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SUMMARY
The Cancer Genome Atlas Network recently catalogued recurrent genomic abnormalities in
glioblastoma (GBM). We describe a robust gene expression-based molecular classification of GBM
into Proneural, Neural, Classical and Mesenchymal subtypes and integrate multi-dimensional
genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and
gene expression of EGFR, NF1, and PDGFRA/IDH1 each define Classical, Mesenchymal, and
Proneural, respectively. Gene signatures of normal brain cell types show a strong relation between
subtypes and different neural lineages. Additionally, response to aggressive therapy differs by
subtype with greatest benefit in Classical and no benefit in Proneural. We provide a framework that
unifies transcriptomic and genomic dimensions for GBM molecular stratification with important
implications for future studies.

Glioblastoma multiforme (GBM) is the most common form of malignant brain cancer in adults.
Affected patients have a uniformly poor prognosis with a median survival of one year (Ohgaki
and Kleihues, 2005), thus, advances on all scientific and clinical fronts are needed. In an attempt
to better understand glioblastoma, many groups have turned to high dimensional profiling
studies. Several examples include studies examining copy number alterations (Beroukhim et
al., 2007; Ruano et al., 2006) and gene expression profiling studies identifying gene signatures
associated with EGFR overexpression, clinical features, and survival (Freije et al., 2004; Liang
et al., 2005; Mischel et al., 2003; Murat et al., 2008; Nutt et al., 2003; Phillips et al., 2006;
Shai et al., 2003; Tso et al., 2006).

The Cancer Genome Atlas (TCGA) Research Network (2008) has been established to generate
the comprehensive catalogue of genomic abnormalities driving tumorigenesis. TCGA
provided a detailed view of the genomic changes in a large GBM cohort containing 206 patient
samples. Sequence data of 91 patients and 601 genes were used to describe the mutational
spectrum of GBM, confirming previously reported TP53 and RB1 mutations and identifying
GBM-associated mutations in genes such as PIK3R1, NF1 and ERBB2. Projecting copy number
and mutation data on the TP53, RB and receptor tyrosine kinase pathways showed that the
majority of GBM tumors harbor abnormalities in all of these pathways, suggesting that this is
a core requirement for GBM pathogenesis.

Currently only a few molecular factors show promise for prognosis or prediction of response
to therapy (Curran et al., 1993; Kreth et al., 1999; Scott et al., 1998). An emerging prognostic
factor is the methylation status of the MGMT promoter (Hegi et al., 2005). The TCGA GBM
study (2008) suggested that MGMT methylation shifts the GBM mutation spectrum in context
of alkylating treatment, a finding with potential clinical implications. The inability to define
different patient outcomes based upon histopathological features illustrates a larger problem
in our understanding of the classification of GBM.

In the current study, we leverage the full scope of TCGA data to paint a coherent portrait of
the molecular subclasses of GBM.
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RESULTS
Consensus Clustering Identifies Four Subtypes of GBM

Factor analysis, a robust method to reduce dimensionality, was used to integrate data from 200
GBM and two normal brain samples assayed on three gene expression platforms (Affymetrix
HuEx array, Affymetrix U133A array and Agilent 244K array) into a single, unified dataset.
Using the unified dataset, we filtered the data to 1,740 genes with consistent but highly variable
expression across the platforms. Consensus average linkage hierarchical clustering (Monti et
al., 2003) of 202 samples and 1,740 genes identified four robust clusters with clustering stability
increasing for k = 2 to k = 4, but not for k > 4 (Figure 1A, B). Cluster significance was evaluated
using SigClust (Liu et al., 2008) and all class boundaries were statistically significant (Figure
1C). Samples most representative of the clusters, hereby called “core samples” (n=173 of 202),
were identified based on their positive silhouette width (Rousseeuw, 1987), indicating higher
similarity to their own class than to any other class member (Figure 1D). Genes correlated with
each subtype were selected using SAM and ROC methods. ClaNC, a nearest centroid-based
classifier that balances the number of genes per class, identified signature genes for all four
subtypes (Dabney, 2006). An 840 gene signature (210 genes per class), was established from
the smallest gene set with the lowest cross validation (CV) and prediction error. Each of the
signatures was highly distinctive (Figure 2A, signatures and gene lists for all analyses are
available at [http://tcga-data. nci.nih.gov/docs/publications/gbm_exp/]).

These analyses were repeated on the three individual datasets, demonstrating that unifying the
data improved CV error rates (Figure S1A–E). Limiting the analysis to core samples reduced
the CV error rate from 8.9% to 4.6%, validating their use as most representative of the cluster
(Figure S1A, B). Importantly, our findings did not correlate with confounding factors well
known to interfere with gene expression analysis such as batch, sample purity or sample quality
(Table 1, Figure S2). An exception was the sample collection center. However, the collection
centers drew from different patient populations, and the relationship to subtype is largely due
to strong clinical differences in their patients, most notably age as discussed below.

Validation of Subtypes in an Independent Dataset
An independent set of 260 GBM expression profiles was compiled from the public domain to
assess subtype reproducibility (Beroukhim et al., 2007; Murat et al., 2008; Phillips et al.,
2006; Sun et al., 2006). The subtype of all samples was predicted using ClaNC and data were
visualized using the 840 classifying gene list (Figure 2A). Applying a similar ordering in the
validation set clearly recapitulated the gene sample groups (Figure 2B). Importantly, the four
subtypes were similarly proportioned in the validation and TCGA dataset, as well as in all four
individual validation dataset cohorts (Figure S2G–L). Accounting for differences in sample
size and analytic techniques, obvious concordance was seen between our classification and the
results from earlier studies (Supplemental Experimental Procedures and Figure S3). To relate
tumor subtype to a relevant model system, we obtained gene expression data from a collection
of xenografts. The xenografts were established by direct implant of patient surgical specimens
in athymic null/null mice (Hodgson et al., 2009). Proneural, Classical and Mesenchymal
subtypes were also reflected in the xenografts (Figure 2C). By contrast, attempts to detect
comparable transcriptional subtypes in immortalized cell lines were uninformative (data not
shown).

Functional Annotation of Subtypes
Subtype names were chosen based on prior naming and the expression of signature genes:
Proneural, Neural, Classical and Mesenchymal. To get insight into the genomic events
differentiating the subtypes, we used copy number data of 170 core samples which were
recently described by the TCGA Network (2008). Sequence data were available for 601 genes
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on 116 core samples; 73 samples were previously described. Fourteen amplifications and seven
homozygous or hemizygous deletion events, both broad and focal, were found to be significant
by the GISTIC methodology of which twelve events showed subtype associations (Table 2,
Figure S4). Several mutations correlated with subtype (Table 3).

Classical—Chromosome 7 amplification paired with chromosome 10 loss is a highly
frequent event in GBMs and was seen in 100% of the Classical subtype (Table 2). While
chromosome 7 amplification was seen in tumors of other classes, high level EGFR
amplification, was observed in 97% of the Classical and infrequently in other subtypes (p<0.01,
adjusted two-sided Fisher’s Exact test, Table S1, Table 2, Figure 3). A corresponding and
statistically significant fourfold increase in EGFR expression was observed as compared to the
remainder of the samples (p<0.01, two-sided Student’s t-test). Twelve of twenty-two Classical
samples contained a point or vIII EGFR mutation (Table 3, Figure 3). While alterations of
EGFR are likely important in many GBMs, the Classical subtype demonstrates a focused
predilection for genomic alteration of the gene as revealed by the integrated analysis. In tandem
with high rates of EGFR alteration, there was a distinct lack of TP53 mutations in the subset
of Classical samples sequenced (p=0.04, adjusted two-sided Fisher’s Exact test, Table S2) even
though TP53 is the most frequently mutated gene in GBM (TCGA, 2008). Focal 9p21.3
homozygous deletion, targeting CDKN2A (encoding for both p16INK4A and p14ARF), was a
frequent and significantly associated event in the Classical subclass (p<0.01, adjusted two-
sided Fisher’s Exact test, Table S1, Table 2), co-occurring with EGFR amplification in 94%
of the Classical subtype (Figure 3). Homozygous 9p21.3 deletion was almost mutually
exclusive with aberrations of other RB pathway components, such as RB1, CDK4, and
CCDN2. This suggests that in samples with focal EGFR amplification, the RB pathway is
almost exclusively affected through CDKN2A deletion. Neural precursor and stem cell marker
NES, as well as Notch (NOTCH3, JAG1, LFNG) and Sonic hedgehog (SMO, GAS1, GLI2)
signaling pathways were highly expressed in the Classical subtype (Table S3A).

Mesenchymal—Focal hemizygous deletions of a region at 17q11.2, containing the gene
NF1, predominantly occurred in the Mesenchymal subtype (p<0.01, adjusted two-sided
Fisher’s Exact test, Table S1, Table 2) and the majority of samples had lower NF1 expression
levels (p<0.01, two-sided Student’s t-test, Figure 3). Although methylation profiles were
available, no methylation probes were present in or adjacent to the NF1 locus. NF1 mutations
were found in 20 samples, 14 of which were classified as Mesenchymal, adding up to 53% of
samples with NF1 abnormalities in this class. Six of seven co-mutations of NF1 and PTEN,
both intersecting with the AKT pathway, were observed in the Mesenchymal subtype (Table
S4). The Mesenchymal subtype displayed expression of mesenchymal markers previously
described such as CHI3L1 (also known as YKL40) and MET (Phillips et al., 2006). The
combination of higher activity of mesenchymal and astrocytic markers (CD44, MERTK) is
reminiscent of a epithelial-to-mesenchymal transition that has been linked to dedifferentiated
and transdifferentiated tumors (Thiery, 2002). Genes in the tumor necrosis factor super family
pathway and NF-κB pathway such as TRADD, RELB, TNFRSF1A are highly expressed in this
subtype, potentially as a consequence of higher overall necrosis and associated inflammatory
infiltrates in the Mesenchymal class (Table 1, Table S3B).

Proneural—Two major features of the Proneural class were alterations of PDGFRA and point
mutations in IDH1. Focal amplifications of the locus at 4q12 harboring PDGFRA were seen
in all subtypes of GBM, but at a much higher rate in Proneural samples (p=0.01, adjusted two-
sided Fisher’s Exact test, Table S1, Table 2). The characteristic signature of PDGFRA in
Proneural samples, however, is best described as the concomitant focal amplification in
conjunction with high levels of PDGFRA gene expression which is seen almost exclusively in
this tumor type (p<0.01, two-sided Student’s t-test, Figure 3). Four of the Proneural samples
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amplifying PDGFRA also harbor a PDGFRA mutation. While a rare in frame deletion of the
Ig-domain of PDGFRA has been described in GBM (Kumabe et al., 1992;Rand et al., 2005),
the multiple PDGFRA point mutations observed here were in the Ig-domain, potentially
disrupting ligand interaction (Figure S5). Interestingly, eleven out of twelve mutations in the
isocitrate dehydrogenase 1 gene, IDH1, were found in this class (p<0.01, adjusted two-sided
Fisher’s Exact test, Table S2,Table 2), most of which did not have a PDGFRA abnormality
(Figure 3). TP53 mutations and loss of heterozygosity were frequent events in this subtype
(Table 3,Figure 3). The majority of the TP53 mutations (20/36, p=0.1, adjusted two-sided
Fisher’s Exact test, Table S2), as well as TP53 LOH (10/15) were located in Proneural samples.
The classical GBM event, chromosome 7 amplification paired with chromosome 10 loss, was
distinctly less prevalent and occurred in only 54% of Proneural samples (chromosome 7,
p<0.01; chromosome 10, p=0.02, adjusted two-sided Fisher’s Exact test, Table S1,Table 2).
The Proneural group showed high expression of oligodendrocytic development genes such as
PDGFRA, NKX2-2 and OLIG2 (Noble et al., 2004), underlining its status as atypical GBM
subtype. High expression of OLIG2 has shown to be able to downregulate the tumor suppressor
p21 (CDKN1A), thereby increasing proliferation (Ligon et al., 2007) and CDKN1A expression
is indeed lower in this class (data not shown). Ten of sixteen PIK3CA/PIK3R1 mutations
identified were found in the Proneural subtype and were mostly observed in samples with no
PDGFRA abnormalities. The Proneural signature further contained several proneural
development genes such as SOX genes as well as DCX, DLL3, ASCL1, and TCF4 (Phillips et
al., 2006). Gene ontology (GO) categories identified for the Proneural subtype involved
developmental processes and a previously-identified cell cycle/proliferation signature
(Whitfield et al., 2002) (Table S3C).

Neural—The Neural subtype was typified by the expression of neuron markers such as NEFL,
GABRA1, SYT1 and SLC12A5. GO categories associated with the Neural subtype included
neuron projection and axon and synaptic transmission (Table S3D). The two normal brain
tissue samples used in this dataset were both classified as the Neural subtype. The majority
(25/33) of the Neural samples contained few normal cells on two pathology slides. Pathology
slides for three samples of each subtype were re-reviewed and diagnosis of GBM was
confirmed (Figure S6).

Glioblastoma Subtypes are Reminiscent of Distinct Neural Cell Types
To gain insight into the biological meaning of the subtypes, we used data from the brain
transcriptome database presented by Cahoy et al. (Cahoy et al., 2008) to define gene sets
associated with neurons, oligodendrocytes, astrocytes, and cultured astroglial cells. These
mature cells may be of interest both for their primary associations with tumor subtypes, as well
as inherent signatures retained from progenitor cells. Using these four gene sets, a single-
sample GSEA enrichment score was calculated for all samples (Figure 4) (Barbie et al.,
2009). The enrichment score indicates how closely the expression in a sample reflects the
expected expression pattern of the gene set. In this exploratory analysis, we observed a number
of patterns associating each subtype with expression patterns from purified murine neural cell
types. The Proneural class was highly enriched with the oligodendrocytic signature but not the
astrocytic signature while the Classical group is strongly associated with the murine astrocytic
signature. The Neural class shows association with oligodendrocytic and astrocytic
differentiation but additionally had a strong enrichment for genes differentially expressed by
neurons. The Mesenchymal class was strongly associated with the cultured astroglial signature.
Interestingly, the majority of immortalized cell lines evaluated also demonstrated expression
patterns most similar to the Mesenchymal subtype (data not shown). Additionally, well
described microglia markers such as CD68, PTPRC and TNF are highly expressed in the
Mesenchymal class and the set of murine astroglial samples.
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Subtypes and Clinical Correlations
We analyzed the associations between the subtypes and clinical and tumor characteristics for
the core samples (Table 1, Table S5). Median survival was 12 months for TCGA patients and
15 months for the validation set, representative of surgical case series. Karnofsky performance
score (KPS) was high in the TCGA dataset with a median value of 90. The median age at
diagnosis for both the TCGA samples (57 years) and the validation samples (53 years) was
lower than for United States population (64 years; [http://www.cbtrus.org]), likely reflecting
bias of surgical resections. All four tumor subtypes were found in each of the public datasets
used in the validation set and were distributed at similar proportion (Figure S2).

Three of four tumors known to be secondary GBMs were found in the Proneural group, a
finding consistent with the overall younger age of this subtype. Recurrent tumors were found
in all subtypes, and in three out of four paired primary-recurrent pairs from the Murat dataset
(Murat et al., 2008) suggest that tumors did not change class at recurrence (data not shown).
The trend between prior treatment and a hypermutator phenotype, as reported previously
(TCGA, 2008; Hunter et al., 2006), is reflected in the observation that four of seven
hypermutated samples, three of which were secondary GBMs, were classified as Proneural.
There was no association of subtype with the percentage of tumor nuclei. The finding of genes
associated with inflammation in the Mesenchymal subtype was consistent with a higher overall
fraction of necrosis evident in these tumors (Table 1 and Figure S2).

The most consistent clinical association for tumor subtypes was age, with younger patients
over-represented in the Proneural subtype (Figure S2). We note that the age distribution of
patients differed across TCGA collection centers, with MD Anderson having younger patients
(median 53 years) and greater representation in the Proneural subtype. Controlling for this
confounder did not remove the link between age and subtype in TCGA samples (Table S5).
Furthermore the trend with age was confirmed in the validation samples, indicating that the
age-subtype relationship was not due to an artifact introduced by the collection centers.
Although not statistically significant, there was a trend toward longer survival for patients with
a Proneural GBM in a combined analysis of TCGA and validation samples (HR>1 for all
subtypes relative to Proneural) (Figure S7A). A significantly-improved outcome for patients
with a Proneural classification was achieved when grade II and III gliomas from two of the
four validation datasets were included in the analysis (Figure S7B) (Phillips et al., 2006; Sun
et al., 2006).

Treatment Efficacy Differs per Subtype
We examined the effect of more intensive treatment, defined as concurrent chemo- and
radiotherapy or more than three subsequent cycles of chemotherapy, on survival. Using the
Murat data and TCGA data, intensively treated patients were compared to patients with non-
concurrent regimens or short chemotherapy regimens. While aggressive treatment significantly
reduced mortality in Classical (HR=0.45, p=0.02) and Mesenchymal (HR=0.54, p=0.02)
subtypes, and efficacy was suggested in Neural (HR=0.56, p=0.1), it did not alter survival in
Proneural (HR=0.8, p=0.4, Figure 5). Dichotomous methylation status of the DNA repair gene
MGMT, which has been positively linked to response to therapy (Hegi et al., 2005), was not
associated with subtype (Table 1).

DISCUSSION
Here, we show that genomic profiling defined four subtypes of tumors with a common
morphologic diagnosis of GBM. The reproducibility of this classification was demonstrated
in an independent validation set suggesting that it is highly unlikely that these GBM tumor
subtypes are a spurious finding due to technical artifact, chance or bias in TCGA sample
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qualification criteria. The importance of detecting these subtypes lies in the different
therapeutic approaches that different subtypes may require. Furthermore, it is possible that
GBMs in specific subtypes develop as the result of different etiologies or different cells of
origin. Studying GBMs in the light of subtypes therefore may accelerate our understanding of
GBM pathology. A larger sample set might describe additional subtypes for which we lack the
power to detect. Additionally, we provide the community with the means to identify the tumor
subtypes prospectively [http://tcga-data. nci.nih.gov/docs/publications/gbm_exp/].

In addition to validating the subtype in other human GBM datasets, we identified gene
expression patterns of xenografts highly comparable to Proneural, Classical, and Mesenchymal
tumors. However, identification of comparable cell line models was not as easily achievable
(data not shown). For example, there is a relative lack of EGFR amplification and EGFRvIII
mutants in cell lines models, potentially lost or selected against during the culturing process.
The identification of valid subtype counterparts in xenografts represents an important
contribution toward our ability of studying GBM subtypes, in particular for modeling and
predicting therapeutic response.

One of the most important aspects of this work is the unprecedented ability to examine
molecularly-defined tumor subtypes for correlations with both genome-wide DNA copy
number events and sequence-based mutation detection for 601 genes. While a mechanistic
explanation of subtype is beyond the scope of this manuscript, our cross-platform analyses
highlight a number of important characteristics of each subtype and hint at cell of origin. For
example, the Proneural subtype was associated with younger age, PDGFRA abnormalities,
IDH1 and TP53 mutations, all of which have previously been associated with secondary GBM
(Arjona et al., 2006; Furnari et al., 2007; Kleihues and Ohgaki, 1999; Watanabe et al., 1996;
Yan et al., 2009). Most known secondary GBMs classified as Proneural (Table 1). In a previous
study, most grade III gliomas as well as 75% of lower grade gliomas from the validation sets
classified as Proneural or Neural (Phillips et al., 2006). While it is outside the scope of the
current manuscript to establish the etiology of the classes, the Proneural TCGA class was
enriched both for secondary GBM established by prior lower-grade histology and for IDH1
mutations which are known to be prevalent in secondary GBM. Other tumors in this class
which appear to be clinically de novo (primary) may share common pathogenesis with
secondary GBM and might arise from lower grade lesions which are clinically silent.
Alternatively, Proneural GBM tumors may arise from a progenitor or neural stem cell that can
also give rise to oligodendrogliomas thereby sharing similar characteristics. High similarity
with a purified oligodendrocytic signature and previous work identifying high expression of
PDGFRA in cells of the SVZ give credence to this hypothesis (Jackson et al., 2006).

The identity of the Classical subtype is defined by the constellation of the most common
genomic aberrations seen in GBM, with 93% of samples harboring chromosome 7
amplifications and 10 deletions, 95% showing EGFR amplification and 95% showing
homozygous deletion spanning the Ink4a/ARF locus. This class also shows a distinct lack of
additional abnormalities in TP53, NF1, PDGFRA or IDH1.

In the current study we also confirm the presence of a Mesenchymal subtype characterized by
high expression of CHI3L1 and MET (Phillips et al., 2006). A striking characteristic of this
class was the strong association with the recently reported high frequency of NF1 mutation/
deletion and low levels of NF1 mRNA expression overall. Inherited NF1 mutations are
associated with a variety of tumors, including neurofibromas, which reportedly have a Schwann
cell-like origin (Zhu et al., 2002). Although Schwann cells are not present in the central nervous
system, the Mesenchymal class expresses Schwann cell markers such as the family S100A as
well as microglial markers. The higher percentage necrosis and associated inflammation
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present in these samples is potentially linked to the mesenchymal phenotype through an
expression signature including genes from wound healing and NF-κB signaling.

Samples in the Neural subtype are unequivocally GBMs by morphology by light microscopy
and contain mutation and DNA copy number alterations. Their expression patterns are
recognizable as the most similar to samples derived from normal brain tissue, and their
signature is suggestive of a cell with a differentiated phenotype. This is confirmed by the
association with neural, astrocytic and oligodendrocytic gene signatures.

Cellular organization and differentiation in the brain has been intensively investigated yet there
is much to be discovered. It is therefore striking to find the clear relationships between subtypes
of GBM and cellular lineages as demonstrated here (Figure 4). It is possible that a common
cell of origin, such as the previously proposed neural stem cell (Galli et al., 2004), exists for
all GBMs, and that the classes presented here result from distinct differentiation paths.
However, the presence of precursor cells with self replicating ability in the brain, such as cells
expressing stem cell markers and PDGFRA or EGFR (Jackson et al., 2006) suggests that
multiple stem cell-like populations exist. While there is a clear need for conclusive evidence
supporting this hypothesis, it is at least striking to find the same genes as markers of two of
the four classes lending support for a difference in cell of origin. This is further supported by
the specific characteristics of the Mesenchymal and Neural class. Establishing the cell of origin
of GBM is critical for establishing effective treatment regimens (Sanai et al., 2005).

Given the set of characteristic subtype abnormalities, we deem it unlikely that patients
transition between subtypes during different stages of their disease. This is substantiated by
several samples in the Murat et al dataset, that did not switch between subtype after recurrence.

An association was observed between the Proneural subtype and age and a trend towards longer
survival. Furthermore, our data suggest that Proneural samples do not have a survival advantage
from aggressive treatment protocols. Importantly, a clear treatment effect was observed in the
Classical and Mesenchymal subtypes. Profiling-based classification may therefore have
highest clinical relevance in suggesting different therapeutic strategies. It appears that the
simple classification into these four subtypes carries a rich set of associations for which there
is no existing diagnostic test. We envision that the next generation of biomarker assays for
GBM could include a molecular test for subtype and linked molecular genetics for key genetic
events including NF1 and PTEN loss, IDH1 and PI3K mutation, PDGFRA and EGFR
amplification (i.e. genetic events that are best assayed on the DNA level) and MGMT
methylation status. Additionally, early evidence suggests that subclasses differ measurably by
signal transduction pathways such that protein biomarkers might be easily measured (Brennan
et al., 2009). Future studies should further elucidate the intricate relationship between tumor
subtypes, treatment sensitivity and MGMT methylation status.

GBM is one of the most feared of all of human diseases both for its near uniformly fatal
prognosis and associated loss of cognitive function as part of the disease process. For those
facing the diagnosis there are few biomarkers of favorable prognosis and accordingly few
therapies strongly influencing disease outcome. This comprehensive genomic- and genetic-
based classification of GBM should lay the groundwork for an improved molecular
understanding of GBM pathway signaling that could ultimately result in personalized therapies
for groups of GBM patients.
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EXPERIMENTAL PROCEDURES
Patients and Tumor Samples

Glioblastomas and normal brain samples were collected and processed through the TCGA
Biospecimens Core Resource at the International Genomics Consortium, Phoenix, Arizona, as
described (TCGA, 2008). Two hundred GBMs and two normal samples were selected by
following the subsequent criteria: 1) an average percent necrosis less than 40% on top and
bottom slides; 2) microarray quality controls within standards and 3) high-quality data on each
of the three gene expression platforms used. All specimens were collected using IRB-approved
protocols and de-identified to ensure patient confidentiality. Patient characteristics are
described in Table 1 and S7. In the TCGA dataset, each sample represents a unique case. The
two normal samples were from epilepsy patients.

Microarray Experiments
Each specimen was assayed on three different microarray platforms: Affymetrix Human Exon
1.0 ST GeneChips, Affymetrix HT-HG-U133A GeneChips, and custom designed Agilent
244,000 feature Gene Expression Microarrays. Microarray labeling and hybridization
protocols, and quality control measures for each platform, were performed as described
(TCGA, 2008). Probes on all three platforms were aligned to a transcript database consisting
of RefSeq (36.1) and complete coding sequences from GenBank (v.161). Gene centric
expression values were generated for every gene with at least five perfect-match probes
(Affymetrix). On the Agilent platform, a minimum of three probes (60mers) per gene was
required (each unique probe was spotted in triplicate). This resulted in expression values for
12,042 (HT-HG-U133A), 18,632 (Exon) and 18,623 (Agilent) genes. Affymetrix HT-HG-
U133A and Exon platforms were normalized and summarized using robust multichip average
(RMA). Agilent data were lowess normalized, log transformed, and the mean was used to
calculate gene level summaries. All data are MAGE-TAB compliant with all raw and processed
data, investigation description files, sample data relationship files, and array description files
available through the TCGA Data Portal at [http://tcga-data.nci.nih.gov]. For a detailed
description of the data see the TCGA Data Primer
[http://tcga-data. nci.nih.gov/docs/TCGA_Data_Primer.pdf] as well as supplementary
methods from the TCGA Network Manuscript (2008).

Integrating Gene Expression Platforms
Each microarray platform provides an estimate of the gene expression; taking advantage of
this, we used factor analysis to integrate these measurements together into a single estimate of
the relative gene expression that is more robust than any single platform-based measurement
(Mardia et al., 1979). All data were log transformed and median centered for analysis. To ensure
consistency in measurements of gene expression, probes for all platforms were mapped to the
same transcript database and gene centric probe sets were created, as described (TCGA,
2008). Data from each platform were normalized and summarized separately resulting in gene
expression estimates for each sample and gene on each platform; relative gene expression
values were calculated per platform by subtracting from the gene estimate the mean expression
value across patients and then dividing it by its standard deviation across patients. We verified
that the three datasets were generally detecting similar transcript levels. The factor analysis
model assumes that for each gene, the relative gene expression measured on each platform has
an unknown linear relationship with the true relative gene expression with platform-dependent
error; this relationship is assumed to be the same for every sample. Factor analysis then
calculates estimates of this true relative gene expression for each sample. We applied factor
analysis to genes present on all three platforms; this resulted in a unified gene estimate for each
sample for 11,861 genes (Supplemental Experimental Procedures).
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The factor analysis provided estimates only of relative gene expression scaled to have the same
underlying variation among patients for all genes. We rescaled the unified gene expression of
each gene by estimates of the standard deviation across patients. To obtain a single estimate
of standard deviation per gene, we took the Median Absolute Deviation (MAD) for each
platform and then averaged these estimates, restricting to those platforms with high correlation
to the unified gene estimates (Supplemental Experimental Procedures). This gave a single
estimate of variation per gene that we then used to rescale the unified gene estimates.

Data Filtering
Several filters were applied to eliminate unreliably-measured genes and limit the clustering to
relevant genes. The first filter removed genes that had poor unified gene measurements by
keeping only genes in which at least two of the three platforms’ original measurements had
correlation with the unified gene estimate of at least 0.7, resulting in 9,255 genes. The second
filter eliminated genes with low variability across patients. 1,903 variably-expressed genes
were retained by selecting genes with a MAD on each original platform (restricting to platforms
with high correlation to the unified estimate) higher than 0.5. The final filter excluded genes
by comparing the MAD on each individual platform and the combined estimate of variation
described above and rejecting genes for which these measures differed by more than a factor
of 1.5 for any platform, again restricting to platforms with high correlation with the unified
estimate. Implementation of these three filters resulted in 1,740 genes (Supplemental
Experimental Procedures). All data including the individual gene expression estimates, unified
estimates, and filtered datasets can be found at
[http://tcga-data. nci.nih.gov/docs/publications/gbm_exp/].

Identification of Gene Expression-based Subtypes
We applied hierarchical clustering with agglomerative average linkage, as our basis for
consensus clustering, to detect robust clusters (Monti et al., 2003). The distance metric was 1-
(Pearson’s correlation coefficient) and the procedure was run over 1000 iterations and a
subsampling ratio of 0.8 using the 200 GBM samples and two normal samples and 1,740
reliably-expressed genes. SigClust was performed to establish the significance of the clusters
in a pairwise fashion (Liu et al., 2008). Because we cannot know the true number of classes
and it is possible that some samples do not accurately represent their pathogenic class, we
identified the “core” members of each subtype by calculating silhouette width values for all
samples (Rousseeuw, 1987). Silhouette width is defined as the ratio of each sample’s average
distance to samples in the same cluster to the smallest distance to samples not in the same
cluster. Only samples with positive silhouette values were retained for further analysis as they
best represented each subtype (R-package: Silhouette).

Signature Gene Identification and Class Prediction
We applied Significance Analysis of Microarrays (SAM) and receiver operating characteristic
(ROC) curves methods to identify marker genes of each subtype (Tusher et al., 2001). Each
class was compared to the other three classes combined, and each class was compared to the
other three individual classes in a pairwise manner (Supplemental Experimental Procedures).
We provide both rank order and test statistic for all of these analyses to allow independent
confirmation of our findings on future analyses and datasets. ClaNC, a nearest centroid-based
classification algorithm, was used to find signatures of each class, to assess class cross
validation error, and to predict subtype in the validation set (Dabney, 2006).

Association with Gene Ontology
Gene ontology was assessed for each subtype using the Database for Annotation, Visualization
and Integrated Discovery (DAVID, Dennis et al., 2003). For each subtype, highly-expressed
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genes per class were compared to the background gene list (n=11,861 genes) to discover
enriched GO terms.

Validation Dataset
To verify class signatures in independent samples, expression profiles of GBM samples from
260 patients were collected from four published studies that used the HG-U133A or HG-
U133plus2 GeneChip platforms (Beroukhim et al., 2007; Murat et al., 2008; Phillips et al.,
2006; Sun et al., 2006). Probes on these platforms were mapped to the transcript database as
used for TCGA samples and the data were combined (Liu et al., 2007). The 260 samples were
normalized together using quantile normalization and the matchprobes package (Huber and
Gentleman, 2004). Probe intensities were summarized as expression levels using RMA
(Irizarry et al., 2003). We then used ClaNC to predict the subtype of the samples in this public
validation dataset. To confirm copy number events related to the subtypes, we used copy
number data available for 43 samples in the validation set (Beroukhim et al., 2007). Copy
number profiles for these 43 samples were generated using Affymetrix 100K arrays and were
processed analogous to the TCGA dataset.

Correlation with Copy Number Events
Copy number data were available for 170 of the 173 core GBM samples and were examined
for correlations with subtype. Genome wide copy number was estimated using four datasets
representing three platforms as described (TCGA, 2008). Briefly, the circular binary
segmentation algorithm (Olshen et al., 2004) was used to estimate raw copy number for
genomic segments. Thresholds derived from the amount of noise in each platform were then
applied to identify broad, low level copy number events. High level gains and homozygous
deletions were assessed using sample specific thresholds, based on the maximum and minimum
of medians observed for each chromosome arm, plus a small buffer. The GISTIC algorithm
was then applied to thresholds to detect regions of shared copy number aberration (Beroukhim
et al., 2007). Copy number alterations were considered to be present when identified on at least
two out of four datasets.

Mutation Analyses
Exon sequence data were available for 601 genes and 116 out of 173 core samples through the
TCGA web portal [http://tcga-data.nci.nih.gov/]. Sequence data were used from the following
archives (hgsc.bcm.edu_GBM.ABI.1.23.0, 2008-31-10; broad.mit.edu_GBM.ABI.1.29.0,
2008-10-31; genome.wustl.edu_GBM.ABI.53.10.0, 2008-10-31). Somatic mutations were
assessed analogous to the TCGA Network manuscript (2008) and only validated or verified
mutations, by at least one additional technique, were considered. Gene coverage per sample is
in Table S6.

Statistical Analysis of Copy Number and Mutations
Association of copy number alterations or mutations was determined by comparing each
subtype versus the rest using a two-tailed Fisher's exact test correcting for multiple testing
using the Hochberg method implemented in p.adjust (R Development Core Team, 2008) for
controlling the Family-wise Error rate. For mutation analysis, only mutations found in at least
four samples were tested. Detailed table with p-values and all copy number regions analyzed
and mutations are in Table S1 and Table S2.

Gene Sets and Single Sample GSEA
Gene sets were generated using the transcriptome database presented in Cahoy at al. (Cahoy
et al., 2008) (GEO ID GSE9566). Expression values for 17,021 murine genes were generated
using gene centric probe set definitions (Liu et al., 2007). Hierarchical clustering of 38 normal
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murine brain samples in this dataset resulted in four clusters, associated with the four different
sample types described. SAM analysis resulted in signatures of four neural differentiation
stages, which were translated to human signatures through mapping gene names to Ensembl
IDs.

For a given GBM sample, gene expression values were rank-normalized and rank-ordered. The
Empirical Cumulative Distribution Functions (ECDF) of the genes in the signature and the
remaining genes were calculated. A statistic was calculated by an integration of the difference
between the ECDFs which is similar to the one used in Gene Set Enrichment Analysis but
based on absolute expression rather than differential expression (Barbie et al., 2009).

The details of the procedure are as follows: for a given signature G of size NG and single sample
S, of the dataset of N genes, the genes are replaced by their ranks according to their absolute
expression L = {r1, r2, r3,…,rN} and rank ordered. An enrichment score ES(G, S) is obtained
by a weighted sum (integration) of the difference between the ECDF of the genes in the
signature PG and the ECDF of the remaining genes PNG:

This calculation was repeated for the four signatures and each sample in the dataset. Notice
that this quantity is signed and that the exponent ¼ adds a slight weight proportional to the
rank.

Statistical Analysis of Clinical Parameters
All analyses were done in R (R Development Core Team, 2008). Statistical significance of
differential representation of sequence mutations and copy number alterations in the four
genomically-defined subtypes was calculated using chi-square analysis and Fisher’s exact test.
For the continuous variables, age and Karnofsky score, we used ANOVA to assess differences
among subtypes. Possible effects due to the specimen collection center were controlled by
including both collection center and subtype identification in a 2-way ANOVA. Sun et al.
(Sun et al., 2006) categorized time dependent variables in 5 year bins which for comparability
were transformed to median values of the interval with ‘>60’ being coded as censored for
survival data. We determined whether these variables were significant in predicting subtype
by using a multinomial generalized linear model. For the categorical variables, sex, collection
center, TCGA batch, and tumor type (primary versus secondary or recurrent), the chi-squared
test of independence was used to assess their relationship to subtype. For the pathological data
on the tumors, the results from the bottom and top slides were averaged to get the percent
necrosis and percent tumor nuclei in the sample. Their association to subtype was assessed
using a 2-way ANOVA after logit transformation while controlling for collection center. To
assess the relationship of survival to subtype, we performed the Mantel-Haenszel test
implemented in the package survival in R.

SIGNIFICANCE

This work expands upon previous glioblastoma classification studies by associating known
subtypes with specific alterations in NF1 and PDGFRA/IDH1, and by identifying two
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additional subtypes, one of which is characterized by EGFR abnormalities and wild type
p53. In addition, the subtypes have specific differentiation characteristics which, combined
with data from recent mouse studies, suggest a link to alternative cells of origin. Together,
this provides a framework for investigation of targeted therapies. Temozolomide and
radiation, a common treatment for glioblastoma, has demonstrated a significant increase in
survival. Our analysis illustrates that a survival advantage in heavily treated patients varies
by subtype with Classical or Mesenchymal subtypes having significantly delayed mortality
that was not observed in Proneural.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank the members of TCGA Research Network, in particular Lynda Chin, for reviewing this manuscript. We
thank Michele Hayward for editorial assistance. This work was supported by the following grants from the United
Sates Department of Energy and the United States National Institutes of Health: U54HG003067, U54HG003079
(RKW), U54HG003273, U24CA126543, U24CA126544 (CMP), U24CA126546 (MM), U24CA126551 (JWG),
U24CA126554, U24CA126561, U24CA126563, P50CA58223 (CMP), RR023248 (DNH), CA108961 (JNS),
CA127716 (JNS), NS49720 (CDJ), CA097257 (CDJ), DE-AC02-05CH11231 (JWG). RGWV is supported by a
Fellowship from the Dutch Cancer Society KWF.

REFERENCES
Arjona D, Rey JA, Taylor SM. Early genetic changes involved in low-grade astrocytic tumor

development. Curr Mol Med 2006;6:645–650. [PubMed: 17022734]
Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E,

Scholl S, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require
TBK1. Nature. 2009 in press.

Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, Vivanco I, Lee JC, Huang JH,
Alexander S, et al. Assessing the significance of chromosomal aberrations in cancer: methodology
and application to glioma. Proc Natl Acad Sci U S A 2007;104:20007–20012. [PubMed: 18077431]

Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E. Glioblastoma
subclasses can be defined by activity among signal transduction pathways and associated genomic
alterations. PLoS One. 2009 10.1371/journal.pone.0007752.

Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg
PA, Krupenko SA, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a
new resource for understanding brain development and function. J Neurosci 2008;28:264–278.
[PubMed: 18171944]

Curran WJ Jr, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, Chang CH, Rotman M, Asbell
SO, Krisch RE, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy
Oncology Group malignant glioma trials. J Natl Cancer Inst 1993;85:704–710. [PubMed: 8478956]

Dabney AR. ClaNC: point-and-click software for classifying microarrays to nearest centroids.
Bioinformatics 2006;22:122–123. [PubMed: 16269418]

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for
Annotation, Visualization, and Integrated Discovery. Genome Biol 2003;4:P3. [PubMed: 12734009]

Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel PS, Nelson SF. Gene
expression profiling of gliomas strongly predicts survival. Cancer Res 2004;64:6503–6510. [PubMed:
15374961]

Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN,
Brennan C, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev
2007;21:2683–2710. [PubMed: 17974913]

Verhaak et al. Page 13

Cancer Cell. Author manuscript; available in PMC 2011 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi
A. Isolation and characterization of tumorigenic, stem-like neural precursors from human
glioblastoma. Cancer Res 2004;64:7011–7021. [PubMed: 15466194]

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason
W, Mariani L, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl
J Med 2005;352:997–1003. [PubMed: 15758010]

Hodgson JG, Yeh RF, Ray A, Wang NJ, Smirnov I, Yu M, Hariono S, Silber J, Feiler HS, Gray JW, et
al. Comparative analyses of gene copy number and Mrna expression in GBM tumors and GBM
xenografts. Neuro Oncol. 2009

Huber W, Gentleman R. matchprobes: a Bioconductor package for the sequence-matching of microarray
probe elements. Bioinformatics 2004;20:1651–1652. [PubMed: 14988118]

Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, Greenman C, Edkins S, Bignell G,
Davies H, et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human
malignant gliomas after alkylator chemotherapy. Cancer Res 2006;66:3987–3991. [PubMed:
16618716]

Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip
probe level data. Nucleic Acids Res 2003;31:e15. [PubMed: 12582260]

Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-
Buylla A. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like
growths in response to increased PDGF signaling. Neuron 2006;51:187–199. [PubMed: 16846854]

Kleihues P, Ohgaki H. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro
Oncol 1999;1:44–51. [PubMed: 11550301]

Kreth FW, Berlis A, Spiropoulou V, Faist M, Scheremet R, Rossner R, Volk B, Ostertag CB. The role
of tumor resection in the treatment of glioblastoma multiforme in adults. Cancer 1999;86:2117–2123.
[PubMed: 10570440]

Kumabe T, Sohma Y, Kayama T, Yoshimoto T, Yamamoto T. Amplification of alpha-platelet-derived
growth factor receptor gene lacking an exon coding for a portion of the extracellular region in a
primary brain tumor of glial origin. Oncogene 1992;7:627–633. [PubMed: 1314366]

Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein
D, Brown PO, Israel MA. Gene expression profiling reveals molecularly and clinically distinct
subtypes of glioblastoma multiforme. Proc Natl Acad Sci U S A 2005;102:5814–5819. [PubMed:
15827123]

Ligon KL, Huillard E, Mehta S, Kesari S, Liu H, Alberta JA, Bachoo RM, Kane M, Louis DN, Depinho
RA, et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem
cells and malignant glioma. Neuron 2007;53:503–517. [PubMed: 17296553]

Liu H, Zeeberg BR, Qu G, Koru AG, Ferrucci A, Kahn A, Ryan MC, Nuhanovic A, Munson PJ, Reinhold
WC, et al. AffyProbeMiner: a web resource for computing or retrieving accurately redefined
Affymetrix probe sets. Bioinformatics 2007;23:2385–2390. [PubMed: 17660211]

Liu Y, Hayes DN, Nobel A, Marron J. Statistical significance of clustering for high dimension low sample
size data. Journal of the American Statistical Association 2008;103:1281–1293.

Mardia, KV.; Kent, JT.; Bibby, JM. Multivariate Analysis. London: Academic Press; 1979.
Mischel PS, Shai R, Shi T, Horvath S, Lu KV, Choe G, Seligson D, Kremen TJ, Palotie A, Liau LM, et

al. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene
2003;22:2361–2373. [PubMed: 12700671]

Monti S, Tamayo P, Mesirov J, Golub TR. Consensus Clustering: A Resampling-Based Method for Class
Discovery and Visualization of Gene Expression Microarray Data. Machine Learning 2003;52:91–
118.

Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, de Tribolet N, Regli L, Wick W,
Kouwenhoven MC, et al. Stem cell-related "self-renewal" signature and high epidermal growth factor
receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J
Clin Oncol 2008;26:3015–3024. [PubMed: 18565887]

Noble M, Proschel C, Mayer-Proschel M. Getting a GR(i)P on oligodendrocyte development. Dev Biol
2004;265:33–52. [PubMed: 14697351]

Verhaak et al. Page 14

Cancer Cell. Author manuscript; available in PMC 2011 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin
ME, Batchelor TT, et al. Gene expression-based classification of malignant gliomas correlates better
with survival than histological classification. Cancer Res 2003;63:1602–1607. [PubMed: 12670911]

Ohgaki H, Kleihues P. Epidemiology and etiology of gliomas. Acta Neuropathol 2005;109:93–108.
[PubMed: 15685439]

Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-
based DNA copy number data. Biostatistics 2004;5:557–572. [PubMed: 15475419]

Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H,
Soroceanu L, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern
of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006;9:157–173. [PubMed:
16530701]

Rand V, Huang J, Stockwell T, Ferriera S, Buzko O, Levy S, Busam D, Li K, Edwards JB, Eberhart C,
et al. Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl
Acad Sci U S A 2005;102:14344–14349. [PubMed: 16186508]

Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J
Comput Appl Math 1987;20:53–65.

Ruano Y, Mollejo M, Ribalta T, Fiano C, Camacho FI, Gomez E, de Lope AR, Hernandez-Moneo JL,
Martinez P, Melendez B. Identification of novel candidate target genes in amplicons of glioblastoma
multiforme tumors detected by expression and CGH microarray profiling. Mol Cancer 2006;5:39.
[PubMed: 17002787]

Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med
2005;353:811–822. [PubMed: 16120861]

Scott CB, Scarantino C, Urtasun R, Movsas B, Jones CU, Simpson JR, Fischbach AJ, Curran WJ Jr.
Validation and predictive power of Radiation Therapy Oncology Group (RTOG) recursive
partitioning analysis classes for malignant glioma patients: a report using RTOG 90-06. Int J Radiat
Oncol Biol Phys 1998;40:51–55. [PubMed: 9422557]

Shai R, Shi T, Kremen TJ, Horvath S, Liau LM, Cloughesy TF, Mischel PS, Nelson SF. Gene expression
profiling identifies molecular subtypes of gliomas. Oncogene 2003;22:4918–4923. [PubMed:
12894235]

Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey
R, et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer
Cell 2006;9:287–300. [PubMed: 16616334]

The Cancer Genome Atlas (TCGA) Research Network. Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature 2008;455:1061–1068. [PubMed: 18772890]

R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing; 2008.

Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2:442–454.
[PubMed: 12189386]

Tso CL, Freije WA, Day A, Chen Z, Merriman B, Perlina A, Lee Y, Dia EQ, Yoshimoto K, Mischel PS,
et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res
2006;66:159–167. [PubMed: 16397228]

Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation
response. Proc Natl Acad Sci U S A 2001;98:5116–5121. [PubMed: 11309499]

Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF
receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary
glioblastomas. Brain Pathol 1996;6:217–223. discussion 223-224. [PubMed: 8864278]

Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt
MM, Brown PO, Botstein D. Identification of genes periodically expressed in the human cell cycle
and their expression in tumors. Mol Biol Cell 2002;13:1977–2000. [PubMed: 12058064]

Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S,
Riggins GJ, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765–773. [PubMed:
19228619]

Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. Neurofibromas in NF1: Schwann cell origin and role
of tumor environment. Science 2002;296:920–922. [PubMed: 11988578]

Verhaak et al. Page 15

Cancer Cell. Author manuscript; available in PMC 2011 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Identification of four GBM subtypes. (A) Consensus clustering matrix of 202 TCGA samples
for k=2 to k=5. (B) Consensus clustering CDF for k=2 to k=10. (C) SigClust p-values for all
pair wise comparisons of clusters. (D) Silhouette plot for identification of core samples. Also
see Figure S1.
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Figure 2.
Gene expression data identify four gene expression subtypes. (A) Using the predictive 840
gene list, samples were ordered based on subtype predictions and genes were clustered using
the core set of 173 TCGA GBM samples. (B) Gene order from the TCGA samples was
maintained in the validation dataset (n=260), which is comprised of GBMs from four
previously published datasets. (C) Ordered gene expression for 24 xenograft samples. Samples
are ordered based on their predicted identity using the 840 gene list. Selected genes are
displayed for each gene expression subtype. Also see FigureS3 and TableS3.

Verhaak et al. Page 17

Cancer Cell. Author manuscript; available in PMC 2011 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Integrated view of gene expression and genomic alterations across glioblastoma subtypes.
Gene expression data (ge) was standardized (mean equal to zero, standard deviation equal to
1) across the 202 dataset, data are shown for the 116 samples with both mutation and copy
number data. Mutations (mut) are indicated by a red cell, a white pipe indicates loss of
heterozygosity, and a yellow cell indicates the presence of an EGFRvIII mutation. Copy
number events (cn) are illustrated by bright green for homozygous deletions, green for
hemizygous deletions, black for copy number neutral, red for low level amplification, and
bright red for high level amplifications. A black cell indicates no detected alteration.
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Figure 4.
Single sample GSEA scores of GBM subtypes show a relation to specific cell types. Gene
expression signatures of oligodendrocytes, astrocytes, neurons and cultured astroglial cells
were generated from murine brain cell types (Cahoy et al., 2008). Single sample GSEA was
used to project the four gene sets on samples on the Proneural, Classical, Neural and
Mesenchymal subtypes. A positive enrichment score indicates a positive correlation between
genes in the gene set and the tumor sample expression profile; a negative enrichment score
indicates the reverse. Also see FigureS6.
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Figure 5.
Survival by treatment type and tumor subtype. Patients from TCGA and Murat (Murat et al.,
2008) were classified by therapy regimen: red, more intensive therapy: concurrent
chemotherapy and radiation or greater than four cycles of chemotherapy; black, less intensive
therapy: non-concurrent chemotherapy and radiation or less than four cycles of chemotherapy.
(A) Proneural, (B) Neural, (C) Classical, (D) Mesenchymal. Also see Figure S7 and Table S7.
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