
Optimizing infectious disease interventions during an
emerging epidemic
Jacco Wallingaa,b,1, Michiel van Bovena, and Marc Lipsitchc

aCentre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, Netherlands; bJulius Center for Health
Sciences and Primary Care, University Medical Center Utrecht, 3508 GA Utrecht, Netherlands; and cCenter for Communicable Disease Dynamics, Department
of Epidemiology and Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115

Edited by Peter Palese, Mount Sinai School of Medicine, New York, NY, and approved November 25, 2009 (received for review July 29, 2009)

The emergence and global impact of the novel influenza A(H1N1)v
highlights the continuous threat to public health posed by a steady
stream of new and unexpected infectious disease outbreaks in
animals andhumans.Once anemergingepidemic is detected, public
health authorities will attempt to mitigate the epidemic by, among
othermeasures, reducing further spread asmuch as possible. Scarce
and/or costly control measures such as vaccines, anti-infective
drugs, and social distancing must be allocated while epidemiolog-
ical characteristics of the disease remain uncertain. Herewe present
first principles for allocating scarce resources with limited data. We
show that under a broad class of assumptions, the simple rule of
targeting intervention measures at the group with the highest risk
of infection per individual will achieve the largest reduction in the
transmission potential of a novel infection. For vaccination of
susceptible persons, the appropriate risk measure is force of
infection; for social distancing, the appropriate risk measure is
incidence of infection. Unlike existingmethods that rely on detailed
knowledge of group-specific transmission rates, the method
described here can be implemented using only data that are readily
available during an epidemic, and allows ready adaptation as the
epidemic progresses. The need to observe risk of infection helps to
focus the ongoing planning and design of new infectious disease
surveillance programs; from the presented first principles for
allocating scarce resources, we can adjust the prioritization of
groups for intervention when new observations on an emerging
epidemic become available.
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The need to plan for countering new emerging diseases is
highlighted by the worldwide rise of HIV infections since its

discovery in 1981 (1, 2), by the spread of the foot-and-mouth
epidemic in the United Kingdom in 2002 (3), by the global
impact of several outbreaks of severe acute respiratory syndrome
(SARS) in 2003 (4), by the projected impact of a possible new
influenza pandemic (5–7), and recently by the actual spread of a
novel influenza A(H1N1)v pandemic (8, 9). Available control
measures for new infections will be scarce because of supply
(e.g., vaccines, drugs, masks) and logistical (e.g., distribution)
constraints, and their use will be costly. As a consequence, public
health bodies face the questions of how to deploy limited control
measures to minimize transmission, and of which groups in the
population should be targeted for infectious disease control (10,
11). The general problem is how to choose groups of the pop-
ulation that should receive priority in getting the intervention.
Typically groups are defined by age, but for some diseases sex,
occupation, or other demographic characteristics are more sali-
ent. Hereafter we refer to age groups, for brevity.
Existing approaches to allocating infection control rely either

on detailed knowledge of transmission parameters (12–15) that
may remain ambiguous, as standard methods for estimating
transmission rates among groups suffer from indeterminacy (16–
18), or on predictions for the eventual number of infections that
occur in each group during the entire epidemic (16, 19–21),

which are unlikely to be available at the start of an emerging
epidemic. Here we provide a robust solution to the allocation
problem that applies to a general class of infectious diseases for
which the objective is to minimize transmission and at-risk
contacts are reciprocal, that is, for which spread of infection
requires the proximity of two individuals (17). We show that
there exist simple principles to find optimal allocation schemes
for scarce control measures that require observation of only a
few key risk measures of infection that can be observed in the
initial phase of an emerging epidemic.

Results
Vaccination. Suppose that we wish to target vaccination of sus-
ceptible individuals to minimize transmission of an infection. A
measure of the transmission potential is the reproduction num-
ber R, defined as the number of secondary infections caused by a
typical primary case (22–25); this monotonically affects the rate
of increase in the number of cases (26). We find that the mar-
ginal benefit of allocating a dose of vaccine to a given age group i
is approximately proportional to the product of the incidence
rate per person, denoted by xi/ni, and the force of infection,
denoted by xi/si, where force of infection is defined as incidence
rate per susceptible person (22). If contact reciprocity holds and
all else is equal, this implies that the greatest reduction in
transmission of the infection population-wide can be achieved by
vaccinating a person in the group with the highest product of
incidence and force of infection. More generally, this reduction
depends on the efficacy of the vaccine in each group qi, the per
contact probability of becoming infected for each group ai, and
the per contact infectiousness of each group ci:
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[1]

[relative change in transmission]≈[constant] [vaccine efficacy]
[per contact probability of transmitting infection/ per contact
probability of becoming infected] [force of infection] [incidence
of infection].
The relative change in transmission depends on the product of

two measures for risk infection, which implies that small differ-
ences between groups in risk of infection could hint at substantial
benefits for targeting specific groups.
Intuitively, the change in transmission by vaccinating one

susceptible individual has two components: first, the risk of
infection of this individual; and second, the number of resulting
infections that this individual will cause once infected. The first
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component, an individual's risk of being infected, is given by the
incidence of infection (xi/ni). The second component, an infected
individual's expected number of future infections, is proportional
to force of infection (xi/si) when contacts are reciprocal (Fig. 1).
Taken together, these two components imply that the change in
transmission is proportional to the product of incidence and
force of infection. We have tested this approximate equation in
simulation experiments and have found that it provided accurate
predictions (SI). The largest reduction in transmission from
vaccinating a small fraction of the population is achieved by
targeting vaccination at the group in which individuals experi-
ence the highest risk of infection.

Allocation of Vaccines. This result for the marginal benefit from
one dose of vaccine can be exploited to devise allocation
schemes for a vaccine stockpile that is large enough to vaccinate
a substantial proportion of the population. One promising allo-
cation scheme that we have identified is “importance leveling,”
which maintains for doses after the first dose the principle of
allocating vaccines to the group with the highest product of
incidence and force of infection, after accounting for the reduced
risk of infection in a group due to vaccination, but is approximate
in that it considers only the first-order effects of reduced risk of
infection due to use of prior doses of vaccine. Specifically, the
scheme assigns each group an initial score for its importance to
transmission; the initial score of group i is equal to the square
root of relative change in transmission after one individual in

group i is vaccinated:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiciai

ni
siðtÞ

q
xiðtÞ
ni
. Vaccinating one individual in

group i lowers the importance of this group after vaccination by a
factor approximately qi/ni if the individual makes contacts mostly
within group i. The scheme distributes vaccine such that the
expected importance of all groups is leveled down to a constant
value after allocation of the entire vaccine stockpile. This prin-
ciple defines a unique allocation of a stockpile of a given size (SI
Text). In simulated epidemics, we find that for small stockpiles it
reduces the reproductive number as well as any allocation that
could be found by an optimization algorithm, and for larger
stockpile sizes (50%of the population) it is nearly optimal (Fig. 2).
Remarkably, the importance leveling scheme provides near-
optimal allocation of vaccines using only observations of group-
specific risk of infection early in an emerging epidemic.

School and Workplace Closure. The approach to calculating the
marginal benefit of targeting specific groups can be modified to
consider social distancing measures, such as closing schools and
workplaces (5–7, 27). Here we define such a measure as one that
reduces the extent of contact between individuals within group i
at which it is aimed, such as school children or working-age
adults. In this case, the marginal effect of reducing contacts
within group i is approximately proportional to the squared
incidence of infection within group i:

dR
dpii

≈− hc2i
�xiðtÞ

ni

�2
[2]

[change in transmission]≈[constant][per contact probability of
transmitting infection]2[incidence]2

The intuition behind this equation is similar to that of change
in transmission due to targeted vaccination, with one minor
change. We target links between individuals who transfer infec-
tion with a probability ci ai si (t)/ni rather than individuals who
respond with probability qi. The largest reduction in the expected
contribution to future infections is obtained if social distancing
measures are targeted to prevent contacts within the group with
the highest risk of infection per contact ci (if this differs between
groups) and the highest incidence of infection.

Robustness. If information is available (for example from contact
tracing studies) on the group-specific risk of becoming infected,
ai, or infecting others, ci, it can be incorporated directly into Eqs.
1 and 2. If this information is not available and we observe
group-specific differences in risk of infection, we may incorrectly
attribute these differences to variation in contact patterns
between groups, possibly introducing error into the estimates of
who should receive priority for interventions. Figure 2E shows a
sensitivity analysis in which the importance-leveling scheme is
applied under a model with a 100 different parameter sets for the
ai and ci, in which—unknown to the vaccine allocator—some of
the intergroup variation in risk is due to up to 4-fold variation in
these parameters, rather than variation in contacts. Even in this
situation, allocation by the importance leveling scheme performs
considerably better than random allocation and comparably to
the optimal allocation if the group-specific variation in ai and ci
were known. Additional sensitivity analyses show that the im-
portance leveling scheme performs nearly identically to optimal

Fig. 1. A schematic representation of transmission of infection in a population that consists of different groups. Individuals are depicted as nodes; potentially
infectious contacts from one individual to another are depicted as arrows; and group membership is indicated by node color. Individuals with a yellow node
have a larger number of incoming contacts and therefore have a higher risk of infection. Due to reciprocity of contacts, individuals with a yellow node also
have a larger number of outgoing contacts and therefore a higher number of infections that they would cause if they become infected. Therefore targeting
interventions at individuals in the group with a higher risk of infection (yellow nodes rather than orange nodes) would result in a larger reduction in
transmission potential. The sensitivity to targeted intervention of the transmission potential is determined by two components: the risk of infection of an
individual, and the number of infections that would result from this individual if infected. When contacts are reciprocal, the number of resulting infections is
proportional to the risk of infection.
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allocation for a range of vaccination coverages, reproduction
numbers, for different contact patterns, and with uncertain
estimates of risk of infection (Methods and SI Text).

Applications to Pandemic Influenza. Practical application of this
approach depends on the existence of large and detectable dif-
ferences between groups in risk of infection in a real emerging
epidemic. Reconstruction of the time course of the 1957–1958
influenza A(H2N2) pandemic shows (Fig. 3) that both incidence
and force of infection were significantly greater in persons less
than 20 years of age 2 weeks before the first pandemic peak (the
week of 18 September 1957), indicating that interventions in this
group would have been most effective early on. After the first
peak, the group-specific risks of infection become more similar.
Two weeks before the second peak (the week of 29 January
1958), the age groups revealed no measurable differences in
incidence, and differences in force of infection were modest and
not statistically significant, suggesting that at least for social
distancing and possibly for vaccination, there would have been
no benefit in targeting the 0- to 19-year-old group during the
second pandemic wave. Two results emerge: first, the current
best target group can be identified through observing differences
between group-specific risk of infection during emerging epi-
demics; and second, the best target group for intervention may
change during the course of an epidemic.
The principles for allocating scarce control measures are

immediately applicable in the influenza A(H1N1)v pandemic.
Age-specific incidence has been reported for several countries,
including the United States and Chile. In these two countries, the
highest incidence during the initial phase occurred among the 0-
to 19-year-olds, higher by a factor of at least 4 compared with
that in 30- to 39-year-olds (Fig. 4) (34). From these observations

we would conclude, assuming no difference between groups in
per contact probability of transmitting infection, that the highest-
priority age groups for social distancing in the initial phase would
have been the 0- to 19-year-olds and that differences between
groups in expected reduction of transmission after targeting
social distancing can be greater than 16-fold.
The observed age-specific incidence for influenza A(H1N1)v

also suggests that in the initial phase the highest priority age
groups for vaccination would have been the 0- to 19-year-olds,
assuming no difference between groups in proportion of those
susceptible to infection. A striking feature of the age-specific
incidence is the relative sparing of older age groups. Older age
groups are spared because they have lower levels of social con-
tact with infectious age groups, or because of preexisting
immunity to symptomatic infection. To refine estimates of the
benefits of group-specific vaccination, which depend on the
proportion of susceptible individuals in each group, one would
need estimates of the proportion of individuals who are immune.
This could be provided by serological surveys of the population
before vaccination, or by keeping track of the number of infec-
tions per group. If a serological survey finds that there is indeed
preexisting immunity among older age groups, this leads to a
counterintuitive consequence that the score for importance for
prioritization of these older age groups would increase: for a
given number of cases, a higher level of immunity implies a
higher value for force of infection, which in turn implies a larger
expected reduction in transmission if the older groups are tar-
geted for vaccination.

Discussion
Ongoing comparisons of incidence by age are an appropriate way
to quantify how target groups change as the epidemic progresses
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Fig. 2. A test of the importance-leveling scheme against simulated data. (A) The 21 contact parameters required to describe reciprocal contacts among six
age groups, based on self-reported number of social contacts (17). (B) Incidence of infection during the initial phase of the epidemic, as simulated from the
contact parameters in panel A. (C) Allocation of a perfect vaccine over six age groups for different stockpile sizes, according to the importance leveling
scheme (lines) that uses only information about the incidence of infection as in B; for comparison, we show the optimal allocation that requires knowing the
entire contact matrix (dots). (D) Reduction in transmission potential by importance leveling (green line) is indistinguishable from maximal reduction by
optimal allocation (blue dots) for stockpile sizes up to 20% of the total population. Both are considerably better than random allocation (orange line). (E)
Sensitivity analysis of reduction in transmission potential to age-specific variation in per contact probability of acquiring infection, ai, and per contact
probability of transmitting infection, ci. Importance leveling was applied while ignoring the variation in ai and ci (yellow) and while accounting for this
variation (green) (Methods). Transmission parameters are scaled such that the largest value equals 1 in A; incidence of infection is scaled such that the largest
value equals 1 in B. Size of stockpile is expressed relative to total population size; transmission potential is scaled such that it equals 2.0 when stockpile size is
zero in C, D, and E.
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and more persons become immune. For the influenza A(H1N1)v
pandemic, interventions targeted at school-aged children, such
as school closures, should be most effective in the early stages;
but, as in 1957, such interventions may be considerably less
effective as the epidemic progresses. In particular, if the inci-
dence becomes comparable among children and adults, such
measures will be significantly less valuable than they would have
been at the start of the pandemic.
Our results suggest that the key risk factors for infection

should be used to define a population structure that is relevant
for monitoring incidence of infection and for optimal targeting
interventions. For newly emerging infections, this is an important
result: elucidating the risk factors for infection helps in deciding
whether we should partition the population by age, sex, occu-
pation, or other demographic characteristics before we set out to

monitor risk of infection per group and identify the best target
group for infection control.
The principles for identifying target groups apply immediately

when the objective of control is to reduce transmission. Simu-
lations suggest that allocation strategies that reduce transmission
also tend to do better than random allocation in minimizing the
peak incidence and minimizing the total number of infections
(Fig. S1). Therefore, these principles may also apply to a wider
range of objectives, such as the reduction of the total number of
infections in the population or the reduction of the total number
of severe cases. For this wider range of objectives, there is evi-
dence that small supplies of vaccines should target high-risk
groups, whereas larger supplies should target groups who are
major transmitters (13–15, 19, 21, 28). The contribution of this
paper is to define how to identify the major transmitters, given
limited data. For the objectives other than reducing trans-
mission, the question remains open at what level of supplies of
vaccine there is a switch from targeting high-risk groups to tar-
geting major transmitters.
Before targeting interventions at the groups with the highest

risk of infection, the underlying assumptions and conditions of
this simple rule should be checked and verified. In absence of
data on incidence of infection by location and household size, we
have assumed here that transmission occurs according to mass-
action–type dynamics, thus ignoring the subtlety of network
interactions, such as the intense and repeated nature of contacts
within households. The analysis assumes that at-risk contacts for
transmission are reciprocal. Reciprocal contacts arise, for
example, whenever spatial and temporal proximity of two indi-
viduals is required for transmission to occur. This condition is
not strongly violated by a broad class of diseases such as influ-
enza. The analysis requires furthermore that the distribution of
risk of infection over groups should not change much before or
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Fig. 3. Incidence and force of infection during the “Asian” 1957–1958 influenza A(H2N2) pandemic in the Netherlands, as reconstructed from age-specific
records of mortality and from serological cross-sectional surveys conducted in June 1957 and June 1958. (A) Time course of overall weekly incidence of
infection. (B) Time course of weekly incidence of infection by age group. (C) Age-specific incidence of infection in week of 18 September 1957, 2 weeks before
peak of first pandemic wave, and (D) in week of 29 January 1958, 2 weeks before peak of second pandemic wave. (E) Time course of weekly force of infection
by age groups. (F) Age-specific force of infection 2 weeks before peak of first pandemic wave, and (G) age-specific force of infection 2 weeks before peak of
second pandemic wave. Gray areas in C, D, F, and G indicate 95% bootstrapped confidence intervals (Methods).

0 20 60

0
10
20
30
40
50

Age

In
ci

de
nc

e

A

0 20 60

0
200
400
600
800

1000

Age

B

Fig. 4. Incidence by age during first phase of outbreak of A(H1N1)v, as
cases per million. (A) Incidence in United States up to 13 May 2009. A total of
3,369 confirmed and probable cases have been reported. Incidence was
calculated using 3,097 case patients for which age was reported or could be
calculated using date of birth and who did not report a recent history of
travel fromMexico. (B) Incidence in Chile up to 21 June 2009. A total of 5,186
confirmed cases have been reported. Incidence was calculated using 5,085
confirmed cases for which age was known (34).
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during the observation interval, and the number of infections
should be large enough to obtain reliable estimates of risk of
infection. Our stochastic simulations have shown that there is
only a small risk that stochastic variation in the epidemic will
mislead the analyst. A more salient problem is bias in group-
specific incidence, when detection may be heavily biased toward
severe cases (29). It is important for users of our approach to
base estimates of incidence and force of infection on the best
possible proxy for infection, and to consider biases introduced by
the surveillance system.
In conclusion, we have described a robust strategy to target

infectious disease interventions in the face of uncertainty about
the precise epidemiological characteristics of a newly emerging
infection. If all else is equal, priority for vaccination goes to
groups with the highest product of incidence and force of
infection, and priority for social distancing goes to groups with
the highest incidence of infection. Real-time monitoring of
group-specific risk differences during an emerging epidemic will
be crucial to determine the optimal targets of an intervention
with scarce resources.

Methods
The 1957–1958 “Asian” Influenza A(H2N2) Epidemic in The Netherlands. We
obtained data on mortality with influenza as a primary cause in the Neth-
erlands from 26 June 1957 to 25 June 1958 from Statistics Netherlands. The
number of deaths was reported weekly and stratified by 10 year age cohorts
(1–9 years, 10–19 years, 20–29 years, . . ., 70–79 years, 80 years and older). The
number of persons in 1957 in these age groups was also obtained from
Statistics Netherlands. The age-specific proportions of susceptible individuals
were estimated from a cross-sectional serological study conducted in June
1957, before the first pandemic wave arrived (30), and from a follow-up
study conducted in June 1958, after the second pandemic wave had passed
(31). The age-specific risk of death upon infection is obtained by dividing the
number of deaths due to influenza by the number of influenza infections.
As the time lag between moment of death and moment of infection was
short for all age groups (32), we obtain the number of infections for any
week in each age group by dividing the number of deaths in that week by
the risk of death upon infection, and we obtain the number of susceptible
individuals for any week by subtracting the cumulative number of infections
until that week from the initial number of susceptible individuals as
observed in June 1957. The weekly incidence is calculated as the number of
infections divided by population size, and the weekly force of infection is
calculated as the number of infections divided by the number of susceptible
individuals. To assess the uncertainty in the outcome, we constructed 1000
bootstrapped data sets for the serological surveys, and repeated the calcu-
lations for each data set to obtain 95% bootstrap intervals.

Outline of Derivation of Eqs. 1 and 2. To specify the precise relationship
between the expected change in the reproduction number R and the
magnitude of a targeted intervention, we study the transmission of an
infection in a host population that is stratified into m groups (key to nota-
tion in Table S1). The transmission of infection from group j to group i is
quantified by kij, the mean number of individuals in group i that are infected
by a single individual in group j during its entire infectious period. The
matrix with elements kij is the reproduction matrix K. A targeted inter-
vention, such as vaccination or social distancing, will change the values of
one or more elements of this reproduction matrix K; this change in the
reproduction matrix is denoted by dK. The reproduction number R is defined
as the top eigenvalue of the reproduction matrix K, and it gives the number
of secondary infections produced by a “typical” infective in the stratified
population (23). In general, it is not possible to compute the change in the
top eigenvalue dR from a change in the reproduction matrix dK when the
precise values of all matrix elements kij are unknown. However, for a broad

class of infectious diseases, the reproduction matrix K has a special structure
that does allow for an explicit derivation of the change in the top eigen-
value dR, even when the values of kij are unknown. The derivation proceeds
in four steps. First, when contacts are reciprocal, the reproduction matrix K
can be factorized into a product of symmetric matrices. Specifically, we can
write kij = si ai bij cj. From right to left, cj reflects the per contact probability
of transmitting infection; bij = bji reflects the contact parameter (defined
here as the proportion of individuals in group i contacted by an individual in
group j during its entire infectious period); ai reflects the per contact
probability of becoming infected; si reflects the number of susceptible
individuals. Second, because of this structure, the normalized top left
eigenvector v of the reproduction matrix is directly related to the normal-
ized top right eigenvector w of the reproduction matrix. Specifically, the ith
element of the top left eigenvector v can be related to the ith element of
the top right eigenvector w as vi ∼ ci wi /si ai. Third, the normalized top
right eigenvector can be related to the group-specific number of new
infections x(t): the ith element of the top right eigenvector w is proportional
to the group-specific number of new infections in group i as observed
around time t: wi ∼ xi(t). Fourth, the change in top eigenvalue dR is given by
the matrix product of the normalized top left eigenvector v, the change in
the reproduction matrix dK, and the normalized top right eigenvector
w (33). By multiplying the left eigenvector, the change in the reproduction
matrix (expressed in terms of either R qi dui / ni when vaccination is targeted
at group i, or ai ci si dpii / ni

2 when social distancing is targeted at group i),
and the right eigenvector we obtain the Eqs. 1 and 2 for the change in
reproduction number R (full derivation and conditions in SI Text).

Sensitivity Analysis. We explored the sensitivity of reduction in transmission
potential R to 4-fold variation in per contact probability of acquiring
infection, a, and per contact probability of transmitting infection, c. 100
parameter sets were generated using a contact matrix as shown in Fig. 2A
and Table S2. For each parameter set, the per contact probabilities of
acquiring infection, ai, and the per contact probabilities of transmitting
infection, ci, were drawn independently for each group from a uniform
distribution on the interval 0.25–1. In each parameter set, a fixed quantity of
vaccine was assumed to be available, randomly chosen between 0 and 0.5 of
the population size. The results are shown in Fig. 2E. Initial incidences of
infection were simulated, and the importance leveling algorithm was used
to calculate the allocation of the vaccines over the age groups, as if we were
ignorant of the existing variation in ai and ci (Fig. 2E, yellow dots). Sub-
sequently, the importance leveling algorithm was applied again with
knowledge of the age-specific variation in ai and ci (Fig. 2E, green dots). The
difference in the reduction of transmission potential between both
approaches is very small. For comparison, the outcome is shown for random
allocation (Fig. 2E, orange dots) and the optimal allocation that minimizes
the transmission potential, using simulated annealing and taking advantage
of the full information on the entire transmission matrix and parameter set
(Fig. 2E, blue dots). These results show that the performance of the impor-
tance leveling scheme is robust to ignoring existing variation in the per
contact probability of acquiring infection and the per contact probability of
transmitting infection.

In addition, we compared the performance of the importance leveling
scheme against random allocation and optimal allocation in a simulation
study for a range of vaccine coverages, for different values of reproduction
numbers, and for different contact patterns while explicitly allowing for a
delay between observing risk of infection and implementing control meas-
ures (Fig. S1). We also addressed the uncertainty about group-specific risk of
infection (Fig. S2).
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