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Abstract

Autism spectrum disorders (ASD) are associated with disturbances of neural connectivity. Functional
connectivity between neural structures is typically examined within the context of a cognitive task,
but also exists in the absence of a task (i.e., “rest”). Connectivity during rest is particularly active in
a set of structures called the default network, which includes the posterior cingulate cortex (PCC),
retrosplenial cortex, lateral parietal cortex/angular gyrus, medial prefrontal cortex, superior frontal
gyrus, temporal lobe, and parahippocampal gyrus. We previously reported that adults with ASD
relative to controls show areas of stronger and weaker connectivity within the default network. The
objective of the present study was to examine the default network in adolescents with ASD. Sixteen
adolescents with ASD and 15 controls participated in a functional MRI study. Functional connectivity
was examined between a PCC seed and other areas of the default network. Both groups showed
connectivity in the default network. Relative to controls, adolescents with ASD showed widespread
weaker connectivity in nine of the eleven areas of the default network. Moreover, an analysis of
symptom severity indicated that poorer social skills and increases in restricted and repetitive
behaviors and interests correlated with weaker connectivity, whereas poorer verbal and non-verbal
communication correlated with stronger connectivity in multiple areas of the default network. These
findings indicate that adolescents with ASD show weaker connectivity in the default network than
previously reported in adults with ASD. The findings also show that weaker connectivity within the
default network is associated with specific impairments in ASD.
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1. INTRODUCTION

Three core features define autism spectrum disorders (ASD): impairments in social
functioning, difficulties in communication, and restricted and repetitive behaviors and/or
interests (APA 1994). Converging lines of evidence indicate that ASD is a disorder of brain
connectivity (Belmonte et al. 2004;Just et al. 2007). First, individuals with ASD show marked
disturbances in cortical organization as evidenced by narrower and more densely packed
columns of neuronal cells (Casanova et al. 2006). These morphological differences suggest an
alteration in structural connectivity which could in turn have an impact on the functional
connectivity between brain structures. Second, individuals with ASD have increases in white
matter volume that are present in outer zones and not inner zones of white matter, such as the
corpus callosum (Herbert et al. 2004). This suggests that individuals with ASD have a greater
number of short to medium range intrahemispheric connections and fewer longer range
interhemispheric connections (Herbert et al. 2003;Herbert et al. 2004). In addition, diffusion
tensor imaging (DTI) techniques show that white matter integrity is compromised in ASD
(Alexander et al. 2007;Barnea-Goraly et al. 2004). Third, individuals with ASD have
abnormalities in functional connectivity within regions of the brain. Specifically, some studies
found that individuals with ASD relative to controls show stronger connectivity (Mizuno et al.
2006;Noonan et al. 2009; Turner et al. 2006) and others report weaker connectivity (Just et al.
2007;Kana et al. 2006;Kleinhans et al. 2008;Koshino et al. 2008;Villalobos et al.
2005;Welchew et al. 2005;Wicker et al. 2008). Thus, both structural and functional evidence
suggest that there is profound disruption in brain connectivity in ASD.

The functional connectivity studies reported above were carried out in the context of a cognitive
task. However, the brain is highly active even when participants are not engaged in any task
(i.e., at rest). The default network is a set of structures that is known to be particularly active
when participants are at rest (Fox et al. 2005; Greicius et al. 2003; Shulman et al. 1997). The
brain regions that form the default network are the posterior cingulate cortex (PCC),
retrosplenial, lateral parietal/angular gyrus, medial prefrontal cortex, superior frontal gyrus,
regions of the temporal lobe, and finally the parahippocampal gyrus (Fox et al. 2005; Greicius
et al. 2003; Shulman et al. 1997). Because of the tremendous amount of energy that this
activation consumes (Raichle and Mintun 2006), many have speculated that the default
network’s function may extend beyond thought processes and encompass the role of
maintaining homeostasis between excitatory and inhibitory neuronal responses (Biswal et al.
1995; Laughlin and Sejnowski 2003). Others have argued that the default network is active
when contemplating scenarios and events, mind wandering, or lower-level observations of the
individual’s external surroundings (Buckner et al. 2008; Christoff et al. 2009; Mason et al.
2007; Raichle and Snyder 2007). Thus, although the precise role of the default network remains
unclear, investigators suggest that it may be involved in fundamental aspects of nervous system
functioning (Raichle and Snyder 2007).

The majority of default network studies have focused on typical adults (Fox et al. 2005;
Greicius et al. 2003; Greicius et al. 2009). Recently, investigations have examined functional
connectivity within the default network in individuals with ASD (Cherkassky et al. 2006;
Kennedy and Courchesne 2008; Monk et al. 2009). The results of these three studies are not
entirely consistent. In the first study, Cherkassky et al. (2006) found broad-based weaker
connectivity. For the second study, Kennedy and Courchesne (2008) identified selective areas
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of reduced connectivity. Finally, in the third study, we found weaker connectivity between the
PCC and the superior frontal gyrus and stronger connectivity between the PCC and two other
regions in the default network (Monk et al. 2009). The three studies employed different data
collection and analytic procedures, which might explain the differential findings. In addition,
the age ranges in each study was very broad and this might contribute to inconsistent findings.
In the present study, we closely followed the procedures of our study of adults and we also
selectively examined an adolescent age group. No known published study has focused solely
on the default network in adolescents with ASD.

Dramatic anatomical changes occur within the brain during adolescence (Giedd 2008; Sowell
et al. 2003). These anatomical changes are accompanied by functional alterations within
specific brain regions (Booth et al. 2001; Guyer et al. 2008; Koch et al. 2002; Monk et al.
2003; Thomas et al. 2001). Moreover, functional connectivity of the default network changes
between childhood and adulthood (Fair et al. 2008; Stevens et al. 2009). In the study by Stevens
et al., (2009), when they examined three of the networks that overlap closely with the default
network structures, they reported that the strength of connectivity decreased with increasing
age. A reduction in functional connectivity between adolescence and adulthood was also found
in a study in which participants were engaged in a cognitive task involving empathy (Burnett
and Blakemore 2009). Similar to their typically developing counterparts, adolescents with ASD
are likely to show age-related changes within the default network. Since adolescence is a key
period for the development of social interactions along with corresponding changes in brain
function (Nelson et al. 2005) and ASD is a life-long condition of severe social impairment that
begins early in life, it is important to better understand how brain function is different during
this stage. Examining the default network in adolescents with ASD allows for a fuller
characterization of connectivity during this critical period of brain development.

The goals of this study were to examine the default network in adolescents with ASD relative
to controls and to associate abnormalities in the default network with core symptoms of ASD
(social impairments, communication deficits, and restricted and repetitive behaviors and
interests). To evaluate default network functional connectivity, we followed the procedures we
previously used with ASD adults (Monk et al. 2009). Specifically, we monitored the default
network for 10 minutes in adolescents with ASD and controls as they passively viewed a
fixation cross. Moreover, as in our previous study, we used a seed in the posterior cingulate
cortex (PCC) to examine pair-wise couplings in the default network. Not only is the PCC highly
active at rest (Raichle et al. 2001), but this region also exhibits robust connectivity with other
default network regions during resting state (Fransson and Marrelec 2008). Past studies have
used this seed successfully in adults (Buckner et al. 2008; Fox et al. 2005; Shulman et al.
1997) and children (Thomason et al. 2008) to reveal connectivity in the default network.

Based on evidence that adults with ASD have regions of weaker connectivity in the default
network (Cherkassky et al. 2006; Kennedy and Courchesne 2008; Monk et al. 2009) and
findings that typical adolescents show heightened connectivity (Burnett and Blakemore
2009; Stevens et al. 2009), our first hypothesis was that adolescents with ASD, relative to
adolescent controls, would show multiple regions of weaker connectivity in the default
network. In addition, based on our previous reports that resting connectivity in the default
network was associated with core ASD symptoms in adults (Monk et al. 2009), our second
hypothesis was that severity of symptoms within the ASD adolescents would correlate with
connectivity within the network.
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2. RESULTS

Default network within each group

At the threshold of p < 0.05 (small volume corrected for the default network), both the control
group as well as the ASD group showed functional connectivity that was similar to previous
reports on the default network in typical adult populations (Fox et al. 2005; Greicius et al.
2003; Shulman et al. 1997). Specifically, both groups showed functional connectivity between
the PCC seed and regions in the retrosplenial, left/right angular gyrus, left/right medial
prefrontal, left/right temporal lobe, left/right superior frontal gyrus, left/right parahippocampal
gyrus (Table 2).

Group differences in the default network

To assess our first hypothesis that adolescents with ASD relative to controls would show
weaker connectivity between the PCC and areas in the default network, we performed a random
effects analysis in SPM2. At the threshold of p < 0.05 (small volume corrected for the default
network), we found weaker connectivity in the ASD group relative to the control group in 9
of the 11 areas of the default network (Table 3, Figure 1).

Correlations of default network connectivity and symptom severity

To assess the relationship between strength of functional connectivity and measures of severity
of symptoms within the ASD group, as reported in the Autism Diagnostic Interview-Revised
(ADI-R) (Lord et al. 1994), we performed regression analyses. As described in the methods,
we corrected for multiple comparisons by dividing the p value of 0.05 by eleven (the number
of default network regions) to obtain a threshold of p = 0.0045. Only clusters greater than 20
voxels are reported. Poorer social functioning was associated with weaker connectivity
between the PCC and multiple regions, including the superior frontal gyri, the temporal lobes
and the parahippocampal gyri (Table 4; Figure 2). More severe restricted and repetitive
behaviors were associated with weaker connectivity between the PCC and the following
regions: medial prefrontal cortex, the temporal lobes and the superior frontal gyri (Table 5).
Poorer verbal communicative ability was associated with stronger connectivity between the
PCC and the temporal lobes as well as the PCC and the right parahippocampal gyrus (Table
6). Poorer non-verbal communicative ability was associated with stronger connectivity
between the PCC and the temporal lobes, the superior frontal gyri and the right
parahippocampal gyrus (Table 7).

Effects of group differences in non-verbal cognitive functioning

The ASD group had higher non-verbal cognitive functioning scores than the control group
(Table 1). Therefore, in order to determine if the level of non-verbal cognitive functioning
accounted for group differences in default network, we covaried for the non-verbal cognitive
functioning scores and found that the ASD group relative to the control group continued to
show weaker connectivity between the PCC and the same nine areas of the default network
where we found group differences (p < .05) small volume corrected for the entire default
network.

Measures of co-occurring symptoms

Co-occurring symptoms of mental conditions, including depression, anxiety and attention-
deficit hyperactivity disorder (ADHD) are common in ASD (Ghaziuddin et al. 1992; Lainhart
and Folstein 1994; Leyfer et al. 2006). To quantify these symptoms, the Children’s Depression
Inventory (CDI) (Kovacs 1992), the Spence Children’s Anxiety Scale (SCAS) (Spence
1997), and the Child Behavior Checklist (CBCL) (Achenbach and Edelbrock 1981) were
administered to the parents. The CDI is a questionnaire that assesses cognitive, affective and
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behavioral signs of depression in children and adolescents. The SCAS provides a quantitative
measure of anxiety symptoms and it has been effectively used to measure anxiety in ASD
(Russell and Sofronoff 2005; Sofronoff et al. 2005). The CBCL assesses a broad range of
behaviors and symptoms of mental disorders, including aggression, attention problems,
defiance and social problems.

For the measure of depression (CDI) the ASD group had higher ratings than the control group,
t(29)=2.52, p =0.02. The ASD group had a mean on the CDI of 8.50 (SD=5.29) and the control
group had a mean of 4.73 (SD=2.43). For the measure of anxiety (SCAS), there were no
significant differences between groups, t (29)= 1.35, p =0.188. The ASD group had a mean of
20.69 (SD=13.10) and the control group had a mean of 15.80 (SD=5.16). Based on the CBCL
symptom profile total score, the ASD group had more behavioral problems than the control
group, t(25)=4.54, p <0.001 (the CBCL was not collected from four subjects in the ASD group).
The ASD group had a mean CBCL total score of 62 (SD=10.72) and the control group had a
mean score of 44 (SD=9.75). Finally, for the CBCL subscore of attention problems, the ASD
group were more impaired than the control group, t(25)=3.85, p =0.001. The ASD group had
a mean attention subscale score of 65 (SD=12.25) and the control group had mean score of 53
(SD=3.33).

To evaluate whether symptoms that differed between groups accounted for the group
differences in default network connectivity, we covaried for the CDI and CBCL attention
subscores in separate analyses and found that the ASD group relative to the control group
continued to show weaker connectivity between the PCC and the same nine areas of the default
network where we found group differences. However, group differences were only significant
atp <.05 uncorrected. Since the CBCL total score captures symptoms that are also core features
of ASD, it was not warranted to perform a covariate analysis with this measure.

Effects of medication

In order to assess whether medications influenced the results, we followed a previous study by
Kennedy and Courchesne (2008) on resting connectivity in adults with ASD and excluded the
10 out of the 16 adolescents with ASD who were on medications. When the remaining 6
adolescents with ASD who were not on any psychotropic medication were compared to the 15
controls using the same procedures as described above (a random effects analysis in SPM2),
there was a similar pattern of results as described above. Specifically, as in the full sample, the
adolescents with ASD, who were not on medication relative to the controls showed reduced
connectivity across the same nine default network structures (p< 0.05 uncorrected) where group
differences were found in the full sample.

3. DISCUSSION

We examined functional connectivity of the default network in adolescents with ASD and
typical adolescents in the absence of a cognitive task. Consistent with our first hypothesis, the
ASD group relative to the control group showed weaker connectivity between the PCC and
nine of the eleven areas of the default network. In support of our second hypothesis, poorer
social impairment was associated with weaker connectivity between the PCC and the superior
frontal gyri, the PCC and the temporal lobes, as well as the PCC and the parahippocampal gyri.
Additionally, more severe restricted and repetitive behaviors were associated with weaker
connectivity between the PCC and the medial prefrontal cortex, the PCC and the temporal
lobes, as well as the PCC and the superior frontal gyri. Finally, poorer verbal and non-verbal
communicative ability was associated with stronger connectivity between the PCC and the
right parahippocampal gyrus as well as the PCC and the temporal lobes. Non-verbal
communication was also associated with stronger connectivity between the PCC and the
superior frontal gyri.
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Using the same procedures as in the present study, we recently reported that adults with ASD
relative to controls showed weaker connectivity between the PCC and one other structure of
the default network (Monk et al. 2009). In addition, in the one other study to examine the default
network in ASD during extended periods of rest, the ASD relative to the control group showed
weaker connectivity between three default network seed regions and two other default network
regions (Kennedy and Courchesne 2008). Notably, the work by Kennedy and Courchesne
involved a broad age range that encompassed both adults and adolescents. Across these studies
a developmental pattern emerges in which group differences in default network connectivity
decrease between adolescence and adulthood. Further work is necessary to understand how
these developmental changes in the default network in ASD are associated with changes in
function, symptoms and adaptation.

There is strong evidence for age-related changes in the default network during normative
development as well (Fair et al. 2008; Fair et al. 2009; Fair et al. 2007; Stevens et al. 2009;
Supekar et al. 2009). These studies consistently found that development from childhood to
adulthood was associated with decreased connectivity across networks and increased
connectivity within networks, including the default network. This pattern may represent
increased segregation and strengthening of networks in development (Stevens et al. 2009).
Thus, relating this developmental pattern to our adolescent and adult ASD findings, adolescents
with ASD may undergo a more protracted development of the default network. This is
consistent with the present finding that adolescents with ASD show widespread weaker
functional connectivity of the default network relative to adolescent controls whereas adults
with ASD only evidence weaker connectivity in one structure (Monk et al. 2009).

In the present study, we found that social impairment in ASD was associated with strength of
connectivity in multiple regions of the default network. Specifically, the greater the degree of
social impairment the weaker the connectivity between the PCC and the superior frontal gyri,
the PCC and the temporal lobes, as well as the PCC and the parahippocampal gyri. In contrast,
adults with ASD only showed this negative relationship between the PCC and right superior
frontal gyrus (Monk et al. 2009). This suggests that at younger ages, weaker connectivity
throughout the default network relates to social impairment whereas in adulthood, the
impairment is more specific to a subset of structures. Consistent with the suggestion that
individuals with ASD may undergo a more protracted development of the default network, the
symptom findings indicate that those with the worst social functioning have multiple areas of
weak connectivity. With development into adulthood, these regions that are associated with
social impairment are reduced, leaving just the PCC-superior frontal gyrus consistently related
to social functioning across development.

In addition, more severe restricted and repetitive behaviors were associated with weaker
functional connectivity between the PCC and the medial prefrontal gyri, the PCC and the
temporal lobes, as well as the PCC and the parahippocampal gyri. There were two differences
between the findings reported here and our study of adults with ASD (Monk et al. 2009). First,
in the adult ASD study, more severe restricted and repetitive behaviors were associated with
stronger connectivity in the ASD group. Therefore, the direction of the relationship differed
between studies. Second, unlike the present work, the adult study reported that the positive
association was present in only one pair-wise coupling, namely the PCC and the
parahippocampal gyrus. This suggests that the relationship between the default network and
repetitive behaviors phenotype changes dramatically between adolescence and adulthood. In
our study of adults, we suggested that either t he hyper-connectivity may give rise to the
behavioral abnormalities of restricted and repetitive behaviors or that the connectivity patterns
may be a consequence of the restricted and repetitive behaviors (e.g., greater connectivity may
be a result of a constant effort to control these behaviors). Our adolescent and adult findings
in conjunction with a study indicating that restricted and repetitive behaviors lessen between
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adolescence and adulthood (Seltzer et al. 2003), suggests that the developmental switch from
weak connectivity to strong connectivity being associated with these symptoms may serve a
compensatory purpose in adulthood.

Furthermore, poorer verbal communicative ability in the ASD group was associated with
stronger connectivity between the PCC and the right parahippocampal gyrus as well as the
PCC and the temporal lobes in adolescents with ASD. In addition, poorer non-verbal
communicative ability was associated with stronger connectivity between the PCC and the
superior frontal gyri in addition to the right parahippocampal gyrus and temporal lobes. In our
study of adults, no associations were noted between communicative ability and functional
connectivity in the default network. Since the ASD subjects had overall weaker connectivity
than controls, the finding that worse communicative ability was associated with stronger
connectivity in the ASD sample is counter-intuitive. Replication of this finding is particularly
important before inferences are made. Moreover, it is noteworthy that the patterns of
connectivity associated with verbal and non-verbal communication were distinct from the
patterns of connectivity related to social function. Social functioning and communication
impairments often correlate in ASD. Thus, these initial findings suggest that although these
symptoms correlate with one another, they may not share common brain patterns within the
default network.

To summarize the findings of symptom severity and brain connectivity, across adolescence
and adulthood, ASD social impairment was associated with weaker connectivity between the
PCC and superior frontal gyrus. Beyond that, the findings were not consistent across the age
groups. Overall, ASD symptom severity correlated with functional connectivity to a greater
extent in the adolescents than the adults.

The precise function of the default network is unclear (Christoff et al. 2009; Gilbert et al.
2007; Mason et al. 2007). One explanation is that activation of the default network at rest
represents intrinsic, physiological functioning of the nervous system. Evidence for this position
comes from default network activity in nonhuman primates (Vincent et al. 2007) as well as
humans during light sleep (Horovitz et al. 2008) and vegetative state (Boly etal. 2008). Another
conceptualization is that the default network is related to current or recent cognitive processing,
such as memory consolidation, mind wandering or comprehension. Support for this view comes
from studies showing an association between activation in the default network and mind
wandering (Mason et al. 2007; Christoff et al 2009) and evidence that default network
functioning is influenced by demands of a language comprehension task (Hasson et al. 2009).

The present findings may be consistent with both views. Since we found that the default
network is associated with diverse symptoms and other studies report that it is altered across
amultitude of disorders (Castellanos et al. 2008; Garrity et al. 2007; Grimm et al. 2009; Sheline
et al. 2009; Zhou et al. 2007), the default network may subserve fundamental processes that
underlie many functions. This is consistent with the view that the default network reflects
intrinsic physiological functioning. Alternatively, the present findings could indicate that the
default network is affected by many different symptoms and conditions. This possibility is
consistent with the view that the default network reflects current or recent mental events. For
example, differences in the degree, quality or content of mind wandering may contribute to
group differences in the present study. In typical individuals, mind wandering might involve
imagining social situations that occurred in the past or are hypothetical. In ASD, such thoughts
may be qualitatively different or the content might be less socially oriented. If the default
network activation reflects thought processes, the present findings suggest that these inner
thought processes differ in ASD and this difference is pronounced in adolescence.
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The limitations of this study are as follows. First, resting connectivity is vulnerable to noise as
well as motion and physiological artifacts (cardiac and respiratory signals). However, in
addition to performing physiological correction on the data, we covaried out the six head
motion parameters in our regression analysis. This enabled us to ameliorate the effects of
artifacts. Second, our sample size was relatively small (N=31). Therefore, more work is needed
to ascertain if the pattern of results reported in this study can be replicated in future studies.
Third, although all the participants in the ASD group met criteria for an autism spectrum
diagnosis, they also had higher ratings of depression and attention problems. This is consistent
with previous work that examined co-occurring symptoms of ASD (Ghaziuddin et al. 1992;
Lainhart and Folstein 1994; Leyfer et al. 2006). Nevertheless, although the pattern of group
differences in default network connectivity remained when depression and attention problems
were controlled for by treating them as nuisance covariates, the present study is insufficiently
powered to adequately examine this. Therefore, group differences in depression and attention
problems may have contributed to the overall results. To effectively examine contributions of
these types of covariates, it is necessary to collect large samples. The present work may help
to provide justification for such an undertaking. Fourth, 10 of the 16 participants were on
psychotropic medication. Although the use of psychotropic medication is extremely common
in the ASD population (Oswald and Sonenklar 2007), they may influence the present results.
To reduce the possibility that medications impacted our results, we carried out a follow-up
analysis by excluding those participants who were on any psychotropic medication and the
same pattern of results remained. However, use of medication also suggests other symptoms
may be masked. Thus, further work is necessary to disentangle the roles of ASD, co-occurring
symptoms and medication on resting connectivity. Fifth, since we only explored resting
connectivity in 11 regions, this might have limited the scope of our study and prevented us
from exploring other regions that showed group differences outside the default network.

Future directions

Conclusions

As stated above, future work is needed to examine if adolescence in normative development
is marked by magnified differences in functional connectivity as compared to pre- and post
adolescent periods. In addition, future studies may consider studying younger age ranges and
include lower functioning individuals with ASD so as to obtain a more complete picture of
connectivity during rest. This will help us to clarify how connectivity relates to symptoms
severity. Furthermore, studies examining the distribution, density and properties of white
matter tracts between regions in the default network through diffusion tensor imaging (DTI)
techniques will help to elucidate the anatomical bases of the abnormal functional connectivity.
Finally, the use of experience sampling techniques in conjunction with acquisition of default
network activation (Christoff et al. 2009) would be useful for helping to identify what mental
processes underlie this form of activation and how these processes might differ in those with
ASD.

To our knowledge, this is the first study to explore resting connectivity within the default
network selectively in adolescents with ASD. These findings extend previous reports of
abnormal patterns of connectivity in ASD when participants are not engaged in a cognitive
task. In this study, adolescents with ASD relative to controls showed weaker functional
connectivity across nine of the eleven regions of the default network. Moreover, in the ASD
group, poorer social functioning and more severe restricted and repetitive behaviors and
interests were associated with weaker connectivity in the default network. Conversely, poorer
verbal and non-verbal communicative ability was associated with stronger connectivity in the
default network. Further clarification of how these core features of ASD relate to functional

Brain Res. Author manuscript; available in PMC 2011 February 8.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 9

connectivity in the default network at different stages of development will be crucial to
understanding brain correlates of ASD.

4. EXPERIMENTAL PROCEDURES

Participants

Twenty high functioning adolescents with ASD (1Q>85) and 17 healthy controls participated
in the study. Due to movement that was greater than 1 voxel, 2 participants were removed (1
ASD and 1 control). In addition, 3 adolescents with ASD did not complete the resting
connectivity scan due to discomfort. Lastly, 1 control was excluded due to technical
complications that arose during data preprocessing. The final set consisted of 16 adolescents
(14 males, 2 females) with ASD and 15 (14 males, 1 female) controls. Of the 16 adolescents
with ASD, 6 were diagnosed with autism, 2 were diagnosed with Asperger’s syndrome and 8
were diagnosed with pervasive developmental disorder not otherwise specified (PDD-NOS).
All of these conditions fall under the larger category of ASD and share deficits in the social
domain that meet diagnostic criteria cutoffs. According to the DSM-1V, PDD-NOS differs
from autism in that these individuals do not meet the criteria or cut-off for autism. Individuals
with autism must have at least two deficits in the social domain together with at least one deficit
in the communication, and one deficit in the restricted and repetitive domain for a total of six
deficits overall. However, individuals with PDD-NOS need only have deficits in the social
domain in the presence of communication and/or restricted and repetitive behaviors.

Adolescents with ASD were recruited through the University of Michigan Autism and
Communication Disorders Center (UMACC) and received their diagnosis based on the Autism
Diagnostic Observation Schedule (ADOS) (Lord etal. 2000), the Autism Diagnostic Interview-
Revised (ADI-R) (Lord et al. 1994) and confirmed by clinical consensus. Verbal and non-
verbal cognitive functioning was obtained by administering the Peabody Picture VVocabulary
Test (Dunn and Dunn 1997), the Differential Ability Scales (DAS), the Wechsler Intelligence
Scale for Children, the Stanford-Binet Intelligence Scales, or the Ravens Progressive Matrices
(Raven 1960). Controls were recruited through posted flyers and advertisements, and were
excluded if diagnosed with any mental or neurological condition.

For controls, verbal and non-verbal cognitive functioning was measured with the Peabody
Picture Vocabulary Test (Dunn and Dunn 1997) and the Ravens Progressive Matrices (Raven
1960). Both the ASD and controls groups were also administered the Social Responsiveness
Scale (SRS) (Constantino et al. 2003). The SRS is comprised of 65 items and each item is rated
on a 4-point scale. Scores greater than 76 are in the severe range, 60-75 is in the mild to
moderate range and 59 or less is considered to be normal. (Table 1 includes results from the
SRS and ASD symptom scores from the ADI-R.) Each participant verbally indicated his/her
handedness. In the ASD group, 10 of the 16 ASD participants were taking psychotropic
medication (4 were on selective serotonin reuptake inhibitors, 7 were on stimulants, 3 were on
neuroleptics, 1 was on atomoxetine and 1 was on an anticonvulsant). Post-hoc analysis was
carried out by re-running the random effects analysis with the 6 unmedicated individuals with
ASD and the 15 controls (all unmedicated), to determine if the pattern of group differences in
activation remained when the subjects on medication were removed (see Results). There were
no significant group differences in age, verbal cognitive functioning, gender, and handedness
(Table 1). The ASD group had higher non-verbal cognitive functioning scores than the control
group. Therefore, a post hoc analysis was carried out to determine if these scores contributed
to group differences (see Results).
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The University of Michigan Institutional Review Board approved all procedures. All
participants underwent an initial phone screening to ensure that none of the participants had
surgeries in which metal was placed in the body. In addition, we did not recruit adolescents
who wore braces as the metal can interfere with fMRI acquisition.

Participants were scheduled for an initial visit prior to the fMRI scan visit. During the first
visit, parents signed consent forms and completed questionnaires and the adolescents signed
assent forms and completed self-report questionnaires to gain a better understanding of overall
functioning. Finally, participants were familiarized to the fMRI procedures by having them lie
in a mock MRI for several minutes. During the second visit, participants underwent an fMRI
scan at the University of Michigan fMRI Lab. During this visit, participants were screened for
the presence of metal in their bodies prior to entering the MRI. The scan lasted approximately
45 minutes.

fMRI Data Acquisition

Participants lay supine in the fMRI scanner and wore glasses with built-in mirrors (VisuaStim
XGA, Resonance Technologies) in order to view the projected stimuli inside the scanner. A
black fixation cross on a white background was displayed in the center of the screen for 10
minutes. Participants were instructed to keep their eyes open and fixed on the cross. In addition,
participants were told explicitly to “let their minds wander freely” and to not dwell on anything
in particular. A pulse oximeter was attached to the participant’s finger in order to obtain their
cardiac response. In addition, a pressure belt was worn around the participant’s abdomen in
order to obtain their respiratory response. Both the cardiac and respiratory signals were
synchronized to the fMRI data and were collected so that these physiological variations could
be removed in a regression analysis (Glover et al. 2000).

Imaging was performed on a long bore 3T GE signa scanner operating on a 12.0 platform at
the University of Michigan’s Functional MRI laboratory. A GE quad head coil was used. For
the functional data, a total of 300 T2* weighed BOLD images were acquired using a reverse
spiral sequence (Glover and Law 2001). Whole brain coverage was obtained with 40
contiguous 3mm axial slices (TR=2000 ms, TE=30 ms, flip angle=90°, FOV=22 cm, 64x64
matrix). Each slice was acquired parallel to the AC-PC line. Structural data included two T1
weighted images. The first was a 3D T1 axially acquired anatomical localizer 3D (TR=8.9,
TE=1.8, flip angle=15°, FOV=26 cm, slice thickness=1.4 mm, 124 slices; matrix=256 x160).
The second was a sagitally acquired high-resolution spoiled gradient- recalled acquisition in
steady state (SPGR) image (flip angle=15°, FOV=26¢cm, 1.4mm slice thickness, 110 slices).

Preprocessing of fMRI data

An initial series of preprocessing steps was carried out. First, we removed k-space outliers in
raw data that were two standard deviations away from the mean and substituted them with the
average value from neighboring voxels. Next, a field map correction was performed on the
reconstructed images to remove the distortions that resulted from magnetic field inhomogenity.
The variance due to physiological responses was removed using a regression analysis (Glover
et al. 2000). The cardiac signal was not collected for one participant due to pulse oximeter
malfunction. However, an examination of the standard deviation maps revealed that the
susceptibility region for cardiac responses was in an area outside the default network and
therefore, did not affect our data. The data were then slice-time corrected using local sinc
interpolation (Oppenheim et al. 1999) and realigned using MCFLIRT in FSL (Jenkinson et al.
2002).
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After initial preprocessing steps were carried out, the functional images were first examined
to exclude cases with head movement greater than 1 voxel in any motion parameter. Additional
preprocessing and image analysis were performed in SPM2 (Wellcome Department of
Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk). First we coregistered the
high-resolution T1 images to the functional images. Second, T1 images were normalized to
the scalped T1 template in SPM2 and the functional volumes were normalized using a similar
transformation matrix. Third, images were smoothed using an isotropic 8mm full- width-half
maximum (FWHM) Gaussian kernel.

Data Analysis

A regression analysis was performed prior to generating the functional connectivity maps in
order to reduce the noise related to movement. This was done by entering the 6 motion
parameters as nuisance covariates for each individual subject. In order to create functional
connectivity maps, the data were passed through three in-house batch scripts implemented in
MATLAB 7.0 (The Mathworks Inc. Natick, MA). The first script was used to low-pass filter
the data at 0.08 Hz to remove higher frequency sources of noise (Biswal et al. 1995). The
second script, placed a seed region in the posterior cingulate cortex that was centered at —5
—53 41 (MNI). This seed region was employed following previous publications (Fox et al.
2005; Monk et al. 2009; Shulman et al. 1997). The seed region that was used in these studies
were reported in Talairach-Tournoux space and corresponded to —5 —49 40. The BOLD
timecourses from the 4-voxel square that was centered around the seed was averaged to form
a single waveform. The third script then correlated this reference waveform with all other
voxels to generate functional connectivity maps for each individual subject.

We performed a group-level random effects analysis in SPM2. For the within and between
group analyses, we used a threshold of p < 0.05 small volume corrected for multiple
comparisons within the entire default network using false discovery rate (FDR). The region of
interest (ROI) was comprised of the whole default network. Following seminal studies (Fair
et al. 2008; Fox et al. 2005), the default network ROI was defined as the aggregate of the
bilateral retrosplenial/BA30; left lateral parietal/angular gyrus; right lateral parietal/angular
gyrus; left medial prefrontal/BA32 and BA10 combined; right medial prefrontal/BA32 and
BA10 combined; left superior frontal gyrus; right superior frontal gyrus; left temporal lobe;
right temporal lobe; left parahippocampal gyrus and the right parahippocampal gyrus. These
regions were defined from the WFU Pickatlas toolbox (http://www.fmri.wfubmc.edu/)
(Maldjian et al. 2002).

Finally, in order to examine how symptom severity of core features related to functional
connectivity, we focused on the eleven default network regions. The core domains that we used
in the study were the amount of total reciprocal social interaction, communication deficits
(verbal and non-verbal separately) and presence of restricted and repetitive behaviors and
interests. These measures were obtained from the ADI-R scores (Ever). The ADI-R has also
been used in several MRI studies (Boddaert et al. 2009; Hollander et al. 2005; Kleinhans et al.
2008). Since this analysis only focused on the ASD group, power was limited. Therefore,
instead of using a threshold of p < 0.05 (FDR), a more lenient threshold was selected.
Specifically, in order to control for multiple comparisons, we followed our previous work
(Monk et al. 2009) and divided the p-value of 0.05 by the number regions within the default
network (eleven), which yielded a corrected p-value of 0.0045.
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Figure 1.

Relative to the ASD group, the control group showed stronger connectivity in nine of the eleven
areas of the default network (small volume-corrected). The figure illustrates three of the areas
where group differences were found. Images on the left side depict the area of activation and
the scatterplots on the right side show the strength of connectivity of each individual in each
group. (A) Right temporal lobe t(29) = 5.68, xyz = 42 —52 16. (B) Right superior frontal gyrus,
t(29) = 4.77, xyz = 14 26 48. (C) Right parahippocampal gyrus, t(29) = 4.50, xyz = 18 —12
—22. For illustration purposes, the threshold was set at p < 0.01 with a cluster size of k > 10
voxels for all images. To depict activation for each subject, contrast values were extracted from
a 4mm sphere around the peak.
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Within the ASD group, social functioning was based on the ADI-R measure of total reciprocal
social interaction and was negatively correlated with functional connectivity in the superior
frontal gyrus, t (14)=4.47, p < 0.001, xyz coordinates 14 48 38 (Figure 2A). To illustrate the
> association, contrast values were extracted from a 4mm sphere around the peak activation and
T plotted with the ADI-R measure of social function for each subject (Figure 2B). For illustration
o purposes the threshold figure A was set at p = 0.005 with a cluster size k = 10.
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Table 1
Subject characteristics

ASD Control t (df) p value
Age, mean (SD) 15 (1.45) 16 (1.44) 1.21 (29) 0.24
Age range 13-17 13-18
Male to female ratio 14:2 14:01
Verbal cognitive functioning mean (SD) 114 (18.58) 113 (14.10) 0.21 (29) 0.83
Nonverbal cognitive functioning mean (SD) 117 (13.82) 106 (12.53) 2.38(29) 0.024
Handedness left to right ratio 1:15 2:13
Social Responsiveness Scale 75 (10.41) 45 (8.10) 8.81 <0.001
ADI-R Social Total 19 (6.22)
ADI-R Social Current 8.62 (4.21)
ADI-R Verbal Communication Total 16 (3.66)
ADI-R Verbal Communication Current 9(3.72)
ADI-R Nonverbal Communication Total 9 (2.67)
ADI-R Nonverbal Communication Current 4 (2.66)
ADI-R Rigidity, Repetitive Behaviors Total 6(2.78)
ADI-R Rigidity, Repetitive Behaviors Current 5 (2.06)
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