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Abstract
Opiates and exogenous cannabinoids, both potent analgesics used for the treatment of patients with
neuropathic pain, bind to and activate class A G-protein coupled receptors (GPCRs). Several lines
of evidence have recently suggested that opioid and cannabinoid receptors can functionally interact
in the central nervous system (CNS). These interactions may be direct, such as through receptor
heteromerization, or indirect, such as through signaling cross-talk that includes agonist-mediated
release and/or synthesis of endogenous ligands that can activate downstream receptors. Interactions
between opioid and cannabinoid receptors may mediate many of the behavioral phenomena
associated with use of these drugs, including the production of acute antinociception and the
development of tolerance and cross-tolerance to the antinociceptive effects of opioid and
cannabinoid-specific ligands. This review summarizes behavioral, anatomical, and molecular data
characterizing these interactions during the development of neuropathic pain and during
antinociceptive treatment with these drugs alone or in combination. These studies are critical for
understanding how the receptor systems involved in pain relief are altered during acute or chronic
pain, and for designing better antinociceptive drug therapies, such as the combined use of opioid and
cannabinoid receptor agonists or selective activation of receptor heteromers, that directly target the
altered neurophysiology of patients experiencing pain.

Introduction
Neuropathic pain

In the United States alone, over 2 million people suffer chronic and debilitating neuropathic
pain as a result of trauma or disease affecting the peripheral or central nervous system (CNS)
[1]. Common causes of neuropathic pain include diabetic neuropathy, nerve compression
syndromes, postherpetic or trigeminal neuralgia, stroke, multiple sclerosis and spinal cord
injury [2]. Clinically, neuropathic pain has both a sensory discriminative component,
manifested in part as allodynia (an abnormally painful response to normally innocuous stimuli)
and hyperalgesia (an exaggerated response to painful stimuli), and an affective component
characterized by heightened anxiety and depression, diminished motivation, and changes in
motor control [3,4]. Treatment of neuropathic pain is difficult and controversial; however, both
components of neuropathic pain are affected significantly by administration of opiates such as
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morphine and exogenous cannabinoids such as Δ9tetrahydrocannabinol (THC), compounds
that have analgesic and addictive properties [1]. These observations suggest that there are
functional interactions between the endogenous cannabinoid and opioid receptor systems, both
of which are altered during neuropathic pain [5], in the modulation of nociceptive processing.
This review focuses on recent work detailing interactions between these receptor systems
during peripheral nerve injury and during production of antinociception. These studies are
crucial for understanding the pathophysiological response of the CNS to a peripheral nerve
injury and for designing new treatments that will optimize the analgesic effects of receptor-
specific ligands while minimizing undesirable side effects such as development of tolerance
and reward.

Common features of opioid and cannabinoid receptor systems
There is considerable behavioral, anatomical and biochemical evidence describing similarities
between the opioid receptor system – which includes three subtypes of receptors, mu, delta
and kappa (MOR, DOR, and KOR) and the endogenous opioid peptides that can activate these
receptors, beta-endorphin, enkephalin, and dynorphin (for review see [6]) – and the
cannabinoid receptor system – which comprises the two major cannabinoid receptors, CB1R
and CB2R, and their endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol (2-
AG), both lipid-derived messengers (for review see [7]). Activation of opioid or cannabinoid
receptors can produce similar behavioral effects, including antinociception, hypothermia,
sedation, hypotension, inhibition of intestinal motility and motor depression [8], suggesting a
similar distribution and mechanism of action. Both receptor types are found in several brain
regions known to participate in antinociception, including periaqueductal gray (PAG), raphe
nuclei and central-medial thalamic nuclei [9], suggesting that they may either act alone, or in
tandem to produce antinociception. Furthermore, MOR and CB1R have been shown to co-
localize to the same neurons within the superficial dorsal horn of the spinal cord [10,11], the
first site of synaptic contact for peripheral nociceptive afferents, raising the possibility of direct
interactions between these receptor types within the same cell.

Opioid and cannabinoid receptors also share similar signal transduction properties. Both are
GPCRs that 1) couple to Gαi, blocking cAMP production, 2) activate MAP kinases through
other second messenger systems, and 3) inhibit neurotransmitter release via inhibition of
calcium channels and activation of potassium channels [7,9,12]. Both receptors types are
generally found on presynaptic terminals, a location that is consistent with the inhibition of
neurotransmitter release [12]. These data raise the intriguing possibility that opioid and
cannabinoid receptors function together within the same cell or neuronal circuit to produce
antinociception and that modulation of one receptor system may lead to alterations in the
activity of the other.

Activation of both opioid and cannabinoid receptors with selective agonists can lead to
antinociception in animals experiencing neuropathic pain [5]. Several groups have examined
whether both receptor systems are required for the production of antinociception by exogenous
drug treatment. THC-induced antinociception was not modified in MOR, DOR, or KOR
knockout mice [13], or in MOR-DOR knockout mice [14] while, morphine-induced
antinociception was not modified in CB1R knockout mice [15]. In addition, antinociception
induced by DOR or KOR selective agonists was not altered in CB1R knockout mice [15].
Therefore, selective agonists to opioid and cannabinoid receptors only require the presence of
their respective receptor to produce antinociceptive effects. However, in wild-type animals
considerable evidence has demonstrated the involvement of the endogenous opioid system in
the production of antinociception by exogenous cannabinoid agonist treatment and vice versa,
as described below.
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Opioid/cannabinoid interactions in the production of antinociception by exogenous drug
treatment

Studies in intact animals have examined opioid/cannabinoid receptor interactions during
antinociceptive drug treatment by three main approaches, including: using selective antagonists
to one receptor to evaluate alterations in antinociception produced by selective agonists to the
other receptor; measuring the development of cross-tolerance to opioid and cannabinoid
agonists; and evaluating synergistic interactions between drugs that activate these receptors.
Results using receptor antagonists were initially controversial. While naloxone, a general
opioid receptor antagonist, was reported to block THC-induced antinociception on the tail-
flick test, relatively high doses of naloxone, doses that may have caused off-target effects, were
used in these studies [8]. Additional studies done with lower doses of selective antagonists
against opioid receptor subtypes or using antisense oligos (to KOR) clarified that MOR and
KOR, but not DOR, are involved in the antinociceptive effects of THC [8]. These results imply
that treatment with THC or other cannabinoid receptor agonists that do not bind to or activate
opioid receptors leads to release of endogenous opioid peptides that activate MOR and KOR.
In support of this hypothesis, it has been reported that intrathecal administration of the
cannabinoid receptor agonists THC or CP 55,490 leads to dynorphin B release in the spinal
cord and that antisera to dynorphin can block THC-induced antinociception [16–19].
Prodynorphin knockout mice show a reduction in THC induced antinociception [12]. The role
of opioid peptide release in cannabinoid-mediated antinociception was further supported by a
study that demonstrated that inhibitors of opioid degrading enzymes are able to potentiate THC-
induced antinociception [20]. Moreover, THC administered over 5 days leads to increases in
preproenkephalin expression in the spinal cord, PAG and striatum, increases in prodynorphin
gene expression in the spinal cord and increases in proopiomelanocortin (POMC) gene
expression in the hypothalamus [21–23]. Together, these data suggest that acute administration
of cannabinoid receptor agonists can lead to opioid peptide release and that chronic THC
administration increases endogenous opioid precursor gene expression.

Interactions between endogenous cannabinoid ligands, or “endocannabinoids”, and the
endogenous opioid system during antinociception have been evaluated using cannabinoid
receptor antagonists, or using inhibitors of enzymes that degrade endocannabinoids. The
CB1R antagonist AM251 can reverse morphine-induced, but not DOR agonist-induced,
peripheral antinociception in an inflammatory pain model [24] or central antinociception in an
acute thermal pain model [25], indicating that endocannabinoid activity may be critical for
morphine’s actions. Several groups have reported that the antihyperalgesic effects of inhibitors
of fatty acid amide hydrolase (FAAH), the enzyme that degrades AEA, can be blocked by
naloxone or nor-BNI, the KOR antagonist [26,27]. These results support the hypothesis that
increasing endocannabinoid levels using inhibitors of endocannabinoid degradation elicits
antinociception by a similar mechanism as direct activation of CB1R with THC or CP 55,490
– through the release of endogenous opioid peptides. This effect may not be restricted to
CB1R – one report recently demonstrated that direct activation of CB2R, the cannabinoid
receptor generally thought to be localized to the periphery, can induce antinociception via
release of endogenous opioid peptides, such as beta-endorphin [28].

Cross-tolerance between exogenous agonists
A considerable number of studies have examined bidirectional cross-tolerance between opioid
and cannabinoid agonists in eliciting antinociceptive effects, though these results are
conflicting. One study reported that morphine-dependent animals show decreased
antinociceptive responses to THC [29], while others reported that THC or CP 55,490 can
potentiate acute antinociception in morphine-tolerant animals [30,31]. These behavioral
findings cannot be explained solely based on changes in cannabinoid receptor expression, as
CB1R density in the spinal cord does not change in animals showing cross-tolerance to THC,
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and CB1R density is alternatively reported to decrease [31] or increase [30] in animals showing
sensitization to THC. . Other mechanisms such as cross desensitization or G-protein
sequestration could account for cross tolerance to THC [32]. Reciprocal studies, evaluating the
effects of chronic cannabinoid treatment on opioid receptor expression, have shown that
cannabinoid tolerance is associated with a slight increase in MOR protein in several brain areas
[33]. This result is somewhat counterintuitive in light of studies showing that antinociception
to morphine is reduced in animals made tolerant to the antinociceptive effects of CP 55,490
[12].

Genetic studies have yielded less ambiguous results – tolerance to the antinociceptive effects
of THC is not altered in MOR and DOR knockout animals, and tolerance to the antinociceptive
effects of morphine is not altered in CB1R knockout animals [34]. This suggests that tolerance
to exogenous opioids does not depend on the presence of cannabinoid receptors and that
tolerance to exogenous cannabinoids does not depend on the presence of opioid receptors.
However, preproenkephalin knockout animals show a decrease in THC-induced
antinociception and a decrease in the development of tolerance to the antinociceptive effects
of THC [35]. Thus, both acute antinociception and development of tolerance induced by THC
may be associated with endogenous opioid peptide release.

Synergism between opioid and cannabinoid receptor agonists
Though opioid agonists such as morphine are commonly used for patients with chronic pain,
these treatments are limited by the development of tolerance as well as the deleterious side
effects of high doses of opioids, including constipation and respiratory depression. Thus,
combination treatment of low doses of cannabinoid agonists alongside opioid agonists is
particularly attractive. Several groups have reported additive effects between agonists of these
two classes, though effects may be compound specific and correct pairing of the most effective
combinations is essential [9,36]. For example, CP 55,490 enhances morphine antinociception
when administered intrathecally or intraperitoneally while AEA does not [9], likely because it
is quickly degraded. Interestingly, opioid receptor protein is upregulated after chronic treatment
with low doses of THC and morphine [37], which may underlie the antinociceptive synergism
between these two agonists.

Changes in expression of opioid and cannabinoid receptors during neuropathic pain
Changes in receptor expression, function, and degree of interaction may underlie altered
responsiveness to antinociceptive drug treatment during chronic pain syndromes [38]. A
number of studies have compared alterations in the expression and function of opioid and
cannabinoid receptors during the development of neuropathic pain (see Table 1). While
CB1R levels have been reported to increase in ipsilateral spinal cord [39–41], or in contralateral
thalamus [42] after chronic constriction injury, spinal nerve ligation, or spared nerve injury
(see Table 2), reports of changes in opioid receptor expression during neuropathic pain vary
with the pain model used. Decreases in MOR in the spinal cord and dorsal root ganglion (DRG)
are associated with peripheral nerve lesion [38,43,44], while increases at the lesion site or in
DRG are observed during inflammatory pain [45]. DOR expression and G-protein coupling
are decreased or unchanged in spinal cord and DRG [43,46–49], while KOR expression is
reportedly unchanged or slightly increased in these tissues [50]. Together these data suggest
changes in receptor expression during neuropathic pain that are pain-model specific. It is
interesting to note that CB1R expression increases while MOR expression decreases in the
spinal cord after peripheral nerve lesion suggesting that the increase in CB1R expression could
be due to a compensatory role of this receptor.
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Functional interactions at the cellular level
Evidence from electron microscopy studies has demonstrated co-localization of CB1R and
MOR in the same neuron [10,11,51,52], raising the possibility of direct interactions between
these receptors. Consequently, several groups have evaluated functional interactions between
opioid and cannabinoid receptors in brain tissues and within in vitro systems. Studies using
whole brain or cortical membranes found that application of THC leads to an increase in the
dissociation of MOR and DOR-specific ligands [53,54], demonstrating that THC can act as an
allosteric modulator of opioid receptor binding. Functional interactions between CB1R and
DOR receptors have also been evaluated in N18TG2 cells, which endogenously co-express
these receptors. Chronic treatment of N18TG2 cells with either etorphine, an opioid agonist,
or DALN, a cannabinoid agonist, leads to agonist-induced desensitization to the respective
drug [55]. However, long term exposure to etorphine reduces the ability of DALN to activate
cannabinoid receptors – evidence for cross-desensitization [55]. This effect is not reciprocal,
as long term exposure to DALN does not reduce the ability of etorphine to activate opioid
receptors [55]. These data provide evidence for cross-tolerance between opioid and
cannabinoid receptors in an in vitro system. Together, these data demonstrate functional and
sometimes bidirectional interactions between opioid and cannabinoid receptors within cells
known to contain both receptors. These interactions may underlie the cross-tolerance and
synergism associated with antinociceptive treatment using combinations of ligands.

Conclusions and future directions
Opioid and cannabinoid receptor specific agonists are potent analgesics and remain among the
more effective treatments for patients with neuropathic pain. However, tolerance and cross-
tolerance can develop quickly to the antinociceptive actions of these drugs, limiting their long-
term use. The molecular correlates of cross-tolerance remain unclear – changes in receptor
density, thought to be markers of receptor responsiveness, are not directly associated with the
development of cross-tolerance and may be pain-model specific. Studies showing that
treatment with cannabinoid receptor agonists can lead to opioid peptide release and that
endocannabinoids are involved in the actions of opioid agonists underscore the synergistic
interactions between these two receptor systems. Indeed, combination therapy with acute or
subacute doses of opioid and cannabinoid receptor agonists may be an alternative way to
circumvent the undesirable side effects of these drugs.

Another strategy is to directly target receptor heteromers, which have emerged as new
candidates for antinociceptive therapy. Recent studies have demonstrated that opioid and
cannabinoid receptors heteromerize in membranes of co-transfected cells [56], and that
CB1R-DOR and CB1R-KOR can form heteromers as well [56]. Signaling responses to a
CB1R agonist are attenuated in the presence of a MOR agonist, and vice versa, in co-transfected
cells and in endogenous tissue expressing CB1R and MOR, indicating that the association
between these receptors leads to an antagonistic response. It follows that a bivalent drug that
simultaneously activates one receptor protomer while blocking the activity of the other receptor
protomer could be an effective analgesic. To date, such compounds have been designed against
MOR-DOR or DOR-KOR heteromers [57,58], but not against opioid-cannabinoid receptor
complexes; these compounds should be created and tested. Together, the strategies of using
combination treatment of opioid and cannabinoid agonists or directly targeting receptor
heteromers are two exciting avenues of research that need to be more fully explored, but that
have tremendous potential for reducing chronic pain.
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Table 1

Changes in opioid receptor levels in nervous system during neuropathic pain

Pain Model Region examined (all ipsilateral,
unless specified)

Receptor Direction of change

Paw inflammation Spinal cord, dorsal horn MOR ↑a [59], ↔b [43,60,61]

DOR ↔ [43,59–61]

KOR ↑ [59], ↔ [43,60,61]

DRG MOR ↑ [45], ↔ [43]

DOR ↔ [43,45]

KOR ↔ [43]

Chronic constriction injury Spinal cord, dorsal horn MOR ↑ [62], ↔ [43], ↓c [46]

DOR ↔ [43,63], ↓ [46,62,64,65]

KOR ↑ [62], ↔ [43]

DRG MOR ↑ [66,67], ↓ [43]

DOR ↔ [63], ↓ [43]

KOR ↓ [43]

Sciatic nerve MOR ↑ [67]

DOR ↔ [63]

Lumbar spinal nerve ligation Spinal cord, dorsal horn MOR ↔ [49], ↓ [68]

DOR ↓ [64]

KOR ↔ [49]

Sacral spinal nerve ligation DRG KOR ↑ [50]

Sciatic nerve transection DRG MOR ↓ [44]

DOR ↓ [64,69]

Partial sciatic nerve ligation Lower midbrain MOR ↔ [47]

Spinal cord, dorsal horn MOR ↓ [48]

DOR ↔ [48]

KOR ↔ [48]

DRG MOR ↓ [38,48]

DOR ↔ [48]

KOR ↔ [48]

Partial saphenous nerve ligation Spinal cord, dorsal horn MOR ↑ [41]

DRG MOR ↑ [41]

a
↑, increase;

b
↔, no change;

c
↓, decrease
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Table 2

Changes in cannabinoid receptor levels in nervous system during neuropathic pain

Pain Model Region examined (all ipsilateral,
unless specified)

Receptor Direction of change

Paw inflammation Spinal cord, dorsal horn CB2R ↔b [70]

Chronic constriction injury Spinal cord, dorsal horn CB1R ↑a [39]

CB2R ↑ [70]

Axotomy of sciatic nerve (tibial
branch)

Contralateral thalamus CB1R ↑ [42]

Lumbar spinal nerve ligation DRG CB1R ↑ [40]

CB2R ↑ [70]

Partial saphenous nerve ligation Spinal cord, dorsal horn CB1R ↑ [41]

CB2R ↑ [41]

DRG CB1R ↑ [41]

CB2R ↑ [41]

a
↑, increase;

b
↔, no change

Curr Opin Pharmacol. Author manuscript; available in PMC 2011 February 1.


