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Summary
Target prevalence exerts a powerful influence on visual search behavior. In most visual search
experiments, targets appear on at least 50% of trials [1–3]. However, when targets are rare (as in
medical or airport screening), observers shift response criteria, leading to elevated rates of miss errors
[4,5]. Observers also speed their target-absent responses and may make more motor errors [6]. This
could be a speed-accuracy tradeoff with fast, frequent absent responses producing more miss errors.
Disproving this hypothesis, Experiment One shows that very high target prevalence (98%) shifts
response criteria in the opposite direction, leading to elevated false alarms in a simulated baggage
search task. However, the very frequent target present responses are not speeded. Rather, rare target
absent responses are greatly slowed. In Experiment Two, prevalence was varied sinusoidally over
1000 trials as observers’ accuracy and reaction times (RTs) were measured. Observers’ criterion and
target absent RTs tracked prevalence. Sensitivity (d′) and target-present RTs did not vary with
prevalence [see also 7,8,9]. The results support a model in which prevalence influences two
parameters: A decision criterion governing the series of perceptual decisions about each attended
item and a quitting threshold that governs the timing of target-absent responses. Models in which
target prevalence only influences an overall decision criterion are not supported.

Results
Experiment One: High target prevalence elevates false alarms but does not speed target
present responses

In Experiment One, 13 observers (Os) performed a simulated baggage search task looking for
weapons (guns and knives) that were present on either 50% or 98% of bags. Reaction times
(RTs) less than 200 ms or greater than 15000 ms were excluded. One O was removed from
further analysis for an excess of very fast RTs. For the remaining 12 Os, this led to the removal
of 0.5% of trials as outliers.

Figure 1a shows the average error rates for 98% and 50% prevalence. The false alarm rate
increased dramatically from .18 at balanced (50%) prevalence to .58 at high prevalence in this
experiment (t(11) = 8.0, p< 0.0001). Miss errors dropped from .15 to .02 (t(11) = 8.5, p<0.0001).
Figure 1b shows the signal detection measures d′ (sensitivity) and c (criterion). D′ was modestly
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reduced (t(11)=2.4, p<0.05). However, the use of d′ assumes equal variance of “signal” and
“noise” distributions. Previous work indicates that this task is better fit by an unequal variance
model (As shown in the Supplemental Fig. S1c, the slope of the zROC is about .6 rather than
the equal variance slope of 1.0 [4]). If corrected for unequal variance, the change in criterion
[calculated as Macmillan & Creelman’s “C2”, p66, 10] remains essentially the same and highly
significant.

If the increase in false alarms were the result of a speed accuracy trade-off, one might expect
target-present RTs to become faster, following the pattern of target-absent RTs at low
prevalence. However, as can be seen Figure 1c, the prevalence manipulation had no effect on
either hit (t(11) = 1.43, p=0.18) or false alarm RTs (t(11) = 0.93, p=0.37), disconfirming the
trade-off hypothesis. Interestingly, the only effect on RT we observed was a massive slowing
of target-absent responses (Tneg: t(11)=6.67, p<0.0001; miss: t(11)=5.11, p< 0.0001).

Experiment Two: Variable Prevalence principally affects criterion and target-absent RT, not
d′ f (sensitivity) and target-present RT

In Experiment Two, 12 Os performed 1000 trials of the simulated baggage search as target
prevalence varied sinusoidally from high to low and back to high. RTs less than 200 ms or
greater than 15000 ms were removed as outliers. This removed 0.56% of trials. Trials were
binned into 20 blocks of 50 trials each. At very low prevalence, there were very few target-
present trials, while at very high prevalence there were very few target-absent trials. We
eliminated empty cells from analysis by pooling responses over all 12 Os. For the RT analyses,
any cell with fewer than 20 trials across all observers was excluded from analysis.

Figure 2a shows the errors trading off as a function of prevalence. Again, based on evidence
that this as an unequal variance task (see supplement), we calculated Da as the measure of
sensitivity and C2 as the measure of criterion. Because these statistics are based on pooled data,
one should be cautious in interpretation. Nevertheless, Figure 2b shows that criterion varied
systematically with prevalence while sensitivity did not. C2 and prevalence were significantly
correlated (Pearson r = −0.92, 95% CI: −.97 to −.80, p< 0.0001). In contrast, Da was not
systematically related to prevalence (Pearson r = 0.20, CI: −.27 to 0.59, p=0.39). Results do
not change markedly if one calculates d′ and c. It is criterion that changes with prevalence.
Note that peak criterion value in Figure 2b lagged behind the lowest prevalence. This reflects
the number of trials over which the observers base their internal estimates of prevalence. These
data do not permit a precise calculation but it appears that Os compute prevalence over about
four-dozen trials.

Turning to the RT data, Figure 2c shows that, as in Experiment One, it is the target-absent RTs
that are clearly responsive to prevalence. Looking at target-present trials (black symbols), it
can be seen that both hit and false alarm RTs decline modestly over the course of experiment.
This monotonic trend could represent a general speeding of RT with practice, but does not
reflect the change in prevalence. The variation in target-absent response times across the
experiment is about 5X greater and more clearly follows prevalence.

Discussion
As anticipated by work in other domains, varying target prevalence causes a tradeoff between
false alarm and miss errors [7–9]. What is novel and informative here is that, for RT, the main
effect of prevalence falls on the target-absent responses. Taken together, the pattern of RT and
error data falsifies some plausible theories. For example, the pattern of RTs is not consistent
with any account that holds that RTs are speeded when Os can predict the answer. Were that
the case, RTs should be slowest at 50% prevalence and fastest at very high and low prevalence.
This is not what is seen in Figure 2.
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A visual search task might be thought of as a 2-alternative forced-choice (2AFC) decision
between a target-present and a target-absent response. 2AFC tasks can be modeled as an
accumulation of information toward one of two response boundaries [11–15] (see Figure 3).
Errors occur when the noise perturbing the drift toward one boundary causes the accumulation
to reach the other boundary by mistake. Our data constrain such diffusion models. Specifically,
we argue that modeling the effects of prevalence will require changing more than one
parameter. Changing prevalence shifts criterion. To vary criterion in a standard diffusion
model, one can move the starting point. In Figure 3, if the starting point moved toward the
“YES” boundary at high prevalence, false alarm errors would become more common and
misses less common, as desired, without changing sensitivity (represented by the separation
between YES and NO boundaries). However, this would also lead to target-present RTs
becoming faster and target-absent RTs slower. This speeding of present RTs at high prevalence
is not seen. A change in the target-absent but not target-present RTs could be produced by
moving the NO boundary. However, since sensitivity (d′ or Da) varies with the separation
between the decision boundaries, moving the NO boundary down would increase sensitivity
at high prevalence, a pattern not seen in our data (see Supplement for details of simulation of
these manipulations of a diffusion model).

While the pattern of the data might be captured by simultaneously changing two parameters
in a standard diffusion model [12], we adopt a somewhat different approach, the “Multiple
Decision Model”, illustrated in Figure 4, because search tasks like ours are not actually simple
2AFC tasks. At any given moment, the observer evaluates some aspect of the display. In the
figure, we illustrate the observer selecting a single item. In an “internal decision” stage, the
observer makes a 2AFC decision about this information. If the response, R, exceeds a criterion,
a target is deemed to be present and the observer makes a “yes” response. If not, the observer
continues to search. A second process generates “no”, absent responses. It is modeled here as
a diffusion toward a quitting threshold. If the diffusion value, Q, exceeds that threshold, a no
response is generated. Otherwise a new item is selected and search continues.

Here, the two parameters that are affected by prevalence are the internal decision criterion and
the quitting threshold. At high prevalence, criterion moves left, making “yes” responses more
likely, and the quitting threshold moves up, making target absent RTs slower. At low
prevalence, the parameters shift in the opposite direction. As shown in the Supplement (Fig.
S1d,e), simulation of a model of this sort produces the basic pattern of results seen in the
experiments reported here.

The structure proposed in Figure 4 generalizes quite naturally beyond simple present/absent
search tasks and may have some utility in explaining other search phenomena. For example,
many radiology tasks require that observers find not one target but all targets (e.g. multiple
lung nodules). In terms of the model presented here, this means that a “present” response does
not end search. The cycle of selection and perceptual decision would continue until the quitting
threshold was reached. “Satisfaction of search” is a known problem in search for an unknown
number of targets [16,17]. This is the observation that the probability of detecting one target
is lower if another target has been detected first. The phenomenon could be a consequence of
the dual threshold nature of search. Suppose that two trials have the same quitting threshold.
On one trial, the image contains T1 and T2. On the other, only T2 is present. If we suppose
that it takes some time to deal with T1 and that the quitting threshold discounts this fact, then
the chance of reaching T2 will be lower on the T1 and T2 trial than on the T2 alone trial. Further
research would be needed to test this hypothetical account of satisfaction of search but the
account does capture the possibility of a separation between finding a target and ending a
search.
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Experimental Procedures
Experiment One

Participants—Thirteen paid participants between the ages of 18 and 55 were tested in all
conditions. Each participant reported no history of eye or muscle disorders. All had 20/25 vision
or better and passed Ishihara’s Tests for color-blindness. Informed consent was obtained for
all participants and each participant was paid $10/hour.

Stimuli—Realistic bag stimuli were created by placing x-ray images of assorted objects in x-
ray images of empty bags. Items were semi-transparent and could overlap. Component bags
and objects were x-ray images provided by the Transportation Security Lab of the Department
of Homeland Security. Set size was varied by varying the number of items added to the bag
(3, 6, 12, or 18). Bags and individual objects were scaled in an appropriate manner so, as an
example, a computer would be bigger than an iPod. Os sat at approximately 57 cm from the
screen. At this distance, bags subtended a range of sizes 9.5° × 16° in width to 20° by 21.5°.
Eight pieces of clothing were added to each bag, but were not counted in the set size. In these
images, clothing adds an indistinctly shaped orange haze to the image. Stimuli were presented
on Macintosh computers running Matlab 7.5 with the Psychophysics Toolbox, version 3
http://psychtoolbox.org/PTB-2/ [18,19])

Procedure—To familiarize Os with the threat stimuli, they were first briefly shown 20
examples of weapons for 1 second in isolation. Next, they were given 100 practice trials at
50% prevalence with full feedback on the correctness of responses. Os were instructed to
indicate as quickly and accurately as possible whether a target was present or absent. On each
trial, a fixation cross and audible ‘click’ were followed after 200 ms by the stimulus. The
stimulus remained visible until the observer responded. A 500 ms blank interval preceded the
start of the next trial.

After practice, observers completed the two experimental blocks: 200 trials at 50% prevalence
and 1000 trials at 98% prevalence. Order of the two blocks was counterbalanced over Os. Os
were told that bags without weapons would be “frequent” in the 50% prevalence condition,
and that bags without weapons would be “rare” in the 98% prevalence condition. We
emphasized that they should try to be as quick and accurate as possible in correctly identifying
bags without weapons. Full feedback was given after each trial. If a target was present, it was
outlined with a box and shown to the observer. A 2-minute break was mandated every 200
trials (about every 20 minutes).

Experiment Two
Participants—Twelve paid participants between the ages of 18 and 55 were tested on all
conditions. Each participant reported no history of eye or muscle disorders, as well as 20/25
vision or better, and passed. Ishihara’s Tests for color-blindness. Informed consent was
obtained for all participants and each participant was paid $10/hour.

Procedure—The stimuli and general methods were essentially identical to those of
Experiment One. Observers were familiarized with the targets in advance. Then they were
tested for 100 trials of training at 50% prevalence with full feedback. Finally, over 1000 trials
with full feedback, prevalence varied sinusoidally through one cycle from 100% on trial 1 to
0% at trial 500 and back to 100% by trial 1000. Any given trial could be target-present or target-
absent with the probability of target presence determined by the current prevalence. Observers
were told that the probability of a target would vary over time. A two-minute break was
enforced after every 200 trials.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experiment One: Very high prevalence elevates false alarms and target absent RTs
Fig 1a: False alarm and miss error rates as a function of target prevalence (50% and 98%), Fig.
1b: Signal detection measures: Average sensitivity (d′) and criterion (c ) values. Fig 1c: Average
reaction time (RT) for correct target present (hit) and absent
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Figure 2. Experiment Two: Changing target prevalence changes the pattern of errors and target-
absent RTs
Fig 2a: Miss (black, solid symbols) and false alarm errors (gray, open), trade off as prevalence
(dashed line) varies over 1000 trials. Fig 2b: Da (black, solid symbols), a signal detection
measure of sensitivity does not vary systematically with prevalence but C2 (gray, open), a
criterion measure, does. Fig 2c: Hit RTs (black, solid) change very little with prevalence while
True Negative responses (open, gray) vary markedly. False alarm errors (black *) do not vary
with prevalence, though they appear to become faster during the experiment. Miss errors (gray
*) vary with prevalence in a manner similar to true negatives. (See also Supplemental Figures
S1a–c)
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Figure 3. The drift diffusion model
In a standard drift-diffusion account of a two-alternative forced-choice (2AFC) task,
information begins accumulating a start point generates one response (here “yes”) if it reaches
an upper bound and another (“no”) if it reaches a lower bound. For a fixed drift rate, sensitivity
(D′) can be varied by varying the separation of the bounds and criterion can be varied by
changing the starting point. (See also Supplemental Figures S1d–e)
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Figure 4. A multiple-decision model for visual search
In this model, the observer makes a 2AFC decision about each item that is selected. If an item
is classified as a target, a “yes” response is generated. If not a new item will be selected unless
a target-absent decision is generated when a quitting signal exceeds its threshold. The quitting
signal is modeled as a diffusion process. (See also Supplemental Figures S1d–e)
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