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Precipitation extreme changes are often assumed to scale with, or
are constrained by, the change in atmospheric moisture content.
Studies have generally confirmed the scaling based on moisture
content for the midlatitudes but identified deviations for the trop-
ics. In fact half of the twelve selected Intergovernmental Panel on
Climate Change (IPCC) models exhibit increases faster than the
climatological-mean precipitable water change for high percentiles
of tropical daily precipitation, albeit with significant intermodel
scatter. Decomposition of the precipitation extreme changes re-
veals that the variations among models can be attributed primarily
to the differences in the upward velocity. Both the amplitude and
vertical profile of vertical motion are found to affect precipitation
extremes. A recently proposed scaling that incorporates these
dynamical effects can capture the basic features of precipitation
changes in both the tropics and midlatitudes. In particular, the in-
creases in tropical precipitation extremes significantly exceed the
precipitable water change in Model for Interdisciplinary Research
on Climate (MIROC), a coupled general circulation model with
the highest resolution among IPCC climate models whose precipi-
tation characteristics have been shown to reasonably match those
of observations. The expected intensification of tropical distur-
bances points to the possibility of precipitation extreme increases
beyond the moisture content increase as is found in MIROC and
some of IPCC models.
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Precipitation extreme events are of considerable interest be-
cause of their disproportionate damages on the social and nat-

ural systems including flooding and soil erosion. In spite of a great
deal of uncertainty, there has emerged a broad understanding of
the change in the climatological-mean hydrological cycle (1),
mainly based on atmospheric thermodynamics. Similarly, ther-
modynamic arguments have helped interpret precipitation ex-
treme changes. Studies pointed out that because precipitation
is constrained by the availability of atmospheric water vapor,
the change in precipitation extremes would scale with or be con-
strained by precipitable water changes (2, 3). Under a constant
relative-humidity condition precipitable water increases at the
rate of change in saturation vapor pressure described by the
Clausius–Clapeyron (CC) relation. Applying typical lower tropo-
spheric temperatures, one arrives at a rate of change of approxi-
mately 7% K, a number often quoted.

The thermodynamic postulate rests on the assumption that
changes in vertical motion do not have a significant effect on pre-
cipitation changes and ignores a possible feedback between the
upward velocity and thermodynamics, which is by no means trivial
(4). Nevertheless, studies using general circulation models
(GCMs) have generally confirmed that in the midlatitudes preci-
pitation changes scale with changes in water vapor content (5–7).

A more detailed look reveals the limitations of the CC scaling,
however. The changes in hourly (rather than daily) precipitation
have been found to increase with temperature about twice as fast

as expected from the CC relation in both observations and a re-
gional climate model (4). The observed interannual variability in
the frequency of tropical precipitation extremes has been shown
to exceed the CC prediction (8). A parameter-sweeping analysis
with an idealized GCM showed that a successful scaling for
precipitation extremes needs to incorporate the effect of atmo-
spheric dynamics and the temperature changes associated with
extreme events (9).

Moreover, studies that provided support for thermodynamic
arguments themselves identified the deviations from CC predic-
tions for the tropics (5–7). They did not elaborate on the physical
mechanism for the discrepancies, however. A recent study (10)
applied a dynamically based scaling to models participating in
the Fourth Assessment Report of the IPCC and found that such
a scaling can predict the modeled precipitation extremes. In the
same spirit we analyze daily precipitation extremes in the IPCC
climate models but focus on the superCC increases of precipita-
tion extremes in the IPCC models in particular the high-
resolution version of MIROC (11), a coupled GCM that was
not analyzed by O’Gorman and Schneider in ref. 10. We examine
the very high percentile of precipitation by constructing a space–
time cumulative distribution function (CDF) of daily precipita-
tion (3, 6).

Precipitation Extremes in IPCC Models
Fig. 1A shows the inverse CDFs of daily precipitation for the tro-
pical oceans from the high-resolution version of MIROC. The
CDF combines both space and time to increase the sample size
and is not representative of a particular grid point. The model’s
resolution is approximately 1.1° in equivalent grid, the highest
among the IPCC climate models. The figure shows the results
from the two scenarios: Special Report on Emissions Scenarios
(SRES) A1B (2081–2100) and 20th Century Climate in Coupled
Models (20C3M) (1981–2000). MIROC reproduces the observed
precipitation characteristics as represented by the Global Precip-
itation Climatology Project (GPCP) one degree daily (1DD)
dataset based on multiple satellites (12). Fig. 1B displays the frac-
tional change of precipitation per unit regional warming as a
function of the CDF. The fractional change increases with
CDF and seems to asymptote to about 17% K, exceeding that
expected from the CC relation.
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Fig. 2 extends the analysis shown in Fig. 1A to the selected
climate models from the World Climate Research Program
(WCRP) Coupled Model Intercomparison Project phase 3
(CMIP3) multimodel dataset (13). In Fig. 2, fractional changes
in climatological-mean precipitable waterW (shown in the paren-
theses) have been subtracted from the changes in precipitation so
that positive values indicate superCC increases and negative,
subCC changes. Note that precipitable water increases differ
from the oft-quoted number of 7% K in most cases (Fig. S1). This
is because the CC scaling is a function of temperature and be-
cause the temperature increase is larger up in the troposphere

than at the surface, thanks to a decreasing temperature lapse rate
(Fig. S2).

In most of the climate models the fractional change in precip-
itation extremes is larger for a higher percentile of precipitation
and asymptotes to certain values at very high percentiles. In the
midlatitudes the fractional changes in precipitation are mostly
constrained by the precipitable water changes; the majority of
curves stay below zero even at very high percentiles. But in
the tropics the asymptotic values do not necessarily correspond
to the increases in moisture content. In fact, for six out of the 12
climate models examined here, the asymptotic increases in
precipitation extremes exceed the CC predictions by more than
2% K. Although the tails of the distributions contain significant
statistical uncertainties (as shown in Figs. S3 and S4), such differ-
ences warrant a detailed examination into the physical mech-
anism.

Compared with other models, the Geophysical Fluid Dynamics
Laboratory (GFDL) model appears as an outlier because of its
very large increase at high percentiles. Excluding this model, the
high-resolution version of MIROC shows the largest increase.
Although the CMIP3 models consistently underestimate the
frequency of heavy precipitation events, MIROC’s precipitation
extreme characteristics have been found to be comparable to
those of observations (14). It is then useful to examine the phys-
ical reason for MIROC’s large change in precipitation extremes.

Decomposition of Precipitation Extreme Changes
Plotted in Fig. 3 are atmospheric variables related to precipita-
tion extremes in the high-resolution version of MIROC. The
variables have been composited with respect to precipitation
extremes. All fractional changes are divided by the mean-
temperature increase of the spatial domain used for Fig. 3.
The target periods are now 2001–2020 and 2081–2100 both from
the SRES A1B simulations.

Because our understanding on precipitation change is mostly
derived from the approximated humidity budget (1, 9), we first
compare precipitation with precipitation minus evaporation
(Fig. 3A). The difference between the two does not appear large.
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Fig. 1. (A) Inverse cumulative distribution functions CDFs of daily precipita-
tion over the tropical (30°S–30°N) oceans from the high-resolution version of
MIROC and the observational dataset GPCP 1DD (1997–2005). The vertical
dotted lines represent the CDF values that correspond to the return periods
of 1, 10, and 100 yr. (B) Fractional changes in precipitation per unit warming
of the target area.
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Fig. 2. (A) As in Fig. 1B but for the selectedmodels from theWCRP CMIP3multimodel dataset. Here the fractional changes of climatological-mean precipitable
water (shownwithin the parentheses in the legends) have been subtracted from each model’s fractional changes of precipitation. (B) As in (A) but for 30–60°N.

572 ∣ www.pnas.org/cgi/doi/10.1073/pnas.0903186107 Sugiyama et al.

http://www.pnas.org/cgi/data/0903186107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0903186107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0903186107/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0903186107/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0903186107/DCSupplemental/Supplemental_PDF#nameddest=SF3
http://www.pnas.org/cgi/data/0903186107/DCSupplemental/Supplemental_PDF#nameddest=SF4


Large-scale condensation tends to dominate convective pre-
cipitation for very rare events as the change in pressure velocity
at 500 hPa, ω500 ¼ ωðp ¼ 500Þ becomes larger. The precipitable
water change is about 10–11% K, which can be contrasted with
the climatological-mean increase of about 9% K. The additional
increase in the moisture content mostly takes place above the
boundary layer (Fig. S2). The variation in mean-precipitable
water may not be an adequate indicator for extreme events (9).

We now quantify the departure from the CC scaling with the
following two parameters:

a≡ −
�Z

ω
∂q
∂p

dp
g

�
∕ðW · ω500Þ; [1]

b≡ −
Z

ω

�
∂q�

∂p

�
θ�e

dp
g
; [2]

where q is the specific humidity, q� the saturation specific humid-
ity, θ�e the saturation equivalent potential temperature. The inte-
gral is taken for the whole atmospheric column.

a simply implies the moisture convergence normalized by pre-
cipitable water and midlevel pressure velocity. From the defini-
tion, it follows that ΔW∕W þ Δω500∕ω500 þ Δa∕a approximates
the fractional change in moisture convergence and the fractional
change in a, Δa∕a represents the component not covered byW or
ω500. b is the newly proposed scaling (9, 10) and implies the
moisture convergence due to atmospheric ascent following the
pseudoadiabatic lapse rate.

While b is calculated from the temperature and vertical mo-
tion, a requires knowledge of the vertical structure of the mois-
ture field as well. Thus b comes closer to expressing a predictive
theory for the rate of change of precipitation extremes with tem-
perature (though it still requires knowledge of the vertical motion
field), whereas a is an entirely empirical parameter characterizing
the departure from the CC prediction. See the method for detail.

As we will see below, b works well for various models. Never-
theless, a is still useful for decomposing the change in precipita-
tion extremes into ω500 amplitude of vertical motion and a, the
component that depends on its vertical profile. It is also desirable
to examine a because it has been shown to play an important role
in the mean precipitation change (15).

Fig. 3B compares the changes including the effects of a and b
against extremes in precipitation. At high percentiles precipita-
tion extreme changes surpass the corresponding increase in
precipitable water. Combining vertical motion and precipitable
water overestimates precipitation extremes.

Only when the vertical profile of moisture convergence is
taken into account with Δa∕a and Δb∕b is it possible to account
for the precipitation extreme changes (Fig. 3B). a decreases in a
warmed climate because deepening cumulus convection shifts the
profile of vertical motion upward (Fig. S5). Such a change in the
profile of vertical motion has also been found to be important in
the mean circulation change (15). Another contribution to the
change in a comes from a slower increase in the vertical derivative
of water vapor content than the CC scaling. A similar argument
has been made for b (10) but the same argument applies to a
because the atmosphere is close to saturation and almost follows
a moist adiabatic lapse rate.

The empirical decomposition withΔa∕a does marginally better
than Δb∕b at the very high percentiles but the reverse is true at
the lower percentiles. This is rather surprising since the latter is a
more direct fit to the moisture budget. Part of the reason for the
present results is that the decomposition of the form ΔW∕W þ
Δω500∕ω500 þ Δa∕a assumes linearity. In Fig. 3B we also show the
fractional change in the vertical moisture convergence (denoted
byΔðaWω500Þ∕ðaWω500Þ), which agrees better withΔb∕b. At very
high percentiles we find that Δb∕b and ΔðaWω500Þ∕ðaWω500Þ
slightly differ from the changes in precipitation, which could
be attributed to large standard deviations of composited model
variables (S4).

We repeat the present analysis with other IPCC models
(Fig. 4). Because of the data availability we present the results
from seven models, including the medium-resolution version
of MIROC (Fig. 4). As with the high-resolution version of
MIROC b gives a better match with the changes in precipitation
extremes in IPCC models than changes in precipitable water
and midtropospheric vertical motion. Adding Δa∕a to ΔW∕W þ
Δω500∕ω500 also yields a reasonable match with the modeled
precipitation extremes, except for high percentiles of the GFDL
model (gfdl_cm2_0).

In the midlatitudes, the precipitation changes tend to be below
the increase suggested by the CC relationship and unlike the
tropics, very large increases are not identified (Fig. 2B). The
fractional change in the midtropospheric vertical motion is small.
Despite this, the effect of the vertical profile of atmospheric
motion is not negligible (Fig. S6). The scaling b works for
MIROC (Fig. S6) and IPCC models (Fig. S7) except for the
GFDL model, for which the performance of b is similar to that
of precipitable water and midlevel vertical motion.

Likewise, a improves the match of the predicted change with
the modeled precipitation extremes.

A key message of Figs. 3 and 4 is that the difference in pre-
cipitation extreme changes among models is primarily attribut-
able to variations in the vertical motion. In particular, a decreases
in all the models for most of the percentiles, whereas the change
in amplitude of midlevel vertical motion varies widely for the
tropics, consistent with the findings of ref. 10. In contrast, the
change in vertical motion in the extratropics is small (Fig. S7)
and thus the precipitable water increases act as a constraint on
precipitation extreme changes (Fig. 2B).

99.99999.9999.999.090.0

percentile of P distribution

-10
-5

0

5

10

15

20

[%
/K

]

  A

MIROC hires 30S-30N all-year ocean

dP/P
d(P-E)/(P-E)
d(prcpc)/P

d(prcpl)/P

dW/W
dw/w

99.99999.9999.999.090.0

percentile of P distribution

-10
-5

0

5

10

15

20

25

[%
/K

]

  B dP/P
db/b
dW/W+dw/w+da/a
dW/W+dw/w
dW/W
dw/w
da/a
d(aWw)/(aWw)

Fig. 3. (A) Fractional changes in variables composited with respect to pre-
cipitation levels corresponding to each CDF value for the high-resolution ver-
sion of MIROC. This figure focuses on ocean grid points in the 30°S–30°N
zonal band for all seasons. Variables analyzed are: precipitation (P), precipi-
tation minus evaporation (P − E), convective precipitation, large-scale
condensation, precipitable water (W), and vertical motion at 500 hPa (w).
Percentage changes are normalized by the temperature increase in the area
in question; we have omitted the denominator dT in the legend. (B) As in (A)
but for other variables. The coefficient a is the gross moisture stratification
divided by precipitable water, and the coefficient b represents the scaling of
(9). See the method for detail.
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Conclusions
Constructing CDFs of precipitation we showed that whereas the
precipitable water increase tends to constrain precipitation ex-
treme changes in the midlatitudes, six out of 12 IPCC models ex-
hibit superCC increases for very high percentiles of tropical daily
precipitation. Decomposing precipitation extreme changes has
revealed that both the amplitude and vertical profile of vertical
motion play important roles in the tropics. The newly proposed
dynamical scaling (9) can predict the fractional changes in pre-
cipitation extremes in MIROC and other IPCC models for both
the tropics and midlatitudes, as was shown by (10) with a different
method.

Our results are based on daily precipitation CDFs that com-
bine both space and time dimensions. This procedure is essential
for the large sample size (Fig. S8) but complicates the interpreta-
tion. In fact most of the very rare extreme events are concentrated
over a relatively limited area and the results are not representa-
tive of the whole domain nor a single grid point. Nevertheless,
this does not negate the main conclusion that the CC scaling
cannot accurately describe the IPCC model results.

As suggested by the important effect of large-scale precipita-
tion (Fig. 3) and vertical motion (Figs. 3 and 4), some of the
extreme events at very high percentiles could be due to tropical
storms. Our study did not address how tropical storm-like distur-
bances in GCMs contribute to precipitation extreme changes.
Tropical storms are expected to intensify because the environ-
ment is therefore more favorable to them (16–18). It is becoming

crucial to understand their future behavior in terms of precipita-
tion extremes.

Materials and Methods
We analyze daily outputs of MIROC (11) for the IPCC 20C3M and SRES A1B
simulations. Both the medium-resolution (triangular 42 spectral truncation,
approximately 3° in equivalent grid) and high-resolution (triangular 106,
approximately 1.1°) versions are employed. There are 20 and 56 layers in
the vertical for the medium- and high-resolution versions, respectively.
The general characteristics of precipitation extremes in MIROC have been
reported elsewhere (19, 20). Cumulus convection is represented by a
prognostic Arakawa–Schubert scheme (21) and uses an empirical relative-
humidity threshold for deep convection (22), which is part of the reasons
for MIROC’s good performance in simulating precipitation extremes (19).

In constructing the space–time CDFs of daily precipitation, we follow refs.
(3) and (6). Binning the daily precipitation data both in time and space yields
a CDF of precipitation. Latitudinal cosine weighting is not applied. There are
200 bins for the range between 0–1,000 mm/d for Figs. 1 and 2, and 100 bins
for the range between 0–400 mm/d for Figs. 3 and 4. The bin size increases
linearly with the amplitude of the precipitation of the bin so that the edge
value of each bin increases as a quadratic function. The difference in the
binning scheme has little impact on the fractional change in precipitation
(Figs. S3).

The CDFs for the two periods are inverted and interpolated on common
values of percentiles to allow for the calculation of percentage change. We
then calculate the mean and standard deviation of other variables condi-
tioned on precipitation extremes. Some examples of the standard deviations
are shown in S4. Although the errors are large, the increases for extreme
events are as large as, or larger than one standard deviation for large-scale
precipitation, precipitable water, and the midlevel vertical motion.
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Fig. 4. As in Fig. 3B but for other CMIP3 models. Model names are plotted at the top of each panel.
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Note that we include nonprecipitating days in the CDFs and that a given
percentile c × 100 of a CDF is related to a return period of t d as t ¼ 1∕ð1 − cÞ.
For instance, the 99.973th percentile approximately corresponds to a return
period of approximately 3,650 d or 10 yr.

Because we combine both space and time dimensions in creating the CDFs,
the sample size is large enough to allow for calculations of extreme events.
For example, the count of events exceeding the 99.999 percentile is approxi-
mately 1,100 for the tropics (Fig. 3).

In addition to the two versions of MIROC, we examined the selected 10
models from the WCRP CMIP3 multimodel dataset (13). For models other
thanMIROC, the pressure velocity was obtained by integrating the continuity
equation from the surface assuming a rigid bottom. This is only approximate
but sufficient for our purposes of analyzing oceanic regions.

The periods used for our analysis are either of the two combinations:
1981–2000 and 2081–2100, or 2001–2021 and 2081–2100. For all IPCC models
excluding MIROC, 1981–2000 was used. For MIROC, 1981–2000 was used for
Figs. 1 and 2, and for other analyses, 2001–2020 was adopted unless other-
wise mentioned. We found little impacts of the choice of analysis periods on
the overall results (Figs. S3). We also tested the effect of the grid resolution
because our analysis is conducted at the native grid of each model. The grid
resolution was found not to have significant influence (Figs. S3) probably
because we analyze the fractional change, not the actual intensity of pre-
cipitation.

We here elaborate on the definitions of parameters a and b defined in
Eqs. 1 and 2. In these equations p is the pressure and g is the acceleration
due to gravity, as in the standard meteorological notation. Saturation vapor
pressure in q� and θ�e is defined with respect to ice when the local tempera-
ture is below the melting point.

a is the gross moisture stratification divided by precipitable water (23)
and is closely related with gross moist stability. Notice that the sum ΔW∕W þ
Δω500∕ω500 þ Δa∕a approximately equals the fractional change in the vertical
moisture convergence term.

As mentioned in the text the calculation of a requires almost all the
knowledge about the humidity budget, and therefore it should not be
regarded as a scaling; it is rather a parameter to quantify to what extent
the departure from the CC relation can be explained with other effects such
as the change in vertical profile of vertical motion, and the slow change in the
vertical derivative of specific humidity.

b has been proposed as a scaling for the change in precipitation extremes
(9) and tested with IPCCmodels (10). It denotes themoisture convergence but
takes into account the effect of slantwise ascent, which is assumed to follow
the pseudoadiabatic lapse rate. It is possible to introduce further simplifica-
tions for vertical motion and temperature (9) but we do not introduce them.
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