
reflecting the factorial manipulation of myogenic (Muscles: Relaxed, Tensed) and neurogenic
activity (Eyes: Open, Closed). Contrasts were computed to isolate myogenic (OR - OT),
neurogenic (OR - CR), positively-covarying (OT - CR), and negatively-covarying (OR - CT)
activity. Note the less extreme values for the myogenic contrast (OR – OT; first column).

McMenamin et al. Page 24

Neuroimage. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Myogenic contrast (OR-OT) after EMG correction
Topographic maps depict thresholded p-values at each electrode after applying each method
of non-neurogenic/non-myogenic (NNNM) artifact filtering and ICA-based EMG correction.
Negative values are depicted in blue (dark-blue: p < .05; light-blue: p < .10; green: p > .10).
Note that the row labeled “None” depicts the thresholded OR-OT contrast from Figure 1.
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Figure 3. Scalp regions of interest (ROIs)
Gray circles depict electrodes included in the ROIs.
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Figure 4. Negatively-covarying contrast: Post-correction error
Topographic maps depict p-values corresponding to the corrected OT-CR minus uncorrected
OR-CR contrast. Positive values, indicating an increase in magnitude for the contrast, are
shown in red (dark-red: p < .05; light-red: p < .10; yellow: p > .10).
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Figure 5. Positively covarying contrast: Post-correction error
Topographic maps depict p-values corresponding to the corrected OR-CT minus uncorrected
OR-CR contrast. Positive values, indicating an increase in magnitude for the contrast, are
shown in red (dark-red: p < .05; light-red: p < .10; yellow: p > .10).
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Figure 6. A) Median frequency and B) variance (in percent) accounted for by each class of
components
Frequencies and percentages were computed within participants. Medians were then computed
across participants. Error bars indicate the 25th and 75th percentiles.
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Figure 7. Median variance retained and discarded for each combination of NNNM filter and EMG
correction protocol
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Figure 8. Neurogenic contrast: Post-correction error
Topographic maps depict thresholded p-values corresponding to the corrected OR-CR minus
uncorrected OR-CR contrast. Negative values, indicating an increase in magnitude for the
neurogenic contrast, are shown in blue (dark-blue: p < .05; light-blue: p < .10; green: p > .10).
Positive values, indicating correction-induced magnitude reduction of the neurogenic contrast,
are shown in red (dark-red: p < .05; light-red: p < .10; yellow: p > .10).
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Figure 9. Contrasts of interest in the source-space after applying the Intermediate-NNNM filter
A) Myogenic contrast (OR-OT), B) Neurogenic contrast (OR-CR), C) Error induced by
negatively-covarying artifact prior to EMG correction ([OT-CR] minus [OR-CR]), and D)
Error induced by positively-covarying artifact ([OR-CT] minus [OR-CR]) prior to EMG
correction.
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Figure 10. Source-space effects of EMG correction
Uncorrected (x-axis) compared to ICA-corrected t-values (y-axis) for voxels in the source-
space, color-coded by ROI (Blue: Neurogenic ROI; Red: Myogenic ROI; Green: Both ROIs).
Points close to the solid horizontal line are voxels where t approached zero after correction,
indicating high sensitivity for EMG-contaminated contrasts and low specificity for the EMG-
free neurogenic contrast. Conversely, points lying beyond the broken horizontal lines (p = .05)
were significantly altered by correction. Points along the diagonal were unchanged by
correction, indicating low sensitivity for EMG-contaminated contrasts and high specificity for
the neurogenic contrast. Note that row B plots the uncorrected OR-CR contrast (x-axis) against
the change in OR-CR after correction (i.e. correction induced error; y-axis).
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