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The intracellular signaling mechanisms regulating the generation
and long-term persistence of memory T cells in vivo remain unclear.
In this study, we used mouse models with conditional deletion
of the key T cell receptor (TCR)-coupled adaptor molecule SH2-
domain-containing phosphoprotein of 76 kDa (SLP-76), to analyze
signaling mechanisms for memory CD4 T cell generation, mainte-
nance, and homeostasis. We found that ablation of SLP-76 expres-
sion after T cell priming did not inhibit generation of phenotypic
effector ormemory CD4 T cells; however, the resultant SLP-76–defi-
cient memory CD4 T cells could not produce recall cytokines in
response to TCR-mediated stimulation and showed decreased per-
sistence in vivo. In addition, SLP-76–deficient memory CD4 T cells
exhibited reduced steady-state homeostasis and were impaired in
their ability to homeostatically expand in vivo in response to the γc
cytokine IL-7, despite intact proximal signaling through the IL-7R–
coupled JAK3/STAT5 pathway. Direct in vivo deletion of SLP-76 in
polyclonal memory CD4 T cells likewise led to impaired steady-state
homeostasis as well as impaired homeostatic responses to IL-7. Our
findings demonstrate a dominant role for SLP-76–dependent TCR
signals in regulating turnover and perpetuation of memory CD4 T
cells and their responses to homeostatic cytokines, with implica-
tions for the selective survival of memory CD4 T cells following
pathogen exposure, vaccination, and aging.
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The enhanced functional and survival properties of memory T
cells enable them to provide long-lasting secondary responses

to recall antigens. Memory T cells are generated following
antigen activation of naive T cells (1) and differ from naive T
cells in their rapid production of effector cytokines following
antigenic stimulation through the T cell receptor (TCR). The
TCR-coupled signaling pathways for naive T cell activation have
been well defined (2) and include an initial phosphorylation of
TCR/CD3 components, leading to activation of the ZAP-70
proximal kinase, and the coupling of proximal phosphorylation
events to distal signaling through linker-adapter molecules such
as the SH2-containing phosphoprotein of 76 kDa (SLP-76) and
linker for activated T cells (LAT) (3). The specific TCR-coupled
signaling events important for promoting memory T cell devel-
opment and persistence remain undefined.
Once generated, memory T cells have variable requirements for

TCR engagement for their maintenance.Whereas memory CD8 T
cells can persist and maintain recall function in the absence of
MHC class I expression (4), memory CD4 T cells exhibit impaired
functional responses when maintained in the absence of MHC
class II expression (5, 6), although they can survive in MHC class
II–deficient hosts (5, 7, 8). In addition, the presence of MHC class
II or TCR signaling is associated with improved memory CD4 T
cell survival and homeostasis (9–11), suggesting that memory CD4
T cells may depend on TCR signals during their long-term main-
tenance. Cytokines within the γc family, particularly IL-7, have also
been shown to be required for long-term survival and homeostasis
ofmemoryCD4T cells (12, 13), althoughwhether TCR signals can

compensate for and/or influence cytokine responses in memory T
cells has not been demonstrated.
We have performed an extensive analysis of TCR-coupled

signaling pathways in memory CD4 T cells to identify bio-
chemical intermediates involved in their generation, function,
and maintenance (14, 15). Importantly, we found differences in
the expression and phosphorylation of SLP-76 in naive and
memory CD4 T cells (15), suggesting that TCR signaling through
SLP-76 may be critical in the pathway to memory T cell devel-
opment and/or maintenance. SLP-76 is required for TCR-
mediated IL-2 production, cytoskeletal reorganization, and cal-
cium flux in primary T cells or T cell lines (3, 16, 17), although its
role in memory T cell signaling and function remains undefined.
However, SLP-76 deficiency in vivo results in a lack of peripheral
T cells due to an early block in thymopoiesis (18, 19), precluding
the use of fixed genetic knockouts to investigate the role of
SLP-76 in memory development and persistence.
In this study, we used mice with conditional SLP-76 expression

to dissect the role of SLP-76-dependent TCR signaling in
memory CD4 T cell generation, maintenance, and homeostasis.
We developed a unique system for deletion of SLP-76 expression
after CD4 T cell priming by administration of a TAT-Cre
recombinant fusion protein and also via drug-induced Cre
activity and SLP-76 deletion. We found that SLP-76–deficient
effector cells developed into phenotypic memory CD4 T cells in
vivo, albeit at reduced persistence. SLP-76–deficient memory
CD4 T cells generated by adoptive transfer or by direct drug-
induced deletion were unable to produce recall cytokines in
response to TCR engagement. Moreover, SLP-76–deficient
memory CD4 T cells were significantly impaired in steady-state
homeostasis and in vivo responses to IL-7, despite intact early
cytokine signaling through the γc pathway. Our findings dem-
onstrate a dominant role for SLP-76–dependent TCR signals in
regulating turnover and perpetuation of memory CD4 T cells
and in sustaining their homeostatic responses to cytokines.

Results
SLP-76 Deletion in Primed CD4 T Cells. To study the role of SLP-76 in
memory T cell development and maintenance, we used a mouse
model for conditional deletion of SLP-76 expression by the Cre
recombinase protein (16). Mice containing a knock-in SLP-76
allele flanked by LoxP sites (“Floxed”) heterozygous with either a
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null allele (slp76F/null) or an intact WT allele (slp76F/+) of SLP-76
(16) were crossed to ROSA26yfp (R26Ryfp) Cre-reporter mice
(20) with transgenic expression of the yellow fluorescent protein
(YFP) gene preceded by a floxed STOP cassette. The resultant
SLP-76F/nullR26Ryfp (F/null) mice and SLP-76F/+R26Ryfp (F/+)
mice (Fig. S1A) both had wild-type levels of thymic and peripheral
CD4 and CD8 T cells (16). Introduction of the Cre recombinase
deletes the floxed alleles of SLP-76 and the R26R stop cassette,
resulting in SLP-76Δ/nullYFP+ (conditional knockout, cKO) and
SLP-76Δ/+YFP+ (conditional heterozygous control, cHET) phe-
notypes, respectively (Fig. S1A).
We determined the kinetics of YFP up-regulation and con-

comitant down-regulation of SLP-76 protein expression in acti-
vated CD4 T cells from F/null and F/+ mice, after administration
of Cre recombinase in the form of a fusion protein with HIV Tat
protein (TATCre) (21), enabling direct entry into cells. CD4 T
cells from F/null and F/+mice were activated in vitro for 24 h with
anti-CD3 and anti-CD28 antibodies, treated with TATCre, and
YFPandSLP-76 expressionwasmonitored 6–24 h later.We found
that YFP expression appeared within 15 h after TATCre admin-
istration and was maximal by 24 h in both cKO and cHET CD4 T
cells (Fig. S1B). Coincident with YFP up-regulation, SLP-76
expression decreased to the level of isotype control 15–20 h post-
TATCre in cKO YFP+CD4 T cells (Fig. 1A, Upper row), yet
persisted at levels substantially above isotype control in cHET
YFP+CD4 T cells (Fig. 1A, Lower row). By 48 h after TATCre
treatment, both Western blot (Fig. 1B, Left) and flow cytometry
(Fig. 1B, Right) analyses show that YFP+ cKOTATCre CD4 T cells
were SLP-76 negative, whereas YFP+ cHETTATCre CD4 T cells
were SLP-76+. These results demonstrate efficient ablation of
SLP-76 expression in the YFP+ population of cKOTATCre CD4 T
cells within 24 h post-TATCre treatment.
We examined whether deletion of SLP-76 after priming would

affect the survival and activation state of the resultant effector
cells. Both cKOTATCre and cHETTATCre YFP+ CD4 T cells per-
sisted in vitro in similar numbers 48 h after priming and TATCre
administration as above (Fig. S2A) and exhibited surface pheno-
types characteristic of activated cells, including up-regulation of
CD25 and CD44 and down-regulation of IL-7R (22) (Fig. 1C).
However, primed SLP-76-deficient cKOTATCre CD4 T cells
exhibited reduced phosphorylation of the TCR signaling inter-
mediate PLC-γ (Fig. 1D), known to be coupled to SLP-76 sig-
naling in T cells (17, 23), and reduced IL-2 and IFN-γ production
compared to control cHETTATCre effector CD4 T cells (Fig. S2B).
These results indicate that deletion of SLP-76 following TCR
stimulation does not alter the phenotype of primed CD4 T cells,
but reduces TCR-mediated signaling and function.

Memory CD4 T Cell Generation in the Absence of SLP-76. We next
asked whether primed CD4 T cells deficient in SLP-76 expression
could develop into memory CD4 T cells when transferred into
lymphocyte-deficient or intact adoptive hosts in vivo. We trans-
ferred primed cKOTATCre and cHETTATCre CD4 T cells (Fig. 1B)
initially into lymphocyte-deficient RAG2−/− hosts and found that
cKOTATCre CD4 T cells maintained SLP-76 deficiency and were
recovered at lower frequencies compared to SLP-76+ cHETTATCre

CD4 T cells (Fig. 2A). Functionally, ex vivo stimulation with TCR/
CD3 cross-linking resulted in significant frequencies of rapid
IFN-γ and IL-2 producers from cHETTATCre CD4 T cells, with
negligible cytokine production from cKOTATCre CD4 T cells
(Fig. 2B and Fig. S3). By contrast, comparable frequencies of rapid
IFN-γ and IL-2 producers resulted from stimulation of cKOTATCre

and cHETTATCre CD4T cells with phorbol 12-myristate 13-acetate
(PMA)/ionomycin, which bypassesTCR-mediatedSLP-76 signaling.
These results indicate that persisting cKOTATCre and cHETTATCre

CD4 T cells were similarly primed for Th1 cytokine production, but
that ablation of SLP-76 expression following priming inhibited the
ability of the TCR to signal for rapid production of IL-2 and IFN-γ.

We also examined the ability of cKOTATCre and cHETTATCre

memory CD4 T cells to persist in intact hosts. CD4 T cells from
cKO and cHETmice were primedwith anti-CD3/CD28 antibodies
for 72 h, treated with TATCre in vitro, and directly transferred
into congenic B6.CD45.1 hosts. After 4–6 weeks in vivo, persisting
cKOTATCre YFP+ CD4 T cells remained SLP-76 deficient (Fig.
S4A) and exhibited a restingmemory phenotype (CD44hi/CD25lo/
IL-7R+) and surface TCR expression comparable to that of
cHETTATCre YFP+ CD4 T cells (Fig. 3A). Despite similar pheno-
types, the number of persisting cKOTATCre YFP+ CD4 T cells was
markedly diminished 5 weeks posttransfer compared with cHET-
TATCre YFP+ cells (Fig. 3B and Fig. S4B). We investigated whether
the attrition of SLP-76–deficient memory CD4 T cells was caused
by altered in vivo turnover and homeostasis byBrdU incorporation.
At 1 week posttransfer, a lower proportion of cKOTATCre YFP+

CD4 T cells incorporated BrdU compared to cHETTATCre YFP+

CD4 T cells (Fig. 3C), and by 5 weeks posttransfer, cKOTATCre

memory CD4 T cells displayed negligible BrdU incorporation,
whereas a significant proportion of cHETTATCre memory CD4 T
cells incorporated BrdU (Fig. 3C and Fig. S4C). The persisting
memory CD4 T cells from both groups did not exhibit a difference
in expression of the anti-apoptotic molecule Bcl-2 (Fig. S4D),
suggesting that the diminished persistence of SLP-76–deficient
memory CD4 T cells may be directly due to their reduced
homeostatic turnover in vivo.
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Fig. 1. Downmodulation of SLP-76 expression after T cell activation using a
conditional knockout mouse model. (A) Kinetics of SLP-76 knockdown.
Splenic CD4+ T cells from SLP-76F/nullR26Ryfp (F/null) and SLP-76F/+R26Ryfp (F/+)
mice were activated with anti-CD3/anti-CD28 antibodies and cultured with
TATCre protein, and SLP-76 expression was determined by flow cytometry
6–24 h later. Histograms show intracellular SLP-76 expression gated on total
CD4+ T cells or YFP+CD4+ T cells (for 19 and 24 h). Shaded histograms represent
isotype controls. (B) SLP-76 deletion occurs in the YFP+ fraction of cKOTATCre

cells. (Left) Western blot of SLP-76 and LAT expression in CD4 T cells from F/
null and F/+ mice before stimulation (Prestim) and sorted, CD4+YFP+ cKO or
cHET cells after TATCre. The line separates the noncontiguous lanes. (Right)
Flow cytometric analysis of YFP versus SLP-76 expression in cKOTATCre and
cHETTATCre CD4 T cells analyzed 48 h post-TATCre administration, gated on
CD4+ T cells, representative of seven experiments. (C) Surface expression of
CD44, CD25, and IL-7Rα on cKOTATCre (Upper) and cHETTATCre (Lower) primed
cells gated on CD4+YFP+cells. Results are representative of six experiments.
(D) Intracellular phospho-PLC-γ1 expression of cKOTATCre and cHETTATCre

primed CD4 T cells gated on CD4+YFP+cells, with shaded histograms denoting
control. Results are representative of three experiments.
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Impaired Homeostatic Turnover in SLP-76–Deficient Memory CD4
Cells to IL-7 in Vivo. Previous studies have identified a dominant
role for the γc cytokine IL-7 in the survival and homeostasis of
memory CD4 T cells (7, 12). We therefore investigated whether
homeostatic turnover of cKOTATCre memory cells could be
restored by the addition of IL-7 in vivo. We administered IL-7/
anti-IL-7(M25) antibody complexes, shown to promote robust T
cell homeostasis in intact mice (24), to mouse hosts of cKOTATCre

and cHETTATCre memory CD4 T cells and measured in vivo
proliferation and cumulative expansion of CD4 T lymphocyte
populations. Whereas the number of endogenous lymphocytes in
IL-7/M25-treated compared to untreated host mice was markedly
increased (Fig. 4A, Left), as were the numbers of cHETTATCre

memory CD4 T cells (Fig. 4A, Right), the numbers of cKOTATCre

memory CD4T cells were unchanged or slightly decreased in IL-7/
M25–treated compared to control hosts (Fig. 4A, Right). BrdU
incorporation studies revealed that cHETTATCre memory CD4 T
cells proliferated significantly more than cKOTATCrememory CD4
T cells in IL-7/M25–treated mice (Fig. 4B), indicating that SLP-
76–deficient memory CD4 T cells were impaired in their ability to
undergo homeostatic proliferation triggered by IL-7.
We hypothesized that the reduced in vivo proliferative

responses of SLP-76–deficient memory CD4 T cells to IL-7/M25
complexes were caused by impairments in the IL-7R–coupled
JAK3/STAT5 signaling pathway (25). We therefore analyzed the
ability of cKOTATCre and cHETTATCre memory CD4 T cells to
phosphorylate the STAT5 transcription factor in response to
IL-7 ex vivo. Treatment of cHET and cKO memory CD4 T cells
with IL-7 resulted in significant STAT5 phosphorylation, which
was only slightly reduced in cKO memory CD4 T cells (Fig. 4C).
Both cHET and cKO memory CD4 T cells also exhibited com-
parable STAT5 phosphorylation in response to the related γc
cytokine IL-15 (Fig. 4C), which also regulates memory CD4 T
cell homeostasis (7). These results demonstrate that homeostatic

defects in SLP-76–deficient memory CD4 T cells are independ-
ent of proximal γc cytokine signaling.

In Vivo Deletion of SLP-76 Impairs Memory CD4 T Cell Homeostasis.
To rule out specific effects of the adoptive transfer system, we also
analyzed homeostasis and cytokine responses in polyclonal
CD44hi endogenous memory CD4 T cells where SLP-76 was
directly deleted in vivo using a mouse model with drug-induced
Cre recombinase activity. We crossed SLP-76F/nullR26Ryfp and
SLP-76F/+R26Ryfpmice toCreT2mice transgenic for a tamoxifen-
regulated Cre recombinase (26), resulting in cKOCreT2 and
cHETCreT2 mouse strains, respectively (Fig. S5A). Treatment of
cKOCreT2 and cHETCreT2mice with tamoxifen resulted in ablation
of SLP-76 expression specifically in theYFP+ fraction of cKOCreT2

CD4 T cells, but not in cHETCreT2 mice (Fig. S5B). CD44hi
memory CD4 T cells from cKOCreT2 mice also exhibited com-
parable IL-7Rα expression (Fig. S5C) and IFN-γ and IL-2 pro-
duction in response to PMA/ionomycin as in cHETCreT2 mice, yet
had impaired TCR-coupled cytokine responses (Fig. S6).
We examined the capacity of cKOCreT2 and cHETCreT2

CD44hi memory CD4 T cells to undergo in vivo homeostasis in
untreated and IL-7/M25-treated mice. In untreated mice,
cKOCreT2 CD44hi memory CD4 T cells exhibited significantly
reduced BrdU incorporation compared to cHETCreT2 CD44hi
memory cells (Fig. 5A). In IL-7/M25–treated mice, a greater
proportion of cKOCreT2 memory CD4 T cells incorporated BrdU
compared to untreated mice; however, the extent of BrdU
incorporation was still threefold less than that of IL-7/M25–
treated cHETCreT2 memory CD4 T cells (Fig. 5A). Thus, similar
to memory CD4 T cells generated by adoptive transfer, in vivo
SLP-76 deficiency impairs steady-state and IL-7-driven homeo-
stasis of memory CD4 T cells. We also examined γc signaling in
cKOCreT2 and cHETCreT2 memory CD4 T cells and did not find
significant differences in pSTAT5 induction following stim-
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ulation of cHET or cKO memory CD4 T cells with IL-7, IL-15
(Fig. 5B), or IL-2 (Fig. S7), further establishing that SLP-76
deficiency in memory CD4 T cells does not appreciably affect
early γc cytokine signaling through the JAK/STAT pathway.

Discussion
We examined here signaling requirements at different stages of
memory CD4 T cell development and persistence, using unique
mouse models with conditional ablation of the TCR-coupled
SLP-76 linker/adapter molecule. We found that SLP-76–deficient
primed CD4 T cells developed into resting memory cells in vivo,
yet exhibited reduced persistence and homeostasis. Importantly,
SLP-76–deficient memory CD4 T cells did not undergo steady-
state homeostatic turnover and were impaired in their ability to
mediate cytokine- and lymphopenia-driven homeostasis, despite
intact γc cytokine signaling. These results reveal a dominant
requirement for SLP-76–dependent TCR signals in memory CD4
T cell maintenance and in sustaining homeostatic turnover.
We found that after initial priming, SLP-76–dependent TCR-

mediated signals are not required for the generation of resting
memory CD4 T cells from activated T cells. However, memory
CD4 T cells require SLP-76 to signal for TCR-mediated cytokine
production, establishing that SLP-76 is a central regulator of
TCR signaling in memory T cells, as it is in naive T cells (16).
Our results further reveal more profound requirements for TCR

signals in memory CD4 T cell survival and homeostasis than was
previously concluded from studies in MHC class II–deficient
hosts (5, 8) or in mouse models with ablation of the TCR or the
TCR-associated p56lck tyrosine kinase (10, 27). In our model, we
follow the persistence of a specific population of primed CD4 T
cells, rather than the polyclonal fraction of CD44hi cells exam-
ined in the previous studies. The decreased persistence of SLP-
76-deficient memory CD4 T cells in vivo was associated with
diminished homeostatic proliferation, suggesting that memory
CD4 T cell persistence requires turnover (28). When taken
together, our findings suggest that TCR-mediated signaling in
memory CD4 T cells is the predominant regulator of their long-
term persistence through steady-state turnover.
Previous studies have suggested that memory CD4 T cells can

survive and undergo homeostasis via cytokine-mediated signals
(11, 12, 29). We therefore investigated whether supra-
physiological levels of IL-7 adminstered as IL-7/anti-IL-7 com-
plexes could stimulate homeostatic turnover of SLP-76–deficient
memory CD4 T cells. We found increased in vivo proliferation of
SLP-76–deficient memory CD4 T cells in response to IL-7/anti-
IL-7, albeit at a greatly reduced level compared to the high level of
IL-7–induced proliferation of control memory T cells. This result
prompted us to examine whether cytokine signals were impaired
in the absence of SLP-76; however, we did not detect any defects
in proximal JAK/STAT signaling in response to γc cytokines. Our
findings suggest that TCR signals are required to sustain
homeostatic turnover of memory CD4 T cells, rather than TCR
and IL-7–mediated signals playing complementary roles in
memory CD4 T cell homeostasis as previously suggested (11).
Our identification of a predominant TCR requirement for

memory CD4 T cell maintenance predicts the selective survival of
memory populations with the greatest capacity for TCR
engagement. Indeed, the memory CD4 T cell compartment in
aging is characterized by narrowing TCR repertoires and expan-
ded clonal populations (30), suggesting that homeostatically
expanding memory T cells may compose an increased proportion
of the T cell repertoire. Conversely, certain populations of virus-
specific memory CD4 T cells have been shown to decline over
time (31). The requirement for continuous TCR signaling in long-
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term memory maintenance explains the eventual loss and selec-
tive long-term persistence of specific memory populations.
In conclusion, our results present unique evidence for a pre-

dominant role for the TCR signaling pathway in sustaining
homeostatic turnover of memory CD4 T cells for their main-
tenance, with important implications for understanding memory
CD4 T cell persistence following pathogen exposure, in vaccines,
and during aging.

Materials and Methods
Mice. C57BL/6 and B6.CD45.1(B6-Ly5.2) mice (8–16 weeks) were purchased
from the National Cancer Institute Biological Testing Branch and RAG2−/−

mice were from Taconic Farms. Mouse strains containing a floxed (F) allele of
SLP-76(16) were crossed to R26RYFP mice (20) to generate SLP-76F/nullR26-
R

yfp

(cKO) mice and SLP-76F/+R26Ryfp(cHET) mice (Fig. S1) and to CreT2 trans-
genic mice expressing a tamoxifen-regulated Cre recombinase protein (32)
to generate SLP-76F/nullR26RyfpCreT2(cKOCreT2) and SLP-76F/+R26RyfpCreT2
(cHETCreT2) strains (Fig. S1). All mice were maintained at the animal facilities
at the University of Maryland, Baltimore, MD, and the University of Penn-
sylvania, Philadelphia, PA, under specific pathogen-free conditions, and
animal procedures were approved by the Institutional Animal Care and Use
Committee of each institution.

Antibodies and Reagents. Purified antibodies specific for CD8 (TIB 105), NK
(PK136), and I-Ad (212.A1) were purchased from Bio X Cell. Fluorochrome-
conjugated antibodies specific for CD62L, IL-7Rα, CD25, anti-TCRβ, anti-IL-2,
anti-IFN-γ, anti-PLCγ1 (pY783), and CD4 were purchased from BD Pharmin-
gen; antibodies specific for CD44, CD45.2, phospho-STAT5(Y694), and BrdU
and recombinant mouse IL-7, IL-15 and IL-2 came from eBioscience. Anti-SLP-
76 antibody came from Cell Signaling Technology and PE-conjugated donkey
anti-Rabbit F(ab′)2 came from Jackson ImmunoResearch Laboratories. The
TAT-fused Cre-recombinase protein (21) (TATCre) was expressed and purified
as described (21). Anti-IL-7 antibody M25 (33) and human IL-7 were gen-
erously provided by Charles Surh (Scripps Research Institute, San Diego, CA).

In Vitro Priming, TATCre Treatment, and Adoptive Transfer. CD4 T cells from
cHET and cKO mice were purified as described (15) and primed in vitro by
activation with plate-bound anti-CD3 (5 μg/mL) and anti-CD28 (5 μg/mL)

antibodies in Complete Click’s Medium (15) at 37°C. Cells were cultured with
recombinant TATCre protein (100 μg in HBSS per 107 cells) for 40 min at 37°C,
washed with media, and recultured in vitro with plate-bound anti-CD3/anti-
CD28 antibodies for 6–48 h. For generation of cKOTATCre and cHETTATCre

memory T cells, CD4 T cells from cHET and cKO mice were activated for 72 h
in vitro, treated with TATCre, transferred i.p. into B6.CD45.1 mouse hosts
(3 × 106 cells/mouse), and harvested 1–5 weeks posttransfer. B6.CD45.1
recipients were administered anti-CD8 (TIB105, 100 μg/mouse) and anti-NK
(PK136, 50 μg/mouse) antibodies i.p. at days −1 and 0 and every 3–5 days
thereafter as described (7).

In Vivo Treatment with BrdU and Cytokine/Anti-Cytokine Complexes. Adoptive
mouse hosts were treated i.p. with BrdU diluted in PBS (1mg/mouse), daily for
3 days before harvest. Intracellular staining for BrdUwas done using the BrdU
staining kit (BD Pharmingen). For cytokine administration in vivo, mice were
treated with IL-7/anti-IL-7 complexes (24), using 3 μg recombinant IL-7 mixed
with 15 μg of anti-IL-7 i.p. on days 0, 2, and 4. Cells were harvested 7 days
after the first treatment.

Western Blotting and Flow Cytometry. CD4 T cells from cHET and cKOmice and
YFP+ CD4 T cells FACS sorted after activation and TATCre treatment above
were lysed in SDS sample buffer with protease/phosphatase inhibitors as
described (15). Lysates were resolved by 4–12% gradient SDS/PAGE and anti-
SLP-76 and anti-LAT immunoblots were performed as described (15). Sur-
face and intracellular staining was performed as previously described (14),
and cells were analyzed using an LSRII flow cytometer (BD) and FlowJo
software (Tree Star).

Tamoxifen-Induced SLP-76 Deletion. SLP-76F/nullR26RyfpCreT2 and SLP-76F/+-
R26R

yfp

CreT2 mice (8–12 weeks) were administered Tamoxifen (Sigma) daily
by oral gavage for 5 days (200 μg·g−1·day−1), and cells were harvested 5–20
days after the last tamoxifen dose.
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