
Evaluation of Human Immunodeficiency Virus Biomarkers:
Inferences From Interval and Clinical Cohort Studies

Bryan Laua,b, Stephen J. Gangeb, Gregory D. Kirka,b, and Richard D. Moorea,b

aDepartment of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
bDepartment of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore,
Maryland

Abstract
Introduction—Among individuals infected with the human immunodeficiency virus (HIV),
biomarkers that predict mortality are also used to determine the time when antiretroviral therapy is
initiated. No studies have evaluated the impact of the frequency of marker measurements for either
their predictive value of mortality or how they may influence inference of the effect of therapy
initiation in analyses from observational data.

Methods—We identified 244 persons who were contemporaneously enrolled in both the AIDS Link
to the IntraVenous Experience (an interval cohort) and the Johns Hopkins HIV Clinical Cohort
between 1995 and 2004. Data from each study were used separately in 2 ways. We applied time-
dependent proportional hazards models to examine the predictive associations between markers and
mortality, and marginal structural models to examine the causal inference of therapy on mortality.
Biomarkers were used to derive the inverse probability weights.

Results—The timing frequencies of marker measurements in the interval cohort (CD4 interquartile
range = 175–194 days) were less heterogeneous than in the clinical cohort (interquartile range = 38–
121 days). Despite this, the results were concordant for CD4 (R2 = 0.537 [95% confidence interval
= 0.345–0.707] and (R2 = 0.488 [0.297–0.666], respectively). Similar concordance was found for
the HIV-1 RNA and hemoglobin analyses. When evaluating the causal effect of highly active
antiretroviral therapy (HAART), the relative hazards were 0.34 for the interval cohort study (95%
CI = 0.15–0.77) and 0.27 for the clinical cohort study (0.11–0.66).

Conclusion—Utilizing a unique co-enrollment of patients in 2 different types of cohort studies,
we find empirical evidence that inferences drawn from these different structures are similar.

Two prospective cohort designs are being used extensively in the HIV research setting–the
interval cohort and the clinical cohort.1 The interval cohort is the classic longitudinal cohort
in which individuals are followed at specified intervals such that the timing and type of data
collected are established by study protocols developed by the researchers. Prime examples of
successful HIV interval cohort studies include the AIDS Linked to the Intravenous Experience
(ALIVE) study,2 the Amsterdam Cohort Studies,3 the Italian Seroconversion Study,4 the
Multicenter AIDS Cohort Study,5 and the Women's Interagency HIV Study.6

In contrast to the interval cohort design, the clinical cohort recruits individuals from those who
are actively receiving health care for some condition, and uses data from ongoing patient care
as primary study data.1,7 Thus, the type and timing of data collection in clinical cohorts are

Correspondence: Bryan Lau, Department of Medicine, Johns Hopkins School of Medicine, 1830 E. Monument St, Room 8070, Baltimore,
MD 21287. blau1@jhmi.edu.

NIH Public Access
Author Manuscript
Epidemiology. Author manuscript; available in PMC 2010 March 1.

Published in final edited form as:
Epidemiology. 2009 September ; 20(5): 664. doi:10.1097/EDE.0b013e3181a71519.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



determined mostly by the nature of the health care services being obtained. Examples of HIV
clinical cohort studies include the AIDS Therapy Evaluation in the Netherlands cohort,8 the
Chelsea and Westminster HIV cohort,9 the Italian Cohort Naive from Antiretrovirals,10 the
Johns Hopkins HIV Clinical Cohort,11 the Swiss Cohort,12 the UK Collaborative HIV Cohort,
13 and various US HIV clinical cohorts supported through the Centers for AIDS Research.14–
17 The dichotomization of cohorts as either interval or clinical cohorts is not necessarily clear;
there may be a blend of the 2 designs in which some information (such as laboratory
measurements) are captured from clinical care without any structured visit schedule, yet
participants are brought back for interviews at 6 months. This is true for example of the Swiss
Cohort Study, which we still classified as a clinical cohort, as the participants are under care
at the 7 participating hospitals.12

An interval cohort restricts most of the data collection to a set time interval that must balance
logistical and scientific consideration. Thus the data may not capture the fullest extent of
clinical and disease information, especially if biologically relevant time points are transient.1
Conversely, clinical cohort data come from ongoing health care delivery and reflect the actual
treatment decisions made in the health care setting. With data collected more frequently but
irregularly among patients with greater health care needs, selection bias is a potential concern.
Whether similar frequency of measurements on healthier participants is needed to ensure
equitability with the possibly increased frequency for sicker patients is not clear. Such
comparisons may depend upon the data being collected. If the longitudinal data being collected
are unlikely to change while a participant remains relatively healthy, the frequency of data
collection may be irrelevant for healthier patients, as misclassification of exposures are unlikely
to occur. However, increased frequency of data collection on sicker participants may be
necessary if the data being collected (such as biologic markers) are likely to fluctuate as the
individual progresses in disease status. In addition to severity of disease, other factors such as
access to health care may also influence an individual's frequency of visits, further contributing
to the potential for selection biases.18

Questions have been raised about the comparability of inferences from interval- and clinical-
based cohort studies.19 If differences exist, then one might question which design is more
“valid.” Few studies have compared interval and clinical cohort study designs, especially with
regard to frequency of data collection. Previously, Griffin et al20 showed that analyses of time
to a specific biomarker level (eg, time to undetectable HIV-1 RNA) may be biased when the
visit frequency is not standardized.

An issue not addressed is whether a heterogeneous frequency of marker measurement within
a cohort is likely to affect either prediction or causal inference. In the present study, we
examined the potential for frequency of biomarker data collection to affect these 2 types of
analyses. Utilizing data collected on persons co-enrolled in the AIDS Linked to the Intravenous
Experience study (ALIVE, an interval cohort) and the Johns Hopkins HIV Clinical Cohort, the
association of HIV markers with all-cause mortality was examined in each study. In a second
analysis, the causal effect of highly active antiretroviral therapy (HAART) on mortality was
explored using HIV markers as predictors of HAART initiation.

Methods
Study Design and Population

We identified persons who were co-enrolled in 2 prospective cohort studies. The AIDS Link
to IntraVenous Experience study is a prospective cohort study of HIV-infected and -uninfected
individuals in Baltimore, Maryland with a history of injection drug use. At its inception in
1988, this study recruited 2946 persons with further enrollment of 735 subjects through
recruitment in 1994–1995, 1998, and 2000. All participants were required to be at least 18
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years of age and free of AIDS at entry. All participants provided written informed consent
before study participation; the study protocol has been continually reviewed and approved by
the Institutional Review Board at Johns Hopkins. Participants were scheduled for semiannual
visits including structured interviews, a computer-based risk questionnaire, clinical
examination, and collection of blood specimens. The interview and questionnaire collect
information on demographic variables, medical history, HIV risk behavior (including illicit
drug use), and use of HIV therapies. Details on the study design have been published elsewhere.
2

The Johns Hopkins AIDS Service provides longitudinal primary and subspecialty care for a
large proportion of HIV-infected individuals in the Baltimore metropolitan area. In 1990, the
Johns Hopkins HIV Clinical Cohort was established to understand and quantify the processes
and the outcomes of care for HIV-infected patients seen in clinical practice. Enrollment into
this dynamic cohort coincides with first enrollment at the HIV clinic. Information is collected
from outpatient and inpatient medical records, the Johns Hopkins Health System automated
databases, supplemental medical records from outside facilities, and vital records.
Additionally, patients provide written informed consent for study access to additional
information from other research studies being conducted within the Johns Hopkins Medical
Institution. Information is reviewed and abstracted by trained medical record technicians, and
includes comprehensive demographic, clinical, laboratory, pharmaceutical, and psychosocial
data. Mortality data are abstracted from record review of Johns Hopkins and outside hospital
records, death certificates, family reports, and linkage to both the National Death Index and
the national Social Security Death Index. The details of the study design and follow-up have
been described previously.11

For both cohort studies, CD4+ T-lymphocyte levels were measured in peripheral blood and
analyzed by 2-color flow cytometry stained with monoclonal antibodies specific for CD4+

lymphocytes.21,22 HIV-1 RNA level was quantified by in vitro nucleic acid amplification using
the Amplicor RT-PCR assay (version 1.0 before 2002 and version 1.5 after 2002 [Roche
Molecular Diagnostics, Pleasanton, CA]). Hemoglobin was obtained from complete blood
counts via automated Coulter blood count. We used Social Security numbers, names,
birthdates, sex, and race to identify persons enrolled in both cohorts.

Statistical Methods
Data were restricted to measurements taken from the time an individual had biologic markers
assessed in both cohorts until either death or censoring. Thus, only those persons who had data
collected with contemporaneous visits in both cohorts were included, although someone might
initially contribute data to both cohorts and then, due to loss to follow-up, not contribute data
in one or the other of the cohorts. To ensure comparability of the datasets, a person was
considered co-enrolled in both cohorts by taking the later of the 2 cohort-entry CD4
measurements (one from each cohort). From this time point, marker measurements were carried
forward until we identified visits in each cohort that did not have missing marker measurements
(either from being measured on this date or carried forward from a previous date). The later
visit (from either study) with all 3 markers was defined as a common baseline visit date.

The distribution of visits was examined to compare the frequency of visits between the 2
studies. Furthermore, the medians of either the participants' most extreme measurements (nadir
value for CD4 and hemoglobin; maximum value for HIV-1 RNA) occurring during follow-up,
or overall median values during follow-up, were compared between cohorts via Wilcoxon
signed rank test (as the distribution of the individual differences between cohort measurements
were not normally distributed). We used a negative binomial model to examine whether more
advanced HIV disease progression (defined by baseline CD4, baseline log10 HIV-1 RNA,
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baseline hemoglobin, and progression to clinical AIDS during follow-up) was associated with
the number of marker measurements in the clinical cohort study.

We conducted 2 analyses to examine the effect of visit structure of study designs between the
outcome and exposures. With these analyses, we wanted to remove any study differences, other
than the structure of the visit data, that could influence analytical inferences. In the first set of
analyses, we investigated the association and predictive value of established biologic markers,
CD4 counts,23–25 HIV-1 RNA levels,23,25,26 and hemoglobin concentration27–31 with
mortality. For these analyses, no adjustments were made for potential confounders because the
focus was not to evaluate the “true” association but rather to compare results from each cohort.
The only potential covariate that was included (other than the biomarker of interest) was the
time elapsed from measurement of the marker until the risk set was defined by an event
occurrence. The 3 different markers have varying patterns over the course of HIV disease.32–
34

Cox proportional hazards were used to examine the relationship between time-varying CD4+

counts, HIV-1 RNA levels, and hemoglobin concentration with mortality. Person-time began
accumulating from the baseline date up to one of the following events: death, censored as loss-
to-follow-up at last marker visit, or administratively censored on 31 December 2004.
Furthermore, to address the time gap between when a person's biomarker was last measured
and an event, the time elapsed since the last visit was included in the model, as described by
de Bruijne et al.35 Both the biomarkers and the time-elapsed variables were allowed to be
nonlinear by applying fractional polynomials.36–38 The CD4 count plus one was modeled to
allow for the logarithm transformation of CD4. To assess differences in inferences, we
compared the ratio of the relative hazards between the 2 studies. To evaluate the predictive
value of each biomarker with mortality, an estimate of the “explained randomness” (which is
analogous to explained variability, R2) was determined utilizing methods outlined by
O'Quigley et al.39,40 Furthermore, we determined percentile-based nonparametric bootstrap
95% confidence intervals (CIs) for the ratio of relative hazards and for the R2 estimates based
on 1500 full samples with replacement.41

In a second set of analyses, the association between HAART initiation and mortality was
assessed using marginal structural models.42,43 This analysis was restricted to individuals who
were not on HAART at baseline, such that the probability of treatment initiation could be
evaluated for the inverse probability of treatment weights.42,43 HAART was defined as the
receipt of a minimum of 3 antiretroviral drugs to capture early definitions of HAART.

The data were restructured into a person-month dataset in which values were carried forward
until a new marker measurement was made. Specifically, we used a pooled logistic regression
model that was weighted by inverse-probability-of-treatment and inverse-probability-of-
censor to approximate a Cox proportional hazards model.42,43 Persons who did not die during
follow-up were censored at either 31 December 2004 or 1 year after their last visit, whichever
occurred first. For a monthly interval in which a visit did not occur, the last marker value was
carried forward. We used stabilized weights to increase the efficiency of the estimator.42,43

Furthermore, because the use of weights induces within-subject correlation, generalized
estimating equations44 were used to fit the weighted logistic model by utilizing the “repeated”
option within the genmod procedure in SAS (SAS Institute, Cary, NC), to produce robust
variance estimators.42,43

For the inverse probability of treatment weights, the model from which the numerator is derived
included the following variables: time (as a restricted cubic spline with knots at the 5, 27.5,
50, 72.5, and 95th percentiles), baseline CD4 categories (≤200, 201–350, and >350 cells/mL),
baseline HIV RNA categories (≤500, 501–10000, and > 10000 copies/mL), and baseline
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hemoglobin categories (≤9.5, 9.6–11.4, 11.5–12.7, and > 12.7 g/dL). For the denominator, the
model also included the time-varying marker levels (CD4, HIV RNA, and hemoglobin, each
as restricted cubic spline with knots at the 5, 35, 65, and 95th percentiles). Similar models were
used for the inverse probability of censoring weights. For the marginal structural model, we
examined a univariate model in which only time and an indicator of HAART use were included
as covariates. A multivariate model was also examined that included the baseline marker
categories. Similar standard pooled logistic models (without inverse weights) were also
examined, except that time-varying marker levels were included within the multivariate model.

Results
The study population comprised 244 individuals enrolled in both cohort studies. The population
was primarily African American (95%) and male (67%), with a median age of 41 years
(interquartile range [IQR] = 37–45) years. The baseline marker characteristics are shown in
Table 1. The marker measurements at the baseline visit were similar for the 2 studies. The 244
participants contributed 1250 person-years of data from July 1995 through December 2004;
81 (33%) individuals died. The standard of care during this time period called for HIV patients
to be seen approximately every 3 months; thus, it is not surprising that the clinical cohort had
many more measurements of CD4, HIV-1 RNA, and hemoglobin than the interval cohort. The
number of measurements of hemoglobin in the clinical cohort greatly exceeded that of any
other marker measurements.

Figure 1 shows the distribution of the time between consecutive visits for each cohort study.
By design, the interval cohort study had visits that occurred every 6 months (Fig. 1A; median
= 182 [IQR = 175–194 days]). However, the clinical cohort study data collection was heavily
skewed to the right (Fig. 1B) with a wide range of times between visits (median = 11 days
[IQR = 1–54 days]). The time between consecutive visits differed in the clinical cohort by the
biomarker being collected (Fig. 2). The visits in which CD4 (Fig. 2A) and HIV-1 RNA (Fig.
2B) were collected had similar time between consecutive visits, as expected (median of 77
days [38–121] and 72 days, [35–120], respectively). For both CD4 and HIV-1 RNA,
participants had a median of 9 measurements during follow-up (for CD4, IQR = 4–20; for
HIV-1 RNA, IQR = 4–19). The time between consecutive hemoglobin measurements,
however, was more skewed (Fig. 2C), as the median time between consecutive visits was 11
days (IQR = 1–57), with a median of 24 measurements per person (IQR = 9–47).

Fitting a negative binomial model to the clinical cohort data, persons with a lower baseline
CD4 lymphocyte count (incidence rate ratio [IRR] = 0.91 [95% CI = 0.827–1.007] per 100
cells) and higher baseline log10 HIV-1 RNA (IRR = 1.17 [1.003–0.368]) had a greater number
of CD4 measurements. When the number of hemoglobin measurements were considered, these
trends were slightly stronger (for baseline CD4 levels, IRR = 0.89 [0.793–0.993] per 100 cells
and 1.36 [1.100–1.671] per log10 HIV-1 RNA). Taken together, these data support our
hypothesis that the rate of marker measurements was associated with HIV disease severity.

The different distributions of time between consecutive visits for the 2 studies resulted in
substantial differences in the values of the marker data. The median of an individual's most
extreme and median measurement over the entire follow-up period are shown in Table 2.
Although the overall distribution for CD4 was similar for the 2 studies, the difference between
extreme or median values obtained from each cohort paired by individual showed that the
interval cohort values tended to be lower (and the only comparison that was not statistically
significant was for the paired difference of the extreme measurement for those who had died;
Table 2). Furthermore, higher hemoglobin measurements were seen in the interval cohort as
compared with the clinical cohort, both overall and for the individually paired measurements.
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Given the differences in frequency of data collection and in the value of markers collected over
the follow-up period, the associations and predictive values of CD4 counts, HIV-1 RNA levels,
and hemoglobin concentration with mortality were assessed. Table 3 shows the model formula
and regression coefficients for the associations between biomarkers and mortality. The time
elapsed between last biomarker measurement and time of event was included only in the models
assessing HIV-1 RNA (clinical cohort only) and hemoglobin (both cohorts). As shown in the
table, the relative hazards for mortality were not linear with higher biomarker levels. Therefore,
the relative hazard for mortality associated with each biomarker is shown relative to the median
marker level across all risk sets (Fig. 3). As can be seen by the curve representing the ratio of
the relative hazard for the 2 cohorts (Fig. 3, dashed line), the estimates between the 2 cohorts
were remarkably similar for HIV RNA and for hemoglobin, but not for CD4 counts. For CD4
counts, the relative hazard curve for the interval cohort suggested a greater protective
association for higher CD4counts than does the curve for the clinical cohort. Below the
reference of 275 cells, there were no major differences in the ratio, as suggested by the bootstrap
95% CIs at 50 and 150 cells/uL. However, for the clinical cohort study, a model with a square
root transformation of CD4 counts did not fit significantly worse than the slightly better
logarithm transformation (−2 × log-likelihood: 772.4 vs. 770.7, respectively; P = 0.2). The beta
coefficient for this model was −0.129 (SE = 0.018), which essentially removes all differences
between the 2 cohorts. Similarly, for the interval cohort data, the square root transformation
(−2 × log-likelihood) was 779.7 and the logarithm transformation (−2 × log-likelihood) was
783.0 (P = 0.07). The beta coefficient for the logarithm transformation of CD4 counts was
−0.506 (SE= 0.064), which is similar to the value obtained in the clinical cohort study (Table
3).

The proportion of explained variability for each of the models is also shown in Table 3. The
confidence intervals for each of the time-updated models are wide (reflecting the limited
number of deaths). Note that the R2 for the hemoglobin models is the partial R2 for the β1
coefficient, to provide a fair comparison of hemoglobin marker after accounting for most of
the association of time elapsed. For the full model R2, there is a difference in predictive value
of the model (for the interval cohort, R2 = 0.512 [95% CI = 0.332–0.678]; for the clinical cohort,
R2 = 0.867 [0.742–0.937]) suggesting that the timing of hemoglobin measurements in the
clinical setting does contribute to the predictive value.

The relative hazard odds ratios for the analyses of the causal effect of HAART on mortality
are shown in Table 4. Because these analyses were restricted to those who were not on HAART
at baseline, the population consists of 160 people. At baseline, the majority were not on therapy
(81%), with 14% on antiretroviral monotherapy and 6% on non-HAART antiretroviral
combination therapy. During follow-up, 77 participants initiated a HAART regimen, with a
median initiation date of May 1999 (interquartile range: December 1997–April 2001). The
results for both the standard pooled logistic model and the marginal-structural-model pooled
logistic model are shown in Table 4, with and without adjustment for the marker levels (baseline
and time-varying values for the multivariate standard pooled logistic model; baseline values
only for the multivariate marginal structural model). The mean of the stabilized weights were
0.98 for the interval cohort and 1.03 for the clinical cohort. The relative hazard odds ratios
were similar between the 2 cohorts at approximately 0.30, providing evidence of a 70%
decreased risk of death after HAART initiation in both cohorts. The marginal structural model
resulted in a larger relative change from the multivariate standard pooled logistic model for
the clinical cohort than for the interval cohort.

DISCUSSION
Despite a difference in the frequency of data collection between the interval and clinical
cohorts, and a tendency for the more immunocompromised patients in the clinical cohort study
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to have measurements more frequently, similar inferences could be made about the associations
and predictive values of CD4 count, HIV-1 RNA level, and hemoglobin concentration with
mortality. It is reassuring to see that the inferences regarding CD4 counts and HIV-1 RNA
levels were similar despite study design differences, especially considering that the analyses
are being conducted on the same people. This study provides evidence that the pattern of
measurement has little practical effect on analyses of the biomarkers routinely used for
monitoring HIV patients, and suggests that prediction inferences from both types of cohort
studies are comparable. Rather than using only the most recent marker value, the predictive
power of the models would probably be increased by using the 2 most recent values, or by
including the baseline value as a time-fixed value. Furthermore, it is possible that the inclusion
of previous marker values would have greater predictive capabilities within a clinical cohort
as compared with an interval cohort. For example, we have previously shown that a rapid
decline in hemoglobin levels is suggestive of HIV disease progression to AIDS or death.28,
33,34 However, these analyses were conducted within an interval cohort; if infected persons
have a rapid decline in a short time interval, it is possible that this pattern would not be observed
in data from an interval cohort. A clinical cohort may be more likely to capture enough data
points to detect this decline and thus have improved predictive ability.28

Furthermore, the relationship of HAART with mortality was similar between the 2 cohort
studies. The 70% reduction in the relative hazard odds ratio for mortality is between the
estimate for HAART versus no therapy (relative hazard = 0.14 [95% CI = 0.07–0.29]) and for
HAART compared with dual therapy (relative hazard = 0.49 [0.31–0.79]) seen in a marginal
structural analysis among the Swiss HIV Cohort Study.19 However, their outcome variable
was a composite of either progression to AIDS or death, whereas ours was only mortality.
Nevertheless, our results are consistent, as our population is a mix of individuals initiating
HAART, some monotherapy and non-HAART combination therapy, and individuals not on
any antiretrovirals. Another study found the causal effect for HAART with progression to AIDS
or death was estimated to be a relative hazard of 0.54 (95% CI = 0.38–0.78).45 However, this
study population had a greater proportion on either single or combination therapy (40% vs.
20% in our cohort). One might therefore expect a greater attenuation in the estimate. Our results
are also congruent with the period-analysis of Detels et al46 in which calendar period was used
as a surrogate for HAART exposure in the Multicenter AIDS Cohort Study population. A
relative hazard of 0.35 (95% CI = 0.20–0.61) for AIDS or death was seen for the period after
HAART was introduced.

The exposures in these analyses were focused on comparing biologic markers between cohort
studies. This was by design because the laboratory methods for measuring these biomarkers
allow for comparability between cohort studies, whereas data collected through interviews and
questionnaires may not be comparable. Whether these types of data would provide similar
inferences depending on the structure of cohort visit design would depend on the specific
exposure being measured by the interviewer or questionnaire, and on the outcome. A limitation
of our study, however, was that these types of data were not included in this analysis because
different protocols were in place for these data.

Marginal structural models have several assumptions. One of the strongest assumptions is that
the covariates used to determine the inverse probability of weights are sufficient to adjust for
the confounding.42 It is possible that there are unmeasured confounders such that the correction
by the inverse probability weights is not adequate. However, CD4 counts and HIV-1 RNA
levels are the standard biomarkers that clinicians use to initiate treatment. Furthermore, despite
being examined on a small sample of persons who were co-enrolled in both studies, the results
are similar to what has previously been seen in this clinical cohort.47 In 1995, the incidence of
all-cause mortality was 112 deaths/1000 person-years. Since 1996, mortality has been
relatively stable at approximately 40/1000 person-years, which would be a relative reduction
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of 0.36.47 This analysis relies on a different set of assumptions compared with a marginal
structural model, and yet has similar inferences.

In summary, our results give empirical evidence that in analyses of markers measured on the
same individuals, inferences were similar whether examining the markers as an exposure or
as a time-dependent confounder in assessing the causal effect of HAART on mortality. It is
encouraging that the inferences between the 2 cohort designs for CD4 counts and HIV-1 RNA
were so similar, as these markers are the standard for assessing HIV disease progression in
patients. Given that time-dependent confounding may be greater in clinical cohorts, appropriate
methodologic tools are vital to properly assess the causal effect of clinical interventions.
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FIGURE 1.
Time between consecutive visits for 244 persons co-enrolled in the, A, interval cohort and,
B, clinical cohort studies, between 1995 and 2004.
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FIGURE 2.
Time between consecutive, A, CD4 count, B, HIV-1 RNA, and, C, hemoglobin measurements,
for the clinical cohort data collected on 244 persons between 1995 and 2004.
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FIGURE 3.
The nonlinear relative hazard for mortality according to level of, A, CD4 count (cells/uL), B,
HIV RNA (cps/uL), and, C, hemoglobin (g/dL). Interval cohort study represented by solid line;
clinical cohort study represented by dot-dash. The dashed line with bootstrap 95% confidence
interval bars is the interval cohort curve divided by the clinical cohort curve. For HIV RNA
(clinical cohort model only) and hemoglobin, the time elapsed was set at 0.3 years (Table 3),
as the median time between measurement and event was 0.29 years ([IQR] = 0.11–1.02) for
the clinical cohort study HIV RNA, 0.21 (0.08–0.72) years for the clinical cohort study
hemoglobin, and 0.31 (0.15–0.52) years for the interval cohort study hemoglobin.
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TABLE 4

The Relative Hazard OR for the Pooled Logistic Models Examining the Causal Effect of HAART on Mortality

Interval Cohorta Relative Hazard
OR (95% CI)

Clinical Cohorta Relative Hazard
OR (95% CI)

Standard pooled logistic model

 Univariate 0.72 (0.36–1.40) 0.72 (0.37–1.40)

 Multivariateb 0.47 (0.22–1.04) 0.58 (0.26–1.26)

Weighted pooled logistic modelc 0.27 (0.11–0.66) 0.34 (0.15–0.77)

a
In the interval cohort, 38 deaths; in the clinical cohort, 39 deaths. Difference is due to censoring individuals 1 year after follow-up.

b
Baseline and time-varying marker levels (CD4, HIV RNA, and hemoglobin) were included the multivariate standard pooled logistic model.

c
Only baseline marker levels are included in the weighted pooled logistic model.
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